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Computing the spectrum of non-self-adjoint Sturm–Liouville
problems with parameter-dependent boundary conditions
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Abstract

This paper deals with the computation of the eigenvalues of non-self-adjoint Sturm–Liouville problems with parameter-dependent
boundary conditions using the regularized sampling method.

A few numerical examples among which singular ones will be presented to illustrate the merit of the method and comparison
made with the exact eigenvalues when they are available.
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1. Introduction

Non-self-adjoint eigenvalue problems arise, as is well known, in hydrodynamic and magnetohydrodynamic stability
[9,8,11,17] while self-adjoint problems arise mostly in quantum mechanics [13]. The lack of oscillation theorems in
the non-self-adjoint case makes any computation of the spectrum a very difficult task [10]. In fact, the eigenvalues are
scattered over the complex plane and we need first to determine the regions which contain them. A method that finds
the eigenvalues in a rectangle and in a left half plane has been introduced in [15]. It is based on the argument principle
with compound matrix method using Magnus expansion. In [4] the authors report on a method that provides bounds
for the eigenvalues of singular Sturm–Liouville problems over [0, ∞) with a complex potential. The method consists
in obtaining first a floating point approximation to the desired eigenvalue by truncating the infinite interval then use
interval arithmetic to localize the eigenvalue. For more on singular problems see [3] and [14] for example. In [1], the
author uses the sampling method introduced in [2] to compute the eigenvalues of non-self-adjoint Sturm–Liouville
problems.

For the mathematical foundation one may consult [12,18,13]. On the numerical side [19,16] summarize most of the
available software dealing with the computation of the eigenvalues of Sturm–Liouville problems.
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In [5], this author introduced the regularized sampling method; a method which is based on Shannon’s sampling
theory but applied to regularized functions. Hence avoiding any (multiple) integration and keeping the number of terms
in the Cardinal series manageable. It has been demonstrated that the method is capable of delivering higher order
estimates of the eigenvalues at a very low cost. The purpose in this paper is to extend the domain of application of this
method to the problem at hand.

2. Main results

Consider the following non-self-adjoint Sturm–Liouville problem with non-separated parameter-dependent boundary
conditions,{−y′′ + q(x)y = �2y x ∈ [0, 1],

A(y(0), y′(0), y(1), y′(1))T = 0,
(2.1)

where the matrix

A(�) =
(

a11(�) a12(�) a13(�) a14(�)

a21(�) a22(�) a23(�) a24(�)

)
has rank 2, and q is a complex-valued function satisfying q ∈ L1

loc(0, 1). We shall not make any assumption on the
analyticity of A nor on the growth of its components.

The purpose in this paper is to compute the eigenvalues of (2.1) with the minimum of effort and a greater precision
using the newly introduced regularized sampling method [5], an improvement on the method based on sampling theory
introduced in [2]. We note here that the analyticity of A and the conditions on the growth of its components imposed
in [5] are not necessary for the computation of the eigenvalues as shall be seen in the sequel. In fact all what is needed
is the recovery of certain entire functions hkl associated with some base problems defined below.

It is well known that the spectrum is discrete and scattered over the complex plane which makes difficult its compu-
tation. Also, there is no result about the distribution nor the multiplicity of the eigenvalues.

Let yc(x, �) and ys(x, �), be the solutions of the base problems{−y′′ + q(x)y = �2y, x ∈ [0, 1],
y(0) = 1 y′(0) = 0

(2.2)

and {−y′′ + q(x)y = �2y, x ∈ [0, 1],
y(0) = 0, y′(0) = 1,

(2.3)

respectively. Then the general solution of the differential equation in (2.1) and its derivative are

y(x, �) = c1yc(x, �) + c2ys(x, �),

y′(x, �) = c1y
′
c(x, �) + c2y

′
s(x, �).

The boundary condition gives after separating c1 and c2,

c1Aw1 + c2Aw2 = 0, (2.4)

where

w1 = (1, 0, yc(1, �), y′
c(1, �))T,

w2 = (0, 1, ys(1, �), y′
s(1, �))T.

Thus, a necessary and sufficient condition for � = �2 to be an eigenvalue is that � satisfies the characteristic equation
B(�) = 0, where B is the characteristic function B(�) = det(Aw1|Aw2) = det[A(w1|w2)], that is,

B(�) = (a11(�) + a13(�)yc(1, �) + a14(�)y′
c(1, �))(a22(�) + a23(�)ys(1, �) + a24(�)y′

s(1a, �))

− (a21(�) + a23(�)yc(1, �) + a24(�)y′
c(1, �))(a12(�) + a13(�)ys(1, �) + a14(�)y′

s(1, �)).
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We shall need the following well known results,

Lemma 2.1 (Chanane [7]). sin z/z and cos z are entire as functions of z and satisfy the estimates

| sin z/z|��0e|Im z|/(1 + |z|) and | cos z|�e|Im z|,

where �0 = 1.72.

