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1. Introduction

The only proof of the cyclic sum formula (abbreviated as CSF) for multiple zeta values (resp. for
multiple zeta-star values) which has been known so far is by using partial fraction expansions, which
appears in Hoffman and Ohno [4] (resp. Ohno and Wakabayashi [9]). We are interested in other proofs
of the CSF, especially by discussing relationships between the CSF and the other known relations for
multiple zeta values such as regularized double shuffle relation [6], associator relation [2], etc. With
such a motivation, we introduce herein an algebraic formulation of the CSF for multiple zeta values
and the CSF for multiple zeta-star values, and give an algebraic proof of the CSF by reducing it to (the
linear part of) Kawashima’s relation [7].

For k1 > 1 and k2, . . . ,kn � 1, the multiple zeta value (abbreviated as MZV) is a real number
defined by the convergent series

ζ(k1,k2, . . . ,kn) =
∑

m1>m2>···>mn>0

1

mk1
1 mk2

2 · · ·mkn
n

,
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and the multiple zeta-star value (abbreviated as MZSV) is defined by the convergent series

ζ �(k1,k2, . . . ,kn) =
∑

m1�m2�···�mn>0

1

mk1
1 mk2

2 · · ·mkn
n

.

We call the number k1 +· · ·+kn weight and n depth. If n = 1, MZV and MZSV coincide and are known
as the Riemann zeta value.

Throughout the present paper, we employ the algebraic setup introduced by Hoffman [3]. Let
H = Q〈x, y〉 denote the non-commutative polynomial algebra over the rational numbers in two in-
determinates x and y, and let H1 and H0 denote the subalgebras Q + Hy and Q + xHy, respectively.
We define the Q-linear map Z :H0 → R by Z(1) = 1 and

Z
(
xk1−1 yxk2−1 y · · · xkn−1 y

) = ζ(k1,k2, . . . ,kn).

We also define the Q-linear map Z :H0 → R by Z(1) = 1 and

Z
(
xk1−1 yxk2−1 y · · · xkn−1 y

) = ζ �(k1,k2, . . . ,kn).

The degree (resp. degree with respect to y) of a word is the weight (resp. the depth) of the corre-
sponding MZV or MZSV. Let d :H1 → H1 be a Q-linear map defined by

d(wy) = γ (w)y

for w ∈ H, where γ is the automorphism on H given by

γ (x) = x, γ (y) = x + y.

It is well known that the identity Z = Zd holds.
For k1, . . . ,kl � 1 with some kq > 1, the CSF for MZV’s

l∑
j=1

k j−1∑
i=1

ζ(k j − i + 1,k j+1, . . . ,kl,k1, . . . ,k j−1, i) =
l∑

j=1

ζ(k j + 1,k j+1, . . . ,kl,k1, . . . ,k j−1) (1)

is proven in Hoffman and Ohno [4] by means of partial fraction expansions and the CSF for MZSV’s

l∑
j=1

k j−1∑
i=1

ζ �(k j − i + 1,k j+1, . . . ,kl,k1, . . . ,k j−1, i) = kζ(k + 1), (2)

where k = k1 + · · · + kl , in Ohno and Wakabayashi [9] in a similar way. Hoffman and Ohno also
introduced in [4] an algebraic expression of the CSF for MZV’s. They formulated the CSF using two
cyclic derivatives C w and C w on H as follows.

A cyclic derivative φ• :H → End(H) is defined by a Q-linear map with the property

φw1 w2(W ) = φw1(w2W ) + φw2(W w1)

for any w1, w2, W ∈ H. Such a cyclic derivative is uniquely determined by φx and φy . Let C• (resp. C•)
be the cyclic derivative defined by Cx = 0, C y = Lx R y (resp. C x = Lx R y , C y = 0), where, for w ∈ H, the
map Lw (resp. R w ) is a Q-linear map, called left- (resp. right-) multiplication, defined by Lw(W ) =
wW (resp. R w(W ) = W w) for any W ∈ H. Let Ȟ1 be a subvector space of H1 generated by words
of H1 except for powers of y. Then:
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Theorem 1.1 (Hoffman–Ohno). For any word w ∈ Ȟ1 , we have

Z
(
(C w − C w)(1)

) = 0.

