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a b s t r a c t

The method of multiple time scale is used to obtain the asymptotic solution to the
spherically and cylindrically symmetric flow into a perfectly conducting gas permeated
by a transverse magnetic field. The transport equations for the amplitudes of resonantly
interacting high frequency waves are also found. The evolutionary behavior of non-
resonant wave modes culminating into shock waves is studied.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The occurrence of shock waves in gas dynamics has been well studied in the past. The propagation of shock waves under
the influence of strongmagnetic field constitutes a problem of great interest to researchers in many branches of science and
astrophysics. The work of Manganaro and Oliveri [1], Kumar et al. [2], Sharma and Srinivasan [3], Hunter and Ali [4], Webb
et al. [5], Tsiklauri [6], Gunderson [7], Whitham [8], Moodie et al. [9], He andMoodie [10], Sharma and Arora [11], and Arora
and Sharma [12] is worth mentioning in the context of this paper.

We use the asymptotic method for the analysis of weakly nonlinear hyperbolic waves. Choquet-Bruhat [13] proposed a
method to discuss shockless solutions of hyperbolic systems which depend upon a single phase function. Germain [14]
has given the general discussion of single phase progressive waves. Hunter and Keller [15] established a general non-
resonantmulti-wave-mode theorywhichhas led to several interesting generalizations byMajda andRosales [16] andHunter
et al. [17] to include resonantly interacting multi-wave-mode features.

We use the resonantly interacting multi-wave theory to examine small amplitude high frequency asymptotic waves for
one-dimensional unsteady non-planar flows of a general inviscid ideal gas permeated by a transverse magnetic field, where
at the leading order many waves coexist and interact with one another resonantly, and obtain evolution equations which
describe the resonant wave interactions inherent in the system.

2. Basic equations

Assuming the electrical conductivity to be infinite and the direction of the magnetic field orthogonal to the trajectories
of the fluid particles, the basic equations for a one-dimensional non-planar motion can be written as [1,2]

∂ρ

∂t
+ ρ

∂u
∂x

+ u
∂ρ

∂x
+

mρu
x

= 0,
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∂u
∂t

+ u
∂u
∂x

+
1
ρ

(
∂p
∂x

+
∂h
∂x

)
= 0, (1)

∂p
∂t

+ u
∂p
∂x

+ ρa2
∂u
∂x

+
mγ pu

x
= 0,

∂h
∂t

+ u
∂h
∂x

+ 2h
∂u
∂x

+
2mhu

x
= 0,

where u is the fluid velocity, p is the pressure, ρ is the density, h = µH2/2 is themagnetic pressure with H as the transverse
magnetic field strength and µ as the magnetic permeability, a = (γ p/ρ)1/2 is the speed of sound with γ as the adiabatic
exponent, t is the time, and x is the spatial coordinate; m = 1 and 2 correspond, respectively, to cylindrical and spherical
symmetry. Also, all the variables in system (1) are dimensionless.

The Eq. (1) may be written in the matrix form as

∂U
∂t

+ A
∂U
∂x

+ B = 0 (2)

where U and B are the column vectors defined by

U = (ρ, u, p, h)tr, B =

(
mρu
x

, 0,
mγ pu

x
,
2mhu

x

)tr

, (3)

A is the 4 × 4 matrix having the components Aij, the non-zero ones are as follows
A11

= A22
= A33

= A44
= u,

A12
= ρ, A23

= A24
= 1/ρ, A32

= ρa2, A42
= 2h. (4)

System (2) being strictly hyperbolic admits four families of characteristics, among them two represent waves propagating
in ±x directions with the speed u ± c , where c = (a2 + b2)1/2 represents the magneto-acoustic speed with b = (2h/ρ)1/2

as the Alfvén speed. The remaining two families form a set of double characteristics representing entropy waves or particle
paths propagating with velocity u. We consider waves propagating into a initial background state U0 = (ρ0, 0, p0, h0)

tr. The
characteristic speeds at U = U0 are given by λ1 = 0, λ2 = 0, λ3 = c0 and λ4 = −c0. The subscript 0 refers to evaluation at
U = U0, and is synonymous with a state of equilibrium.