Using the above lemma one can show the following result to hold.

Theorem 2.2 (Chanane [7]). yc(x, �), ys(x, �), y′
c(x, �) and y′

s(x, �) are entire as functions of � for each fixed
x ∈ (0, 1] and satisfy the growth conditions,

|yc(x, �) − cos(�x)|,
∣∣∣∣ys(x, �) − sin(�x)

�

∣∣∣∣ , |y′
c(x, �) + � sin(�x))|, |y′

s(x, �) − cos(�x)|��1ex|Im �|

for some positive constant �1.

In [7,6] we have obtained much higher estimates of the eigenvalues than those presented in Theorem 2.2 above, at
the expense of subtracting terms involving multiple integrals. Here and as in [5], we shall stick with the estimates given
in Theorem 2.2, avoiding any (multiple) integration. We shall show by the same token that we can get a higher order
estimate of the eigenvalues of the problem at hand at a very low cost. In fact we do not have even to keep on increasing
the number of sampling points.

Let PW� denote the Paley–Wiener space [20]

PW� =
{
f entire, |f (�)|��e�|Im �|,

∫
R

|f (�)|2 d� < ∞
}

.

Let hkl be defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h11(�) =
(

sin ��

��

)m

(yc(1, �) − cos �),

h12(�) =
(

sin ��

��

)m (
ys(1, �) − sin �

�

)
,

h21(�) =
(

sin ��

��

)m

(y′
c(1, �) + � sin �),

h22(�) =
(

sin ��

��

)m

(y′
s(1, �) − cos �).

Then we rewrite yc(1, �), y′
c(1, �), ys(1, �) and y′

s(1, �) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yc(1, �) = h11(�)

(
sin ��

��

)−m

+ cos �,

ys(1, �) = h12(�)

(
sin ��

��

)−m

+ sin �

�
,

y′
c(1, �) = h21(�)

(
sin ��

��

)−m

− � sin �,

y′
s(1, �) = h22(�)

(
sin ��

��

)−m

+ cos �.



232 B. Chanane / Journal of Computational and Applied Mathematics 206 (2007) 229–237

Theorem 2.3. Let ϑ be a positive constant and m be a positive integer (m�2). The functions hkl , (k, l = 1, 2) belong
to the Paley space PW� with � = 1 + m� and satisfy the estimates

|hkl(�)|� �2

(1 + �|�|)m e�|Im �|

k, l = 1, 2 for some positive constant �2.

Proof. That hkl are entire and satisfy the given estimates is a direct consequence of Theorem 2.2 and the fact that
sin ��/�� is an entire function of � and satisfy the estimate in Lemma 2.1. �

Since the hkl(�) belong to the Paley–Wiener space PW� for each k, l = 1, 2, they can be recovered from their values
at the points �j = j (�/�), j ∈ Z, using the following celebrated theorem:

Theorem 2.4 (Whitaker–Shannon–Kotel’nikov (Zayed [20])). Let h ∈ PW�, then

h(�) =
∞∑

j=−∞
h(�j )

sin �(� − �j )

�(� − �j )

�j = j (�/�). The series converges absolutely and uniformly on compact subsets of C and in L2
d�(R).

For all practical purposes, we consider finite summations, therefore we need to approximate hkl by a truncated series
h

[N ]
kl . The following lemma gives an estimate for the truncation error.

Lemma 2.5 (Truncation error). Let h
[N ]
kl (�) =∑N

j=−N hkl(�j )(sin �(� − �j ))/(�(� − �j )) denote the truncation of
hkl(�). Then, for |�| < N�/�,

|hkl(�) − h
[N ]
kl (�)|� | sin �|�3

�(�/�)m−1
√

1 − 4−m+1

[
1√

(N�/�) − �
+ 1√

(N�/�) + �

]
1

(N + 1)m−1 ,

where �3 = ‖�m−1hkl(�)‖2.