2. Main results

In this section, we give an algebraic formulation of the CSF for MZV’s, which the authors have
been inspired by works for double Poisson algebras introduced in [1]. The method of the formulation
is a little different from Hoffman–Ohno’s. Then we present an algebraic proof of the CSF for MZV’s by
reducing it to (the linear part of) Kawashima’s relation.

Let n � 1. We denote an action of H on H⊗(n+1) by “�”, which is defined by

a � (w1 ⊗ · · · ⊗ wn+1) = w1 ⊗ · · · ⊗ wn ⊗ awn+1,

(w1 ⊗ · · · ⊗ wn+1) � b = w1b ⊗ w2 ⊗ · · · ⊗ wn+1.

The action � gives a H-bimodule structure on H⊗(n+1) .
Let z = x + y. We define the Q-linear map Cn :H → H⊗(n+1) by

Cn(x) = x ⊗ z⊗(n−1) ⊗ y, Cn(y) = −(
x ⊗ z⊗(n−1) ⊗ y

)
and

Cn
(

w w ′) = Cn(w) � w ′ + w � Cn
(

w ′) (3)

for any w, w ′ ∈ H. The map Cn is well defined because of the identities

a � (b � w) = ab � w, (w � a) � b = w � ab,

where a,b ∈ H, w ∈ H⊗(n+1) . We also find that Cn(1) = 0 by putting w = w ′ = 1 in (3).
Let Mn :H⊗(n+1) → H denote the multiplication map, i.e.,

Mn(w1 ⊗ · · · ⊗ wn+1) = w1 · · · wn+1,

and let ρn = Mn Cn (n � 1). Then our main theorem is the following.

Theorem 2.1. For n � 1, we have ρn(Ȟ1) ⊂ ker Z .

The theorem contains Theorem 1.1 because of the following proposition.

Proposition 2.2. For any w ∈ H, we have ρ1(w) = (C w − C w)(1).

To prove the proposition, we firstly show the following lemma.

Lemma 2.3. For cyclically equivalent words w, w ′ ∈ H, we have ρ1(w) = ρ1(w ′).

Proof. Let u1, . . . , ul ∈ {x, y} and sgn(u) = 1 or −1 according to u = x or y. Since

C1(u) = sgn(u)(x ⊗ y)

for u ∈ {x, y}, we have
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C1(u1 · · · ul) =
l∑

j=1

u1 · · · u j−1 � C1(u j) � u j+1 · · · ul

=
l∑

j=1

sgn(u j)(xu j+1 · · · ul ⊗ u1 · · · u j−1 y),

where we assume u1 · · · u j−1 = 1 if j = 1 and u j+1 · · · ul = 1 if j = l. Therefore we have

ρ1(u1 · · · ul) =
l∑

j=1

sgn(u j)xu j+1 · · · ulu1 · · · u j−1 y.

Since the right-hand side does not change under the cyclic permutations of {u1, . . . , ul}, we conclude
the lemma. �
Proof of Proposition 2.2. Let zk = xk−1 y (k � 1). It suffices to show the identity for words w =
zk1 · · · zkl and xq (q � 1) because of Lemma 2.3.

If w = xq , we easily calculate

C w(1) = 0, C w(1) = ρ1(w) = qzq+1,

and hence the proposition holds.
When w = zk1 · · · zkl , Hoffman and Ohno showed in [4] that

(C w − C w)(1) =
l∑

j=1

k j−1∑
i=1

zk j−i+1zk j+1 · · · zkl zk1 · · · zk j−1 zi −
l∑

j=1

xzk j+1 · · · zkl zk1 · · · zk j . (4)

To prove the proposition, we show that ρ1(w) equals the right-hand side of this identity.
By the definition of C1, we calculate

C1(zk) =
k−1∑
j=1

zk− j+1 ⊗ z j − x ⊗ zk.