3. Interaction of High Frequency Waves

We denote the left and right eigenvectors of A0 associated with the eigenvalue λi by L(i) and R(i). These eigenvectors
satisfy the normalization condition L(i)R(j)

= δij, 1 ≤ i, j ≤ 4, where δij represents the Kronecker delta. These eigenvectors
are given as

L(1)
=

(
1, 0, −

1
c20

, −
1
c20

)
, R(1)

= (1, 0, a20, −a20)
tr,

L(2)
=
(
−a20, 0, 1, 0

)
, R(2)

= (0, 0, 1, −1)tr,

L(3)
=

(
0,

ρ0

2c0
,

1
2c20

,
1
2c20

)
, R(3)

=

(
1,

c0
ρ0

, a20, b
2
0

)tr

. (5)

L(4)
=

(
0, −

ρ0

2c0
,

1
2c20

,
1
2c20

)
, R(4)

=

(
1, −

c0
ρ0

, a20, b
2
0

)
atr.

We look for asymptotic solution for (2) as ε → 0 of the form

U ∼ U0 + εU1(x, t, θ̃ ) + ε2U2(x, t, θ̃ ) + O(ε3), (6)
where U1 is a smooth bounded function of its arguments and U2 is bounded in (x, t) in a certain bounded region of interest
having at most sub-linear growth in θ as θ → ±∞. Here θ̃ = (θ1, θ2, θ3, θ4) represents the ‘‘fast variables’’ characterized
by the functions φi as θi = φi/ε, where φi, 1 ≤ i ≤ 4, is the phase of the ith wave associated with the characteristic speed
λi. Now we use (6) in (2), expand A and B in Taylor’s series in powers of ε about U = U0, replace the partial derivatives ∂

∂X

(X being either x or t) by ∂
∂X + ε−1∑4

i=1
∂φi
∂X

∂
∂θi

, and equate to zero the coefficients of ε0 and ε1 in the resulting expansions,
to obtain

O(ε0) :

4∑
i=1

(
I
∂φi

∂t
+ A0

∂φi

∂x

)
∂U1

∂θi
= 0 (7)

O(ε1) :

4∑
i=1

(
I
∂φi

∂t
+ A0

∂φi

∂x

)
∂U2

∂θi
= −

∂U1

∂t
− A0

∂U1

∂x
− (U1.∇B)0 −

4∑
i=1

∂φi

∂x
(U1.∇A)0

∂U1

∂θi
(8)
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where I is the 4 × 4 unit matrix and ∇ is the gradient operator with respect to the dependent variable U . Now since the
phase functions φi, 1 ≤ i ≤ 4, satisfy the eikonal equation

Det
(
I
∂φi

∂t
+ A0

∂φi

∂x

)
= 0, (9)

we choose the simplest phase function of this equation, namely

φi(x, t) = x − λit, 1 ≤ i ≤ 4. (10)

It follows from (5) that for each phase φi,
∂U1
∂θi

is parallel to the right eigenvector R(i) of A0 and thus

U1 =

4∑
i=1

σi(x, t, θi)R(i), (11)

where σi = (L(i)
·U1) is a scalar function called the wave amplitude, that depends only on the ith fast variable θi. We assume

that σi(x, t, θi) has zero mean value with respect to the fast variable θi, that is,

lim
T→∞

1
2T

∫ T

−T
σi(x, t, θi)dθi = 0. (12)

We then use (11) in (8) and solve for U2. To begin with we write

U2 =

4∑
j=1

mjR(j),

substitute this value in (8), and premultiply the resulting equation by L(i) to obtain the system of decoupled inhomogeneous
first order partial differential equations:

