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In this study, we propose a simple linear least squares estimation method (LLS) based on a

Fourier transform to estimate the complex frequency of a harmonic signal. We first use a

synthetically-generated noisy time series to validate the accuracy and effectiveness of LLS

by comparing it with the commonly used linear autoregressive method (AR). For an input

frequency of 0.5 mHz, the calculated deviations from the theoretical value were 0.004‰

and 0.008‰ for the LLS and ARmethods respectively; and for an input 5 � 10�6 attenuation,

the calculated deviations for the LLS and AR methods were 2.4% and 1.6%. Though the

theory of the AR method is more complex than that of LLS, the results show LLS is a useful

alternative method. Finally, we use LLS to estimate the complex frequencies of the five

singlets of the 0S2 mode of the Earth's free oscillation. Not only are the results consistent

with previous studies, the method has high estimation precisions, which may prove

helpful in determining constraints on the Earth's interior structures.

© 2015, Institute of Seismology, China Earthquake Administration, etc. Production and

hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For the Fourier analysis of a signal, in most cases one must

obtain the complex frequencies (frequency f and quality factor

Q) and amplitudes of the signal, such as those recorded in

studies about the tidal, normal modes, or polar motion of the

Earth. It is therefore necessary to estimate those parameters

with high precision; there are many methods currently in use

for doing so.
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Among numerous complex frequency estimation methods

[1], early observations of ak, the attenuation of the kth mode,

most of which were obtained by a time lapse method. This

method is relatively cost effective although does not easily

lend itself to application of tapers, which are essential to the

estimation of Q [2]. It has been proposed a very fast and

reliable method, the autoregressive (AR) method [3], which

can be used to estimate the four parameters of a signal and

their accuracies, where Ak is the complex amplitude of the

kth mode, uk ( ¼ 2pfk) is the frequency of the kth mode, fk is
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the phase of the kth mode, and ak is as previously defined.

Additionally, a non-linear least squares fitting method

termed as the least squares (LS) algorithm [2], which can be

also used to estimate Ak, uk, ak, and fk, and their accuracies.

Moreover, the early measurement techniques, that the

measurements of Q must be used the tapering process, and

concluded that the most frequently used traditional

methods, such as the time lapse method, should be replaced

by the AR or LS method. It assumed that each resonance of

the spectrum was produced by a damped harmonic

oscillator, and then used a numerical method to obtain Ak,

uk, and ak [4]. An improved method to estimate the

attenuation ak based on the time lapse method and a non-

linear damped harmonic analysis method to estimate the

complex frequencies of a normal mode [5e7]. Those

previous methods are non-linear algorithms, which in

general are unstable and computationally time-consuming.

Given that, we will introduce a linear algorithm as an

alternative.

In this paper, we are concerned only with estimating uk,

and ak of a target signal, because the estimation of complex

amplitudes are based on the estimation of the complex fre-

quencies. If the latter can be accurately estimated, the former

is determined by a simple linear least square process [3]. Note

that themethodwe propose here is a linearmethodwhich can

be seen as an alternative to the previous methods.
2. Methodology

A discrete time series consisting of M decaying functions

can be expressed as

aðtÞ ¼
XM
k¼1

Ak cosðuktþ fkÞe�akt (1)

where Ak is the complex amplitude of the kth mode, ak is the

attenuation, uk ( ¼ 2pfk) is the frequency, and fk is the phase.

After a Fourier transform, consider that each of the spec-

tral peaks corresponds to an independent uk, and therefore

one can estimate the four parameters of a mode in the fre-

quency domain. Note that a Hanning taper is required to

multiply the given record prior to the fast Fourier transform

(FFT) to weaken spectral leakage [3,8,9], there after the Fourier

spectrum of (1) can be written (ignoring the form of the win-

dow function) as:

FaðuÞ ¼ 1
2

�
Akeifk

iðu� ukÞ þ ak
þ Ake�ifk

iðuþ ukÞ þ ak

�
(2)

For a normal mode, ak >> 1, we can see that:

jFað�ukÞjzjFaðukÞj (3)

Hence, for a given spectrum, we only need to consider the

positive frequencies, uk > 0, in the frequency domain [10].