Therefore we have

C1(w) =
l∑

j=1

k j−1∑
i=1

zk j−i+1zk j+1 · · · zkl ⊗ zk1 · · · zk j−1 zi −
l∑

j=1

xzk j+1 · · · zkl ⊗ zk1 · · · zk j ,

and hence, ρ1(w) equals the right-hand side of (4). �
We find that the operator ρ1 induces the CSF for MZV’s because of Proposition 2.2 and Theo-

rem 1.1. According to Lemma 2.3 and Proposition 2.2, we also find that Theorem 1.1 holds if w ∈ Ȟ,
where Ȟ is a subvector space of H generated by words of H except for powers of x and powers of y.

To prove our main theorem (Theorem 2.1), we use the linear part of Kawashima’s relation intro-
duced in [7], which is stated as follows. Let ϕ be the automorphism on H given by

ϕ(x) = x + y, ϕ(y) = −y.
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The product “∗” stands for the harmonic product on H1 introduced in Hoffman [3], which is known
to be associative and commutative. Under these notations, the linear part of Kawashima’s relation for
MZV’s is the following.

Theorem 2.4 (Kawashima). Lxϕ(Hy ∗ Hy) ⊂ ker Z .

The theorem is used in [12] to prove the quasi-derivation relation for MZV’s. To prove Theorem 2.1
by reducing the CSF for MZV’s to Theorem 2.4, we should show

Proposition 2.5. For n � 1, we have ρn(Ȟ1) ⊂ Lxϕ(Hy ∗ Hy).

This proposition holds because of the Key Proposition and the lemma below. Let A0 = 1 and A j =
z j−1 y for j � 1, where z = x + y.

Proposition 2.6. For k1 � n,k2, . . . ,kl � 1, we have

ϕL−1
x ρn(Ak1+···+kl−n+1 − Ak1−n+1 Ak2 · · · Akl ) =

l∑
m=2

(−1)l−m

m

l∑
j=1

∑
α1+···+αm=l
α1,...,αm�1

H( j,α1, . . . ,αm).

Here, H( j,α1, . . . ,αm) is given by

H( j,α1, . . . ,αm) = (zk j · · · zkα1+ j−1) ∗ (zkα1+ j · · · zkα1+α2+ j−1) ∗ · · · ∗ (zkα1+···+αm−1+ j · · · zkα1+···+αm+ j−1),

where the subscripts of k’s of the right-hand side are viewed as numbers modulo l (∈ {1, . . . , l}).

Proof. First we give some notations. Let U = U (k1, . . . ,kl) be the set of tuples consisting of at most l
components, each of which is the sum of some of k1, . . . ,kl , such that each ki occurs in exactly one
of the components. For example,

U (k1,k2) = {
(k1,k2), (k2,k1), (k1 + k2)

}
,

U (k1,k2,k3) = {
(k1,k2,k3), (k1,k3,k2), (k2,k1,k3), (k2,k3,k1), (k3,k1,k2),

(k3,k2,k1), (k1 + k2,k3), (k2 + k3,k1), (k3 + k1,k2), (k1,k2 + k3),

(k2,k3 + k1), (k3,k1 + k2), (k1 + k2 + k3)
}
,

and so on. For 1 � i � l, let Ii = Ii(k1, . . . ,kl) be the set of tuples in U such that ki−1 occurs in a
component that lies to the left of the one containing ki . For example,

I1(k1,k2) = {
(k2,k1)

}
,

I2(k1,k2) = {
(k1,k2)

}
,

I1(k1,k2,k3) = {
(k3,k1,k2), (k3,k2,k1), (k2,k3,k1), (k3,k1 + k2), (k3 + k2,k1)

}
,

I2(k1,k2,k3) = {
(k1,k2,k3), (k1,k3,k2), (k3,k1,k2), (k1,k2 + k3), (k1 + k3,k2)

}
,

I3(k1,k2,k3) = {
(k2,k3,k1), (k2,k1,k3), (k1,k2,k3), (k2,k3 + k1), (k2 + k1,k3)

}
,
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and so on. We also define W : U → H by

W (k1, . . . ,kl) = zk1 · · · zkl

for k1, . . . ,kl � 1. Then we find ∑
k∈U

W (k) = zk1 ∗ · · · ∗ zkl (5)

and

U\{(k1 + · · · + kl)
} =

l⋃
i=1

Ii . (6)