4∑
j=1

(λi − λj)
∂mi

∂θj
= −

∂σi

∂t
− λi

∂σi

∂x
− L(i)(U1 · ∇B)0 −

4∑
j=1

L(i)(U1 · ∇A)0
∂U1

∂θj
, 1 ≤ i ≤ 4. (13)

The characteristic ODEs for the ith equation in (13) are given by

θ̇j = λi − λj for j 6= i, θ̇i = 0, ṁi = Hi, (14)

where Hi(x, t, θ1, θ2, θ3, θ4) = −
∂σi
∂t − λi

∂σi
∂x − L(i)(U1 · ∇B)0 −

∑4
j=1 L

(i)(U1 · ∇A)0
∂U1
∂θj

.
We asymptotically average (13) along the characteristics and appeal to the sub-linearity of U2 in θ , which ensures that

the expression (6) does not contain secular terms. The constancy of θi along the characteristics and the vanishing asymptotic
mean value of ṁi along the characteristics imply that the wave amplitudes σi, 1 ≤ i ≤ 4, satisfy the following system of
coupled integro-differential equations

∂σi

∂t
+ λi

∂σi

∂x
+ aiσi + Γ i

iiσi
∂σi

∂θi
+

∑
i6=j6=k

Γ i
jk lim

T→∞

1
2T

∫ T

−T
σj(θi + (λi − λj)s)σ́k(θi + (λi − λk)s)ds = 0, (15)

where σ́k =
∂σk
∂θk

and the coefficients ai and Γ i
jk are given by

ai = L(i)(R(i)
· ∇B)0, Γ i

jk = L(i)(R(j)
· ∇A)0R(k). (16)

The interaction coefficients Γ i
jk, which are asymmetric in j and k, denote the strength of coupling between the jth and kth

wave modes (j 6= k) that can generate an ith wave (i 6= j 6= k). The coefficients Γ i
ii which refer to the nonlinear self-

interaction, are non-zero for genuinely nonlinear waves and zero for linearly degenerate waves. It is also interesting to note
that if all the coupling coefficients Γ i

jk (i 6= j 6= k) are zero or the integral in (15) vanishes, the waves do not resonate and
(15) reduces to a system of uncoupled Burgers’ equations. The coefficients ai, Γ i

ii and Γ i
jk, given by (15), provide a picture of

the nonlinear interaction process present in the system under consideration, and can be easily determined in the following
form; the non-zero ones being:

a3 =
mc0
2x

, a4 = −
mc0
2x

,

Γ 1
23 = −Γ 1

24 =
(2 − γ )

ρ0c0
,

Γ 1
34 = −Γ 1

43 =
c20 + a20(γ − 2)

ρ0c0
,
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Γ 2
13 = Γ 2

43 = −Γ 2
14 = −Γ 2

34 = (γ − 1)a20
c0
ρ0

,

Γ 3
14 = −Γ 4

13 = −
c20 + a20(γ − 2)

2ρ0c0
= β1, (17)

Γ 3
24 = −Γ 4

23 =
(2 − γ )

2ρ0c0
= β2.

The resonance equation (15) can now be written as

∂σ1

∂t
= 0,

∂σ2

∂t
= 0 (18)

∂σ3

∂t
+ c0

∂σ3

∂x
+

mc0
2x

σ3 + Γ σ3
∂σ3

∂θ3
− lim

P→∞

1
2P

∫ P

−P
K
(
x, t,

θ3 + φ

2

)
σ4(x, t, φ)dφ = 0,

∂σ4

∂t
− c0

∂σ4

∂x
−

mc0
2x

σ4 − Γ σ4
∂σ4

∂θ4
+ lim

P→∞

1
2P

∫ P

−P
K
(
x, t,

θ4 + φ

2

)
σ3(x, t, φ)dφ = 0,

where Γ = Γ 3
33 = −Γ 4

44 = [3c20 − (2 − γ )a20]/(2c0ρ0), and the kernel K is defined as

K
(
x, t,

θ + φ

2

)
=

β1

2
∂σ1

∂θ1

(
x, t,

θ + φ

2

)
+

β2

2
∂σ2

∂θ2

(
x, t,

θ + φ

2

)
. (19)