Therefore equation (2) can be replaced by

FaðuÞ ¼ 1
2

Akeifk

iðu� ukÞ þ ak
¼ Akeifk

2
ak � iðu� ukÞ
ðu� ukÞ2 þ a2

k

(4)

Let
8><
>:

CkðuÞ ¼ 1
2
ak � iðu� ukÞ
ðu� ukÞ2 þ a2

k

ak ¼ z1 þ iz2 ¼ Ake
ifk

(5)

Then one can get

FaðuÞ ¼ akCðuÞ (6)

Hence, the power spectrum can be written as

PaðuÞ ¼ jakj
���CkðuÞ2

���.N ¼ 0:25jakj=N
ðu� ukÞ2 þ a2

k

(7)

where N is the number of data points. Letting Bk ¼ 0:25jakj=N,

(note that in a narrow target frequency band Pa(u)s 0), taking

the reciprocal of both sides of equation (7) one can get that

1

PaðuÞ ¼
u2

Bk
� 2uk

Bk
uþ 1

Bk

�
u2

k þ a2
k

�
(8)

Note that while Bk ensures that Bk/ak
2 ¼ Pa(u)jmax in a given

narrow frequency band, there is no information about com-

plex amplitude in any power spectra [11], and all frequency

points u in (8) have to cross the target peak, which is located

in the given narrow frequency band. Let y(u) ¼ 1/Pa(u), a ¼ 1/

Bk, b ¼ � 2uk/Bk, and c ¼ ðu2
k þ a2

kÞ=Bk, then

yðuÞ ¼ au2 þ buþ c (9)

It is apparent that equation (9) is linear for a, b, and c; and

according to Least Square Estimation (LSE), we only need

three values of y to obtain an estimate for the three

parameters. Since

Bk ¼ 1
a
; uk ¼ �b

2a
; ak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac� b2

4a2

r
(10a)

where uk and ak can also be estimated. It should be noted

that Bk contains two unknown parameters Ak and fk, and a

non-fixed value N, hence we only use the above mentioned

process to estimate uk and ak. Clearly, by simply taking the

reciprocal of a given spectrum, decouples the estimations

of complex amplitude (Akeifk ) and complex frequency

uk þ iak.

To achieve a more accurate complex frequency estimation

of the modes, we adopt a repeating estimation process.

Furthermore, given the limited number of frequency points

across the single target spectral peak, numerous frequency

points can be increased by zero-padding or linear interpola-

tion to achieve more accurate estimations; another process is

just using discrete Fourier transform (DFT) to obtain the

Fourier spectrum of any frequency point below the Nyquist

frequency. In fact, for a given spectral peak, there are often

more than three points, which cross the target peak. How to

realize a multiple least squares estimation will be detailed

below.

As mentioned above, for the determination of uk and ak,

the values of three power spectral points must be known, but

to make more accurate estimations, additional observations

are required; therefore we will repeat the estimation pro-

cesses multiple times, interpolating the power spectrum

sequence by zero-padding. Assume that there are M (M � 5)

frequency points, which cross the target peak before the

interpolation, the corresponding frequency sequence and

http://dx.doi.org/10.1016/j.geog.2015.05.004
http://dx.doi.org/10.1016/j.geog.2015.05.004


Fig. 1 e A simple example to explain the interpolation used

to carry out the LLS estimation.
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power spectral sequence areu[k] and P(u[k]) (k¼ 1,2,…,M;u¼{u