Since

ϕL−1
x ρn(Ak1+···+kl−n+1 − Ak1−n+1 Ak2 · · · Akl ) = zk1+···+kl + (−1)l

l∑
j=1

zk j · · · zkl zk1 · · · zk j−1 ,

it suffices to show

zk1+···+kl + (−1)l
l∑

j=1

zk j · · · zkl zk1 · · · zk j−1 =
l∑

m=2

(−1)l−m

m

l∑
j=1

∑
α1+···+αm=l
α1,...,αm�1

H( j,α1, . . . ,αm), (7)

where the subscripts of k’s of the right-hand side are viewed as numbers modulo l (∈ {1, . . . , l}).
Put N(l) = {n ∈ N | 1 � n � l}, N(l)

j = N(l)\{ j} (1 � j � l) and A = {α1 +· · ·+αs + j | 1 � s < m} for a
fixed (α1, . . . ,αm) with α1 + · · · + αm = l, α1, . . . ,αm � 1. Expanding the harmonic products, we have

H( j,α1, . . . ,αm) =
∑

k∈⋂
r∈N

(l)
j \A

Ir

W (k).

Hence, we obtain ∑
α1+···+αm=l
α1,...,αm�1

H( j,α1, . . . ,αm) =
∑

α1+···+αm=l
α1,...,αm�1

∑
k∈⋂

r∈N(l)
j \A

Ir

W (k)

=
∑

S⊂N(l)
j

|S|=m−1

∑
k∈⋂

r∈N(l)
j \S

Ir

W (k).

Adding up from j = 1 to l, we obtain

l∑
j=1

∑
S⊂N(l)

j
|S|=m−1

∑
k∈⋂

r∈N(l)
j \S

Ir

W(k) = m
∑

T ⊂N(l)

|T |=m

∑
k∈⋂

r∈N(l)\T Ir

W (k)

= m
∑

0<i1<···<il−m�l

∑
k∈⋂l−m

p=1 Iip

W (k).
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The reason why the middle term of the last equation is multiplied by m is because m − 1 elements
belonging to S have been already removed from N(l)

j at the third summation of the first term and

there are m ways to get rid N(l) of the additional element in T . Owing to the above equation, we
obtain

l−1∑
m=1

(−1)l−m

m

l∑
j=1

∑
α1+···+αm=l
α1,...,αm�1

H( j,α1, . . . ,αm) =
l−1∑

m=1

(−1)l−m
∑

0<i1<···<il−m�l

∑
k∈⋂l−m

p=1 Iip

W(k)

=
l∑

m=1

(−1)m
∑

0<i1<···<im�l

∑
k∈⋂m

p=1 Iip

W (k)

= −
∑

k∈⋃l
i=1 Ii

W (k).

The last equality is by the inclusion–exclusion property. Because of (6) and (5), we obtain

−
∑

k∈⋃l
i=1 Ii

W (k) = −
∑

k∈U\{(k1+···+kl)}
W(k)

= zk1+···+kl −
∑
k∈U

W (k)

= zk1+···+kl − zk1 ∗ · · · ∗ zkl .

Therefore we conclude (7). �
We also need the following lemma.

Lemma 2.7. The set {Ak1+···+kl − Ak1 · · · Akl | k1, . . . ,kl � 1, l � 1} is a set of bases of Ȟ1 .

Proof. Since the indeterminates y and z(= x + y) can be generators of H, the set X = {Ak1 · · · Akl |
k1, . . . ,kl � 1} is a set of bases of H1. For each k � 1, the dimension of the space of weight k generated
by the set Y = {Ak1 · · · Akl − Ak1+···+kl | k1, . . . ,kl � 1} is one less than the space of weight k generated
by X . Also we find that any power of y cannot be expressed by elements of Y . Therefore we conclude
the lemma. �

Thus we obtain Proposition 2.5, and hence Theorem 2.1 because of Theorem 2.4.

3. For MZSV’s

In Section 2, we exploited a new algebraic formulation to prove the CSF for MZV’s by reducing it
to Kawashima’s relation. In this section, we describe an algebraic formulation and a proof of the CSF
for MZSV’s.