Let the initial value of σj be σj|t=0 = σ 0
j (x, θj). Hence (18)1,2 gives σ1(x, t, θ1) = σ 0

1 (x, θ1) and σ2(x, t, θ2) = σ 0
2 (x, θ2), and

subsequently the system (18) reduces to a pair of equations for the wave fields σ3 and σ4 coupled through the linear integral
operator involving the kernel

K(x, t, θ) =
β1

2
∂σ 0

1

∂θ1
(x, θ) +

β2

2
∂σ 0

2

∂θ2
(x, θ). (20)

If the initial data σ 0
j (x, θ) are 2π periodic functions of the phase variable θ , then the pair of resonant asymptotic equations

in system (18) becomes

∂σ3

∂t
+ c0

∂σ3

∂x
+

mc0
2x

σ3 + Γ σ3
∂σ3

∂θ3
−

1
2π

∫ π

−π

K
(
x, t,

θ3 + φ

2

)
σ4(x, t, φ)dφ = 0, (21)

∂σ4

∂t
− c0

∂σ4

∂x
−

mc0
2x

σ4 − Γ σ4
∂σ4

∂θ4
+

1
2π

∫ π

−π

K
(
x, t,

θ4 + φ

2

)
σ3(x, t, φ)dφ = 0,

where K is given by (20).

4. Nonlinear geometrical acoustics solution

The asymptotic solution (6) of hyperbolic system (2) satisfying small amplitude oscillating initial data

U(x, 0) = U0 + εU0
1 (x, x/ε) + O(ε2), (22)

is non-resonant if U0
1 (x, x/ε) are smooth functions with a compact support [16]. The expansion (6) is uniformly valid to the

leading order till shock waves have formed in the solution.
The characteristic equations are

dθj
dx

=
Γ σj

c0
,

dt
dx

=
ej
c0

, (23)

where

ej =

{
+1, if j = 3,
−1, if j = 4.

In terms of the characteristic equations, the decoupled equations (21)2 and (21)3 can be written as

dσj

dx
= −

mσj

2x
, (24)

which yields on integration

σj = σ 0
j (sj, ξj)(x/sj)−m/2 (25)
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along the rays sj = x − ejc0t = constant, where the function σ 0
j is obtained from the initial condition (22), and the fast

variable ξj parametrizes the set of characteristic curves (23)1.
Thus, we obtain from (23)

ξj = θj − ejΓ σ 0
j (sj, ξj)I

(m)
j (t), (26)

where I(m)
j (t) =

∫ t
0

(
1 +

ejc0
sj

t̃
)−m/2

dt̃ .

The solution of (2), satisfying (22), where U0
1 (x, x/t) has compact support, is obtained as

ρ(x, t) = ρ0 + εσ 0
1 (x, x/ε) + εx−

m
2

(
(x − c0t)

m
2 σ 0

3 (s3, ξ3) + (x + c0t)
m
2 σ 0

4 (s4, ξ4)
)

+ O(ε2),

u(x, t) = ε
c0
ρ0

x−
m
2

(
(x − c0t)

m
2 σ 0

3 (s3, ξ3) − (x + c0t)
m
2 σ 0

4 (s4, ξ4)
)

+ O(ε2),

p(x, t) = p0 + εa20σ
0
1 (x, x/ε) + εσ 0

2 (x, x/ε) + εa20x
−

m
2

(
(x − c0t)

m
2 σ 0

3 (s3, ξ3) + (x + c0t)
m
2 σ 0

4 (s4, ξ4)
)

+ O(ε2),

h(x, t) = h0 − εa20σ
0
1 (x, x/ε) − εσ 0

2 (x, x/ε) + εb20x
−

m
2

(
(x − c0t)

m
2 σ 0

3 (s3, ξ3) + (x + c0t)
m
2 σ 0

4 (s4, ξ4)
)