[k]} is called “sequence u[k]” hereafter when referring to the

entire finite-duration sequence; otherwise, u[k] denotes the

kth number in the finite-duration sequence), and the fre-

quency point u[m0] which corresponds to themaximum of P(u

[k]) is located near the middle of the sequence u[k] (i.e.,

m0 ¼ (M þ 1)/2, if M is odd; otherwise, m0 ¼ M/2). If the fre-

quency spacing of sequence u[k] is denoted as Du, the fre-

quency interpolation interval can be equal to Du/n (where

n � 2 is the length of the zero-padding), then we can get a new

frequency sequence uI[j] (where the subscript I indicates the

interpolated sequence) and a new power spectral sequence

P(uI[j]) (j ¼ 1,2,…,N;N ¼ (M � 1)n � 1). Obviously, the maximum

value of the power spectral sequence and its corresponding

frequency will be the same, but u[m0] will be noted by

Ref. uI[m] in the new sequence uI[j] (m ¼ (M � 1)n/2 þ 1, if M is

odd; otherwise, m ¼ (M � 2)n/2 þ 1). To perform multiple es-

timations, five observations are chosen. Three pairs of ob-

servations will be used in each estimation, they are

{uI[m],P(uI[m])}, {uI[1],P(uI[1])} and {uI[2m � 1],P(uI[2m � 1])}, the

two other observations ({uI[m � i], P(uI[m � i])}, {uI[m þ i],

P(uI[m þ i])}) are selected symmetrically from reference uI[m].

To ensure the uniqueness of these additional observation

equations, ism � 1, namely i ¼ 1,2,…,m � 2; m � 2 is the

number of the multiple estimations. Because we have

assumed that M � 5, so m � 2 � 5, and multiple estimations

can be implemented.

Thus, for the ith estimation

8>>>>><
>>>>>:

PðuIðmÞÞ ¼ aiðuIðmÞÞ2 þ biuIðmÞ þ ci
PðuIð1ÞÞ ¼ aiðuIð1ÞÞ2 þ biuIð1Þ þ ci
PðuIð2m� 1ÞÞ ¼ aiðuIð2m� 1ÞÞ2 þ biuIð2m� 1Þ þ ci;

i ¼ 1;2;…;m� 2
PðuIðm� iÞÞ ¼ aiðuIðm� iÞÞ2 þ biuIðm� iÞ þ ci
PðuIðmþ iÞÞ ¼ aiðuIðmþ iÞÞ2 þ biuIðmþ iÞ þ ci

(10b)

Power spectral sequence P and coefficient matrix C can be

written as

P ¼

2
66664

PðuIðmÞÞ
PðuIð1ÞÞ

PðuIð2m� 1ÞÞ
PðuIðm� iÞÞ
PðuIðmþ iÞÞ

3
77775; C ¼

2
666664

ðuIðmÞÞ2 uIðmÞ 1
ðuIð1ÞÞ2 uIð1Þ 1

ðuIð2m� 1ÞÞ2 uIðm� iÞ 1
ðuIðm� iÞÞ2 uIðm� iÞ 1
ðuIðmþ iÞÞ2 uIðmþ iÞ 1

3
777775 (11)

Given that the frequency points come from the same

sequence uI[i], the weight matrix can simply be taken as an

n � n identity matrix. Based on the LSE, we have

½ai bi ci �T ¼ �
CTC

��1
CTP (12)

and

½ eðaiÞ eðbiÞ eðciÞ �T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VTVðCTCÞ�1

5� 3

s
(13)

where e(x) is the accuracy of x, and V ¼ C½ ai bi ci �T � P. Ac-

cording to equation (10),

ukðiÞ ¼ bi

�2ai
; akðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aici � b2

i

4a2
i

s

Then we can get that [12]:
8>>>>>>><
>>>>>>>:

eðukðiÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
eðbiÞ
2ai

�2
þ
�
bieðaiÞ
2a2

i

�2s

eðakðiÞÞ ¼ 1
akðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0
@
�
b2
i � 2aici

	
eðaiÞ

2a3
i

1
A

2

þ


bieðbiÞ
2a2

i

�2

þ


eðciÞ
ai

�2

vuuut
(14)

Finally, we have

8>>>>>>><
>>>>>>>:

uk ¼ 1
m� 2

Xm�2

i¼1

ukðiÞ; eðukÞ ¼ 1
m� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm�2

i¼1

eðukðiÞÞ2
vuut

ak ¼ 1
m� 2

Xm�2

i¼1

akðiÞ; eðakÞ ¼ 1
m� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm�2

i¼1

eðakðiÞÞ2
vuut

(15)