As in the previous sections, let z be x + y and γ the automorphism on H given by

γ (x) = x, γ (y) = x + y.

We notice that γ −1 is also the automorphism on H given by

γ −1(x) = x, γ −1(y) = y − x.
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We define the Q-linear map Cn :H → H⊗(n+1) by

Cn(x) = x ⊗ y⊗n, Cn(y) = −(
x ⊗ y⊗n)

and

Cn
(

w w ′) = Cn(w) � γ −1(w ′) + γ −1(w) � Cn
(

w ′)
for any w, w ′ ∈ H. The map Cn is well defined and Cn(1) = 0. Let ρn = Mn Cn (n � 1). Then:

Lemma 3.1. For any n � 1, we have ρn = dρn on H.

Proof. It suffices to show ρn(w) = dρn(w) for w = zk1 · · · zkl x
q , where q � 1, l � 0 and zk = xk−1 y

(k � 1). By the definition of Cn and Cn , we calculate

Cn(w) =
q∑

p=1

xq−p+1 ⊗ z⊗(n−1) ⊗ zk1 · · · zkl zp

+
l∑

j=1

k j−1∑
i=1

zk j−i+1zk j+1 · · · zkl x
q ⊗ z⊗(n−1) ⊗ zk1 · · · zk j−1 zi

−
l∑

j=1

xzk j+1 · · · zkl x
q ⊗ z⊗(n−1) ⊗ zk1 · · · zk j

and

Cn(w) =
q∑

p=1

γ −1(xq−p+1) ⊗ y⊗(n−1) ⊗ γ −1(zk1 · · · zkl )zp

+
l∑

j=1

k j−1∑
i=1

γ −1(zk j−i+1zk j+1 · · · zkl x
q) ⊗ y⊗(n−1) ⊗ γ −1(zk1 · · · zk j−1)zi

−
l∑

j=1

γ −1(xzk j+1 · · · zkl x
q) ⊗ y⊗(n−1) ⊗ γ −1(zk1 · · · zk j−1)zk j .

According to the definition of the map d, we conclude ρn(w) = dρn(w). �
We define α ∈ Aut(H) by

α(x) = y, α(y) = x,

and a Q-linear map α̃ :H1 → H1 by

α̃(wy) = α(w)y (w ∈ H).

We easily find that

ϕd = −dα̃. (8)
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Let ∗ :H1 × H1 → H1 be the Q-bilinear map defined by

(i) 1 ∗ w = w ∗ 1 = w for any w ∈ H1,
(ii) zp w ∗ zq w ′ = zp(w ∗ zq w ′) + zq(zp w ∗ w ′) − zp+q(w ∗ w ′) for any p,q � 1 and any w, w ′ ∈ H1,

which is known as an associative and commutative product on H1, namely the harmonic product
which is modeled by a series shuffle product rule of MZSV’s. It is also known that the identity

d
(

w ∗ w ′) = d(w) ∗ d
(

w ′) (9)

holds for any w, w ′ ∈ H1 (see [7,8] for example).
The linear part of Kawashima’s relation for MZSV’s proven in [7] is then stated as follows.

Theorem 3.2 (Kawashima). Lxα̃(Hy ∗ Hy) ⊂ ker Z .

We easily obtain the following equivalence.

Proposition 3.3. For any n � 1, we have

ρn
(
Ȟ1) ⊂ Lxα̃(Hy ∗ Hy) ⇐⇒ ρn

(
Ȟ1) ⊂ Lxϕ(Hy ∗ Hy).

Proof. Assume that ρn(Ȟ1) ⊂ Lxα̃(Hy ∗ Hy). Using Lemma 3.1,

ρn
(
Ȟ1) = dρn

(
Ȟ1) ⊂ dLxα̃(Hy ∗ Hy).

Since the operators d and Lx commute,

ρn
(
Ȟ1) ⊂ Lxdα̃(Hy ∗ Hy) = −Lxϕd(Hy ∗ Hy) = −Lxϕ

(
d(Hy) ∗ d(Hy)

)
.