Proof. Since �m−1hkl(�) ∈ L2(−∞, ∞), Jagerman’s result (see [20, Theorem 3.21, p. 90]) is applicable and yields
the given estimate for the hkl, k, l = 1, 2. �

An approximation BN to the characteristic function B is provided by replacing the hkl by its approximation
h

[N ]
kl , and we obtain at once,

Lemma 2.6. The approximate characteristic function BN satisfies the estimate,

|B(�) − BN(�)|�
∣∣∣∣ sin ��

��

∣∣∣∣−m | sin �|�4

�(�/�)m−1
√

1 − 4−m+1

[
1√

(N�/�) − �
+ 1√

(N�/�) + �

]
1

(N + 1)m−1 ,

for some positive constant �4.
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We claim the following:

Theorem 2.7. Let �2 be an exact eigenvalue of B of multiplicity n and denote by �2
N the corresponding approximation

of a square of a zero of BN . Then, for |�N | < N�/�, we have,

|�N − �|�
(

m!
inf |B(m)(̃�)|

∣∣∣∣ sin ��N

��N

∣∣∣∣−m | sin �N |�4

�(�/�)m−1
√

1 − 4−m+1

)1/n

×
[

1√
(N�/�) − �N

+ 1√
(N�/�) + �N

]1/n
1

(N + 1)(m−1)/n
,

where the inf is taken over a ball centered at �N with radius |�N − �| and not containing a multiple of �/�.

Proof. Since � is a zero of B with multiplicity n, then

B(�) − B(�N) = (� − �N)n

n! B(n)(̃�)

for some �̃. Thus,

|� − �N |n = m!|B(�) − B(�N)|
|B(m)(̃�)|

� m!
inf |B(m)(̃�)|

∣∣∣∣ sin ��N

��N

∣∣∣∣−m | sin �N |�4

�(�/�)m−1
√

1 − 4−m+1

×
[

1√
(N�/�) − �N

+ 1√
(N�/�) + �N

]
1

(N + 1)m−1 ,

where the inf is taken over a ball centered at �N with radius |�N − �| and not containing a multiple of �/�. Thus, the
result. �

3. Numerical examples

In this section, we shall present a few examples to illustrate our method. We have taken � = 1/(N − m) in order
to avoid the first singularity of (sin ��N/��N)−1. The sampling values were obtained using the Fehlberg 4–5 order
Runge–Kutta method. The first two problems are taken from [4] in which the authors use interval arithmetic to localize
the eigenvalues of singular Sturm–Liouville problems with complex potentials. The third problem, taken from [1], shows
that the regularized sampling method provides much better results than the sampling method without regularization.
The last example demonstrates that our method can estimate the eigenvalues with a great precision even in situation
where other methods might introduce spurious eigenvalues and/or miss some of them. We shall mention however that
we shall not make use of the error estimate given above for the time being. The method consists first in the recovery of
the entire functions hkl with great precision, then use the boundary conditions to determine the characteristic function.
The zeros of this characteristic function are the square roots of the sought eigenvalues. We shall denote � = √−1.

Example 3.1 (Taken from [4]). Consider the singular Sturm–Liouville problem{−y′′(x) + 10� sin xe−xy(x) = �y(x), 0�x < ∞,

y(0) = 0.

We shall use interval truncation and compute the eigenvalues of{−y′′
	 (x) + 10� sin xe−xy	(x) = �2y	(x), 0�x�	,

y	(0) = 0, y′
	(	) = ��y	(	)
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Table 1
Approximation of an eigenvalue for different values of m in Example 3.1

m Approximate eigenvalue

5 1.604391348283 + 1.797884747658�
10 1.604391251270 + 1.797884973775�
15 1.604391251323 + 1.797884973746�

Table 2
Approximation of an eigenvalue for different values of m in Example 3.2

m Approximate eigenvalue

5 2.812264032443898167911 + 2.17223723666731852353�
10 2.8122672894628469454261 + 2.172238191264223861�
15 2.812267288417814133626 + 2.172238191179093864�

and as in [4] we shall take 	 = 10. The second boundary condition has been obtained by considering the Jost solution
y = e��x and its derivative y′ = ��e��x , thus, y′(	) = ��y(	). In [4] the authors obtained an eigenvalue lying in
1.604391264

58 + 1.797884981
67� where the notation 2.14

6 stands for the interval [2.14, 2.16]. Taking N = 40, and for
different values of m we obtained the results summarized in Table 1.

Example 3.2 (Taken from [4]). Consider the singular problem{−y′′(x) + 10�e−xy(x) = �y(x), 0�x < ∞,

y(0) = 0.