By the above procedure (equations (10)e(15)), the frequency

and attenuation of a given spectral peak can be accurately esti-

mated. The procedure for the estimation of complex frequency

is referred to as the linear least squares estimationmethod (LLS)

in this paper. On the basis of LLS, the knowledge of the spectral

sequence is enough to estimate the complex frequency of a

given spectral peak, therefore, it is suitable for estimating the

complex frequencies in a product spectrum, which is obtained

bymultiplying the spectrums of different records.
3. Verification of the LLS

3.1. Synthetic series

First we will use a simple figure to explain the process

given in section 2. As shown in Fig.1, the solid curve is the

direct Fourier spectrum without interpolation, while the

dashed curve is the interpolated spectrum (five times zero-

padding). The target peak is located between the two vertical

dotted lines, and while only three original frequency points

(represented by circles) can be used in the estimation, there

are 23 points (represented by stars) can be used to estimate

after interpolation, so the latter can carry out the LLS.

http://dx.doi.org/10.1016/j.geog.2015.05.004
http://dx.doi.org/10.1016/j.geog.2015.05.004
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The synthetically-generated series consists of a cosine

signal with 5 MHz frequency and 1 unit amplitude, and

applied white noise. The waveform and the power spectrum

are shown in Fig.2.

A comparison between the estimated values by both the

LLS and the AR methods [3] are shown in Table 1. Clearly, the

estimated frequency from using LLS is more accurate than

that found by using the AR method, while the latter obtains

a better estimate for the attenuation. However, since the

attenuation is harder to precisely estimate, we consider the

result from our LLS estimation to be valid. This finding

indicates that the LLS is at least an acceptable alternative for

the AR method. In addition, according to multiple tests, we

find the length of the zero-padding n ¼ 4 is enough to obtain

a stable estimation.
Table 1 e The estimated values for the synthetic series by
the LLS and the AR methods.

Frequency (MHz) Attenuation

Theoretical value 5.00000 5.00 � 10�6

LLS 4.99998 ± 2.1 � 10�6 5.12 � 10�6 ± 3.4 � 10�8

AR 5.00004 ± 4.7 � 10�6 5.08 � 10�6 ± 2.9 � 10�8

Fig. 2 e Waveform and the power spectrum.
3.2. The estimate for the normal mode 0S2

Recently, author in reference [13] claimed that they have

obtained the most precise estimate for the frequencies for

the multiplet 0S2, and the estimated errors presented there

are also of the same order of precision as this study. Hence,

we also choose 0S2 to test our method, using a simple

example. Namely, we will use the superconducting gravity

record from the Strasbourg, France station after the 2004

Sumatra earthquake as an example. Although the optimum

record length is about 1.0 Q-cycle of the modes (i.e., about

450 h for 0S2) [3,8], we find that the signal-to-noise ratios for

0S2 is higher when the length is 300 h, and in recent results

[14e17], the record length is also chosen to be 300 h. Hence,

in this paper, the record started 5 h after the event, with a

length of 300 h, with an interval of 1 min.

The corresponding power spectrum of the chosen record is

shown in Fig. 3. The five singlets of 0S2 can be completely

identified. The corresponding estimates of those singlets are

tabulated in Table 2. Clearly, our estimate values are very

close to the previous studies, especially in that the Q-values

quite close to some previous studies [15]. It is well known

that the Q-value of a signal is difficult to precisely determine

[3,6,15].

This example again validates the usefulness of LLS, and

importantly, this method is quite easy to carry out. We expect

that it might be useful in the estimations of the normal mode

frequency and other geophysical signals, such as the polar

motion or the tides of the Earth.
4. Conclusion

Benefiting from the zero padding of FFT (or using the DFT),

we introduce a simple LLS method to estimate the complex

frequency of a harmonic signal. Generally, a linear process is

less complex and time-consuming than a non-linear process;

hence, we compare LLS with a previous linear methoddthe

AR method [3]. The complex frequency estimated from both
Fig. 3 e The Fourier power spectrum of the Strasbourg

record after the 2004 Sumatra earthquake.

http://dx.doi.org/10.1016/j.geog.2015.05.004
http://dx.doi.org/10.1016/j.geog.2015.05.004


T
a
b
le

2
e

T
h
e
o
b
se

rv
e
d
w
e
ig
h
te
d
a
v
e
ra

g
e
v
a
lu
e
s
o
f
th

e
fr
e
q
u
e
n
ci
e
s
a
n
d
Q
s
o
f
0
S
2
,
co

m
p
a
re
d
w
it
h
th

e
p
re
v
io
u
s
e
st
im

a
te
s
a
n
d
th

e
P
R
E
M

p
re
d
ic
ti
o
n
s.