The first equality is by (8) and the second by (9). Therefore we have ρn(Ȟ1) ⊂ Lxϕ(Hy ∗ Hy) because
of d(Hy) = Hy. In the same way, we can prove the reverse assertion. �

According to this proposition, we find that the CSF for MZV’s is equivalent to that for MZSV’s,
which is also proven in Ihara, Kajikawa, Ohno and Okuda [5]. (Their proof is by direct calculation,
which can also be applied to the q-analogue of MZV’s.) Combining Theorem 3.2 with Proposition 3.3,
we obtain

Corollary 3.4. For any n � 1, we have ρn(Ȟ1) ⊂ ker Z .

Therefore, the operator ρn induces relations among MZSV’s.

4. Remarks

4.1. Special evaluations

We find that the following identities hold

ρ1(zk1 · · · zkl ) =
l∑

j=1

k j−1∑
i=1

zk j−i+1zk j+1 · · · zkl zk1 · · · zk j−1 zi −
l∑

j=1

xzk j+1 · · · zkl zk1 · · · zk j ,



T. Tanaka, N. Wakabayashi / Journal of Algebra 323 (2010) 766–778 775
ρ1
(
γ (zk1 · · · zkl ) − xk1+···+kl

) =
l∑

j=1

k j−1∑
i=1

zk j−i+1zk j+1 · · · zkl zk1 · · · zk j−1 zi − kzk+1,

where k = k1 + · · · + kl . Evaluating them by Z and Z respectively, we obtain the CSF’s (1) and (2).

4.2. An example

Here we introduce another way to show the CSF by means of the linear part of Kawashima’s
relation in a special case. We first prove a lemma.

Lemma 4.1. For any q � 1, w ∈ Hy, w ′ ∈ H1 , we have

zw ∗ zq w ′ = z
(

w ∗ zq w ′) + zq
(
zw ∗ w ′),

where z = x + y and zq = xq−1 y (q � 1).

Proof. Let w = zp W (p � 1). We see that

xw ∗ zq w ′ = zp+1W ∗ zq w ′

= zp+1
(
W ∗ zq w ′) + zq

(
zp+1W ∗ w ′) + zp+q+1

(
W ∗ w ′)

and

x
(

w ∗ zq w ′) = x
(
zp W ∗ zq w ′)

= zp+1
(
W ∗ zq w ′) + zq+1

(
zp W ∗ w ′) + zp+q+1

(
W ∗ w ′).

By subtracting one from another, we obtain the identity

xw ∗ zq w ′ = x
(

w ∗ zq w ′) − zq+1
(

w ∗ w ′) + zq
(
xw ∗ w ′).

We also know that

yw ∗ zq w ′ = y
(

w ∗ zq w ′) + zq+1
(

w ∗ w ′) + zq
(

yw ∗ w ′).
Adding up these two identities, we have the lemma. �

As a method to derive the CSF from the linear part of Kawashima’s relation, we need to write down
ρn(zk1 · · · zkl ) explicitly in terms of the harmonic product. On the way, we find that the following
identity holds.

Proposition 4.2. For any n,k � 1, we have

ρn(zk) = Lxϕ(Ak−1 ∗ zn).

Proof. Note that the automorphism ϕ is an involution. Since

Cn(zk) =
k−1∑

zk−i+1 ⊗ z⊗(n−1) ⊗ zi − x ⊗ z⊗(n−1) ⊗ zk,
i=1
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we have

ϕL−1
x ρn(zk) =

k∑
i=1

Ak−i x
n−1 Ai .

Hence, it is enough to show

Ak−1 ∗ zn =
k∑

i=1

Ak−i x
n−1 Ai . (10)

We prove (10) by induction on k. If k = 1, it holds because both sides become zn . If k = 2,

LHS = y ∗ zn = yzn + zn y + zn+1,

RHS = A1xn−1 A1 + xn−1 A2 = yxn−1 y + xn−1(x + y)y.

Therefore the identity (10) holds. Assume that (10) holds for k − 1 (k � 2). By Lemma 4.1,

Ak−1 ∗ zn = z(Ak−2 ∗ zn) + zn Ak−1.

By the induction hypothesis,

Ak−2 ∗ zn =
k−1∑
i=1

Ak−i−1xn−1 Ai,

and hence, we have

Ak−1 ∗ zn = z
k−1∑
i=1

Ak−i−1xn−1 Ai + zn Ak−1.