We shall use interval truncation and compute the eigenvalues of{−y′′
	 (x) + 10�e−xy	(x) = �2y	(x), 0�x�	,

y	(0) = 0, y′
	(	) = ��y	(	)

and as in [4] we shall take 	 = 10. In [4] the authors obtained an eigenvalue lying in 2.812267292
89 + 2.1722381899

78�.
Taking N = 40, and for different values of m we obtained the results summarized in Table 2.

Example 3.3 (Taken from [1]). Consider the non-self-adjoint problem{−y′′(x) + (3 − 2�)y(x) = �y(x), 0�x��,

y(0) = y(�) = 0.

The exact eigenvalues of the original problem are �k = k2 + 3 − 2�, k = 1, 2, . . . . Taking N = 40 and m = 10, we
obtained the results summarized in Table 3.

Example 3.4. Consider now the following non-self-adjoint Sturm–Liouville problem with complex potential and
parameter-dependent boundary condition,⎧⎪⎨⎪⎩

−y′′(x) + e2�xy(x) = �2y(x), 0�x�1,

y(0) + �y(1) = 0,

y′(0) = 0.

Here again we are in a position to derive the exact characteristic function which in fact can be expressed in terms of
Bessel functions. Indeed, let � = �2 and consider the change of variables t = e�x . The differential equation becomes
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Table 3
Exact and approximate eigenvalues in Example 3.3

Index Exact eigenvalue Approximate eigenvalue Absolute error

1 4 − 2� 3.9999999999999289 − 1.99999999999998304519� 7.30 × 10−14

2 7 − 2� 6.9999999999998187 − 1.99999999999984438039� 2.38 × 10−13

3 12 − 2� 11.999999999999561 − 1.9999999999997718164� 4.93 × 10−13

4 19 − 2� 18.999999999999172 − 2.0000000000000542265� 8.29 × 10−13

5 28 − 2� 27.999999999999391 − 2.0000000000011521175� 1.30 × 10−12

6 39 − 2� 39.000000000001586 − 2.0000000000029645542� 3.36 × 10−12

7 52 − 2� 52.000000000005729 − 2.0000000000033954538� 6.66 × 10−12

8 67 − 2� 67.000000000006628 − 1.9999999999977990747� 6.98 × 10−12

9 84 − 2� 83.999999999993226 − 1.9999999999829522498� 1.83 × 10−11

10 103 − 2� 102.999999999961 − 1.9999999999690674138� 4.95 × 10−11

11 124 − 2� 123.999999999944 − 1.9999999999941154414� 5.55 × 10−11

12 147 − 2� 147.000000000038 − 2.0000000001107296594� 1.17 × 10−10

13 172 − 2� 172.000000000323 − 2.0000000002862574821� 4.32 × 10−10

14 199 − 2� 199.000000000556 − 2.0000000001798594170� 5.85 × 10−10

15 228 − 2� 227.999999999678 − 1.9999999989989010834� 1.05 × 10−9

16 259 − 2� 258.999999996079 − 1.9999999963552374114� 5.35 × 10−9

17 292 − 2� 291.999999991669 − 1.9999999961982129591� 9.15 × 10−9

18 327 − 2� 327.000000004474 − 2.0000000150098733387� 1.56 × 10−8

19 364 − 2� 364.000000082618 − 2.0000000798746168342� 1.14 × 10−7

20 403 − 2� 403.000000232131 − 2.0000001291033812382� 2.65 × 10−7

the Bessel equation of order � given by

t2 d2z

dt2 + t
dz

dt
+ (t2 − �2)z = 0

whose solution is

z(t) = c1J�(t) + c2J−�(t),

where J� and J−� are the Bessel functions of the first kind of order �.
Returning to the original variables, we obtain

y(x) = c1J�(e�x) + c2J−�(e�x).

Taking into account the boundary conditions, we obtain the homogeneous system in c1 and c2{
c1J�(1) + c2J−�(1) + �(c1J�(e�) + c2J−�(e�)) = 0,

c1J
′
�(1) + c2J

′−�(1) = 0.