0
S
2

m
¼

�2
m

¼
�1

m
¼

0
m

¼
þ

1
m

¼
þ

2

P
R
E
M

f
0
.3
0
0
0
0
1
1
7

0
.3
0
4
4
9
3
0
3

0
.3
0
9
0
6
3
5
3

0
.3
1
3
7
1
5
5
6

0
.3
1
8
4
5
2
3
8

Q
4
9
4
.6

5
0
1
.8

5
0
9
.3

5
1
7
.0

5
2
5
.0

B
u
la
n
d
e
t
a
l.
[1
8
]

f
0
.3
0
0
0
1

0
.3
0
4
8
0

0
.3
0
9
4
9

0
.3
1
4
0
0

0
.3
1
8
5
0

R
o
sa

t
e
t
a
l.
[7
]

f
0
.2
9
9
9
7
±
6
.3

�
1
0
�
6

0
.3
0
4
5
8
±
4
.7

�
1
0
�
6

0
.3
0
9
2
4
±
6
.0

�
1
0
�
6

0
.3
1
3
8
1
±
1
.1

�
1
0
�
5

0
.3
1
8
4
3
±
4
.6

�
1
0
�
6

R
o
u
lt

e
t
a
l.
[5
]

f
0
.2
9
9
7
7
9
±
7
.4

�
1
0
�
5

0
.3
0
4
6
2
4
±
2
.9

�
1
0
�
5

0
.3
0
9
3
9
7
±
1
.5
7
�

1
0
�
4

0
.3
1
3
8
9
2
±
6
.9

�
1
0
�
5

0
.3
1
8
4
6
5
±
8
.9

�
1
0
�
5

Q
4
9
0
.6

±
1
4
.0

5
6
2
.9

±
4
.0

3
9
5
.6

±
1
1
.3

4
9
5
.3

±
4
.0

4
8
0
.2

±
1
4
.9

R
o
sa

t
e
t
a
l.
[7
]

f
0
.2
9
9
9
5
1
±
1
.5

�
1
0
�
6

0
.3
0
4
5
9
9
±
1
.6

�
1
0
�
6

0
.3
0
9
2
6
0
7
±
2
.5

�
1
0
�
7

0
.3
1
3
8
4
4
6
±
2
.6

�
1
0
�
7

0
.3
1
8
4
3
8
5
±
2
.8

�
1
0
�
7

Q
4
4
9
.3

±
0
.1

4
8
1
.5

±
0
.1

5
0
6
.7

±
0
.4

4
5
7
.7

±
0
.3

5
1
8
.7

±
0
.4

A
b
d
E
l-
G
e
li
l
e
t
a
l.
[1
9
]

f
0
.3
0
0
0
0
1
±
1
.2

�
1
0
�
6

0
.3
0
4
5
3
3
±
1
.1

�
1
0
�
6

0
.3
0
9
2
9
6
±
1
.1

�
1
0
�
6

0
.3
1
3
8
8
2
±
0
.5

�
1
0
�
6

0
.3
1
8
4
0
2
±
1
.0

�
1
0
�
6

Q
5
0
9
.9

±
3
.9

6
7
7
.9

±
1
1
.5

5
1
2
.3

±
3
.9

5
9
2
.7

±
8
.1

5
2
0
.3

±
3
.1

R
o
u
lt

e
t
a
l.
[2
0
]

f
0
.2
9
9
9
8
±
3
.3
1
3
�

1
0
�
4

0
.3
0
4
4
7
±
4
.9
8
5
�

1
0
�
4

0
.3
0
9
2
2
±
3
.5
6
0
�

1
0
�
4

0
.3
1
3
7
4
±
4
.4
8
0
�

1
0
�
4

0
.3
1
8
3
5
±
3
.5
4
8
�

1
0
�
4

D
e
u
ss

e
t
a
l.
[2
1
]

f
0
.2
9
9
9
3

0
.3
0
4
6
3

0
.3
0
9
2
8

0
.3
1
3
8
6

0
.3
1
8
4
0

H
a
fn

e
r
a
n
d
W

id
m
e
r
[1
3
]

f
0
.2
9
9
9
4
8
±
9
.0

�
1
0
�
6

0
.3
0
4
6
1
2
±
6
.0

�
1
0
�
6

0
.3
0
9
2
6
9
±
1
.6

�
1
0
�
5

0
.3
1
3
8
4
0
±
5
.0

�
1
0
�
6

0
.3
1
8
4
2
9
±
9
.0

�
1
0
�
6

D
in
g
a
n
d
S
h
e
n
[1
4
]