Notice that z A j = A j+1 ( j � 1) but z A0 = A1 + y. Then, we have (10) and the proposition. �
When k � 2, the right-hand side of the identity of Proposition 4.2 is an element of Lxϕ(Hy ∗ Hy).

Therefore we have

ρn(zk) ∈ ker Z

according to Theorem 2.4. As an easy application, we also obtain the following.

Corollary 4.3. For any n,k � 1, we have

ρn(yzk) = Lxϕ(Ak−1 ∗ zn+1 − Ak ∗ zn).

Proof. The corollary is proven by Proposition 4.2 and the identity

ρn(zw) = ρn+1(w) (w ∈ H). � (11)

This corollary and Theorem 2.4 yield ρn(yzk) ∈ ker Z when k � 2.
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Table 1

Weight d + n 3 4 5 6 7 8 9 10 11 12 13 · · ·
n = 1 1 2 4 6 12 18 34 58 106 186 350 · · ·
n = 2 1 3 5 11 17 33 57 105 185 349 · · ·
n = 3 1 3 7 13 26 48 91 167 319 · · ·
n = 4 1 3 7 15 29 58 111 218 · · ·
n = 5 1 3 7 15 31 61 122 · · ·
n = 6 1 3 7 15 31 63 · · ·
n = 7 1 3 7 15 31 · · ·
n = 8 1 3 7 15 · · ·
n = 9 1 3 7 · · ·
n = 10 1 3 · · ·
n = 11 1 · · ·

4.3. Dimensions

We denote by Ȟ1
(d)

the degree-d homogeneous part of Ȟ1. For n,d � 1, let

CSFn
d = 〈

ρn(w)
∣∣ w ∈ Ȟ1

(d)

〉
Q
, CSFd =

⊕
n�1

CSFn
d.

Then, we see the following filtration structure.

Proposition 4.4. For any n,d � 1, we have CSFn+1
d ⊂ CSFn

d+1 .

Proof. The proof is just due to the identity (11). �
We obtain Table 1 of dimensions of CSFn

d by calculation using Risa/Asir, an open source general
computer algebra system.

We also find that the sequence of dimQ CSFd corresponds to the sequence of dimQ CSF1
d , which

is the number of cyclically equivalent indices of weight k and depth � k − 1 given by

−2 + 1

k

∑
m|k

φ

(
k

m

)
2m,

where k = d + 1 and φ(n) = |(Z/nZ)×|, Euler’s totient function (see [10, Chap. 1, Ex. 27], [11, Chap. 7,
Ex. 7.112] for example). We note that the same table can be obtained by considering Q-vector spaces
generated by the CSF for MZSV’s instead of the CSF for MZV’s.

4.4. Algebraic formulations of the CSF and Derivation relation

Let “·” be an action of H on H⊗(n+1) defined by

a · (w1 ⊗ · · · ⊗ wn+1) = aw1 ⊗ w2 ⊗ · · · ⊗ wn+1,

(w1 ⊗ · · · ⊗ wn+1) · b = w1 ⊗ · · · ⊗ wn ⊗ wn+1b.

The action “·” gives a H-bimodule structure on H⊗(n+1) called the outer bimodule structure. For n � 1,
we define the Q-linear map Dn :H → H⊗(n+1) by

Dn(x) = x ⊗ z⊗(n−1) ⊗ y, Dn(y) = −(
x ⊗ z⊗(n−1) ⊗ y

)
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and

Dn
(

w w ′) = Dn(w) · w ′ + w · Dn
(

w ′)
for any w, w ′ ∈ H. We find that the map Dn is well defined. Let ∂n = Mn Dn . Then, we find that this
∂n gives the derivation operator introduced in Ihara, Kaneko and Zagier [6], which induces Derivation
relation for MZV’s.

According to the above settings, we find that there is a nice resemblance between algebraic for-
mulations of CSF and Derivation relation. The images of x and y of the operator Dn coincide with
those of the operator Cn . The only difference between Dn and Cn is the product rule appearing in
their Leibniz rules.
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