+ O(ε2) (27)

where the fast variables ξj (1 ≤ j ≤ 4) are given in (26), and the initial values for σi, (1 ≤ i ≤ 4) are obtained from the
solution (27) specified at t = 0 as

σ 0
1 (x, x/ε) = ρ0

1 (x, x/ε) −

(
1
c20

) (
p01(x, x/ε) + h0

1(x, x/ε)
)

σ 0
2 (x, x/ε) = −a20ρ

0
1 (x, x/ε) + p01(x, x/ε)

σ 0
3 (x, ξ3) =

(
ρ0

2c0

)
u0
1(x, ξ3) +

(
1
2c20

) (
p01(x, ξ3) + h0

1(x, ξ3)
)
, (28)

σ 0
4 (x, ξ4) = −

(
ρ0

2c0

)
u0
1(x, ξ4) +

(
1
2c20

) (
p01(x, ξ4) + h0

1(x, ξ4)
)
.

This is the complete solution of (2) and (22); anymulti-valued overlap in this solution is resolved by introducing shocks into
the solution.

5. Shock waves

Following [15] it can be shown that the shock location θ s
j satisfies the relation

dθ s
j

dt
=

1
2
Λ

j
jj

(
σ

(−)
j + σ

(+)
j

)
, j = 3, 4 (29)

which is the shock speed in the θj − t plane. Here σ
(−)
j and σ

(+)
j , respectively, are the values of σj just ahead and behind the

shock. We have σ
(−)
j = 0 for the undisturbed region ahead of the shock. Now we use (25) and drop the superscripts on θ s

j

and σ+

j to obtain

dθj
dt

=
Γ

2
ejσ 0

j (sj, ξj)
(

x
sj

)−
m
2

. (30)

Using Eqs. (30) and (26) we obtain the following relation between ξj and t on the shock

Imj (t) = −

(
2ej

(σ 0
j )2Γ

)∫ ξj

0
σ 0
j (t̃)dt̃. (31)

Now using (31) and (26) we obtain the following equation which determines the shock path parametrically,

θj = ξj −
2
σ 0
j

∫ ξj

0
σ 0
j (t̃)dt̃. (32)

If σ 0
j 6= 0 then the shock forms right at the origin.
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6. Conclusion and discussion

Themethod ofmultiple scales is used to obtain small amplitude high frequency asymptotic solution to the basic equations
governing one-dimensional cylindrically and spherically symmetric flow in an ideal gas, where it is assumed that the
electrical conductivity is infinite, and the direction of themagnetic field is orthogonal to the trajectories of the fluid particles.
Weakly nonlinear geometrical acoustics theory is used to analyze the resonant wave interaction. We derived the transport
equations for the wave amplitudes along the rays of the governing system; these transport equations constitute a system
of inviscid Burger’s’ equations with quadratic nonlinearity coupled through linear integral operators with a known kernel.
The coefficients appearing in the transport equations provide a measure of coupling between the various modes and set a
qualitative picture of the interaction process involved therein. It is observed that thewave fields associatedwith the particle
paths do not interactwith each other; however they do interactwith an acousticwave field to produce resonant contribution
towards the other acoustic field. The acoustic wave fields may or may not interact, but in either case their net contribution,
which is directed towards the entropy field, is always zero. In our analysis the governing system of Euler equations reduces
to a pair of resonant asymptotic equations for the acoustic wave fields. For a non-resonantmulti-wave-mode case, proposed
by Hunter and Keller [15], the reduced system of transport equations gets decoupled with vanishing integral average terms,
and the occurrences of shocks in the acoustic wave fields are analyzed.

It is found that in a contracting pistonmotion having spherical symmetry, a shock is always formed before the formation
of a focus no matter how small the initial wave amplitude may be; this is in contrast with the corresponding cylindrical
situation where a shock forms before the focus only if the initial amplitude exceeds a critical value.

It is also found that cylindrical and spherical shock waves decay like t−3/4 and t−1(log t)−1/2, respectively; these results
are in agreement with earlier results [8].
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