0
.2
9
9
9
6
5
±
2
.0

�
1
0
�
5

0
.3
0
4
5
3
6
±
6
.2

�
1
0
�
5

0
.3
0
9
1
9
3
±
3
.7

�
1
0
�
5

0
.3
1
3
8
4
3
±
5
.5

�
1
0
�
5

0
.3
1
8
4
3
3
±
1
.8

�
1
0
�
5

D
in
g
a
n
d
S
h
e
n
[1
5
]

f
0
.2
9
9
9
5
8
±
8
.1

�
1
0
�
6

0
.3
0
4
5
8
8
±
4
.6

�
1
0
�
6

0
.3
0
9
2
6
3
±
1
.1

�
1
0
�
5

0
.3
1
3
8
3
5
±
1
.4

�
1
0
�
6

0
.3
1
8
4
2
2
±
7
.4

�
1
0
�
6

Q
5
0
9
.4

±
1
2
.1

4
8
4
.7

±
9
.3

3
9
4
.4

±
1
4
.3

5
2
0
.2

±
8
.1

5
3
2
.7

±
1
0
.1

S
h
e
n
a
n
d
D
in
g
[1
7
]

f
0
.2
9
9
9
9
4
±
1
.1

�
1
0
�
5

0
.3
0
4
6
1
8
±
7
.8

�
1
0
�
6

0
.3
0
9
2
7
8
±
9
.1

�
1
0
�
6

0
.3
1
3
8
6
5
±
7
.7

�
1
0
�
6

0
.3
1
8
4
2
4
±
9
.6

�
1
0
�
6

D
in
g
a
n
d
C
h
a
o
[1
6
]

f
0
.2
9
9
9
6
7
±
1
.4

�
1
0
�
5

0
.3
0
4
5
8
7
±
7
.8

�
1
0
�
6

0
.3
0
9
3
7
2
±
5
.0

�
1
0
1
0
�
5
e
-5

0
.3
1
3
8
5
0
±
6
.9

�
1
0
�
6

0
.3
1
8
3
9
6
±
1
.3

�
1
0
�
5

T
h
is

p
a
p
e
r

f
0
.2
9
9
9
8
3
±
6
.9

�
1
0
�
6

0
.3
0
4
5
8
6
7
±
7
.2

�
1
0
�
6

0
.3
0
9
2
5
5
±
6
.0

�
1
0
�
6

0
.3
1
3
8
4
2
±
8
.0

�
1
0
�
6

0
.3
1
8
4
5
6
±
6
.6

�
1
0
�
6

Q
5
0
5
.3

±
1
7
.4

4
8
8
.5

±
2
3
.5

3
9
9
.1

±
1
6
.7

5
2
7
.6

±
2
5
.0

5
2
5
.8

±
1
9
.5

g e o d e s y and g e o d yn am i c s 2 0 1 5 , v o l 6 n o 3 , 2 2 0e2 2 5224
the LLS and ARmethods based on a signal obtained fromnoisy

synthetic records are all almost same as the input complex

frequency, namely, LLS can accurately estimate the complex

frequency of a target signal just as well as the AR method,

which has been validated by lots of previous studies

[3,11,16]. Given that the theory of the LLS method is easier

than the AR method, the corresponding results show LLS is

a useful alternative method. Because the 0S2 mode of the

free oscillation of the Earth has been well studied, we

estimated the complex frequencies of its five singlets by

using the LLS would be a very favorable verification of the

LLS method. On the basis of the SG records after the 2004

Sumatra earthquake, our results from the LLS method are

consistent with previous studies, and the method has high

estimation precisions.

Because the proposed LLS method is a useful alternative

method for calculating the complex frequency of a signal, our

estimations for the complex frequencies of 0S2 may also help

to determine constraints on the Earth's interior structures.
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