In order to have a non-trivial solution, a necessary and sufficient condition is to have Bexact(�) = 0 where

Bexact(�) = det

(
J�(1) + �J�(e�) J−�(1) + �J−�(e�)

J′
�(1) J′−�(1)

)
is the characteristic function. Now, using the well-known result

d

dx
J�(x) = (J−�−1(x) − J�+1(x))/2,
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Table 4
Exact and approximate eigenvalues in Example 3.4

Index Exact eigenvalue Approximate eigenvalue Absolute error Relative error

1 4.9685430929323576 + 0.3906545895360696� 4.9685430929323625 + 0.3906545895360721� 5.549 × 10−15 1.113 × 10−15

2 20.60271034889337 + 0.75023252353154� 20.60271034889340 + 0.75023252353155� 3.393 × 10−14 1.645 × 10−15

3 64.14038244804547 + 0.68422837531133� 64.14038244804526 + 0.68422837531099� 3.977 × 10−13 6.201 × 10−15

4 119.34792168887388 + 0.71497240479401� 119.34792168887345 + 0.71497240479334� 8.004 × 10−13 6.706 × 10−15

5 202.31443747778734 + 0.70057212586525� 202.31443747778739 + 0.70057212586545� 2.064 × 10−13 1.020 × 10−15

6 419.44558800598641 + 0.70446189520144� 419.44558800598892 + 0.70446189520528� 4.582 × 10−12 1.092 × 10−14

7 553.61789373762934 + 0.70954623577257� 553.61789373762976 + 0.70954623577282� 4.969 × 10−13 8.977 × 10−16

8 715.53365857906959 + 0.70595783818772� 715.53365857906140 + 0.70595783817453� 1.553 × 10−11 2.170 × 10−14

9 889.18520034251622 + 0.70898948206981� 889.18520034250143 + 0.70898948204681� 2.734 × 10−11 3.075 × 10−14

10 1090.57859485902126 + 0.70668585309098� 1090.57859485902214 + 0.70668585309385� 3.00 × 10−12 2.751 × 10−15

11 1303.70898166607058 + 0.70869788000992� 1303.70898166611992 + 0.70869788008925� 9.341 × 10−11 7.165 × 10−14

12 1544.58037965386611 + 0.70709389168016� 1544.58037965396658 + 0.70709389183628� 1.856 × 10−10 1.202 × 10−13

13 1797.18943505543540 + 0.70852627026801� 1797.18943505544546 + 0.70852627027458� 1.201 × 10−11 6.687 × 10−15

14 2077.53900632820814 + 0.70734525957323� 2077.53900632774381 + 0.70734525883073� 8.757 × 10−10 4.215 × 10−13

15 2369.6266391592291618 + 0.70841680475450� 2369.62663915816209 + 0.70841680308871� 1.978 × 10−9 8.348 × 10−13

16 2689.45447190894724 + 0.70751097714777� 2689.45447190899851 + 0.70751097732396� 1.834 × 10−10 6.822 × 10−14

17 3021.02063035583927 + 0.70834272705249� 3021.02063036245257 + 0.70834273761505� 1.246 × 10−8 4.125 × 10−12

18 3380.32677490847313 + 0.70762595333135� 3380.32677492777072 + 0.70762598345876� 3.577 × 10−8 1.058 × 10−11

19 3751.37142735725052 + 0.70829027475581� 3751.37142735927201 + 0.70829027606949� 2.410 × 10−9 6.426 × 10−13

20 4150.15591451714336 + 0.70770896968510� 4150.15591430123958 + 0.70770862603678� 4.058 × 10−7 9.778 × 10−11

21 4560.67904058883973 + 0.70825178027457� 4560.67903973138474 + 0.70825043937887� 1.591 × 10−6 3.489 × 10−10

22 4998.94189026423779 + 0.70777085938814� 4998.94189032279592 + 0.70777105963898� 2.086 × 10−7 4.173 × 10−11

23 5448.94347623327640 + 0.70822269647649� 5448.94349859286012 + 0.70825825178573� 0.00004200 7.708 × 10−9

24 5926.68470186115217 + 0.70781822661900� 5926.68487236793343 + 0.70808488449668� 0.0003165 5.340 × 10−8

25 6416.16473814590617 + 0.70820018792052� 6416.16478405538947 + 0.70823000684001� 0.00005474 8.532 × 10−9

we obtain

Bexact(�) = det

(
J�(1) + �J�(e�) J−�(1) + �J−�(e�)

(J−�−1(1) − J�+1(1))/2 (J�−1(1) − J−�+1(1))/2

)
.

Taking N = 40, and m = 10 we obtained the results summarized in Table 4.

4. Conclusion

In this paper, we have used the regularized sampling method introduced recently [5] to compute the eigenvalues of
non-self-adjoint Sturm–Liouville problems with non-separable parameter-dependent boundary conditions. We recall
that this method constitutes an improvement upon the method based on Shannon’s sampling theory introduced in [2]
since it uses a regularization avoiding any multiple integration. The method allows us to get higher order estimates of
the eigenvalues at a very low cost. We have presented a few examples, including singular ones, to illustrate the method
and compared the computed eigenvalues with the exact ones when they are available.
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