Journal of Algebra 323 (2010) 766–778

An algebraic proof of the cyclic sum formula for multiple zeta values

Tatsushi Tanaka [∗], Noriko Wakabayashi

Faculty of Mathematics, Kyushu University, 744, Motooka, Nishiku, Fukuoka City, 819-0395, Japan

article info abstract

Article history: Received 19 January 2009 Communicated by Michel Van den Bergh

Keywords: Multiple zeta values Multiple zeta-star values Cyclic sum formula Derivation relation

We introduce an algebraic formulation of the cyclic sum formulas for multiple zeta values and for multiple zeta-star values. We also present an algebraic proof of cyclic sum formulas for multiple zeta values and for multiple zeta-star values by reducing them to Kawashima's relation.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The only proof of the cyclic sum formula (abbreviated as CSF) for multiple zeta values (resp. for multiple zeta-star values) which has been known so far is by using partial fraction expansions, which appears in Hoffman and Ohno [4] (resp. Ohno and Wakabayashi [9]). We are interested in other proofs of the CSF, especially by discussing relationships between the CSF and the other known relations for multiple zeta values such as regularized double shuffle relation [6], associator relation [2], etc. With such a motivation, we introduce herein an algebraic formulation of the CSF for multiple zeta values and the CSF for multiple zeta-star values, and give an algebraic proof of the CSF by reducing it to (the linear part of) Kawashima's relation [7].

For $k_1 > 1$ and $k_2, \ldots, k_n \geq 1$, the multiple zeta value (abbreviated as MZV) is a real number defined by the convergent series

$$
\zeta(k_1, k_2, \ldots, k_n) = \sum_{m_1 > m_2 > \cdots > m_n > 0} \frac{1}{m_1^{k_1} m_2^{k_2} \cdots m_n^{k_n}},
$$

Corresponding author. *E-mail addresses:* t.tanaka@math.kyushu-u.ac.jp (T. Tanaka), noriko@math.kyushu-u.ac.jp (N. Wakabayashi).

0021-8693/\$ – see front matter © 2009 Elsevier Inc. All rights reserved. [doi:10.1016/j.jalgebra.2009.11.016](http://dx.doi.org/10.1016/j.jalgebra.2009.11.016)

and the multiple zeta-star value (abbreviated as MZSV) is defined by the convergent series

$$
\zeta^{\star}(k_1,k_2,\ldots,k_n)=\sum_{m_1\geq m_2\geq \cdots\geq m_n>0}\frac{1}{m_1^{k_1}m_2^{k_2}\cdots m_n^{k_n}}.
$$

We call the number $k_1 + \cdots + k_n$ weight and *n* depth. If $n = 1$, MZV and MZSV coincide and are known as the Riemann zeta value.

Throughout the present paper, we employ the algebraic setup introduced by Hoffman [3]. Let $\mathfrak{H} = \mathbb{Q}\langle x, y \rangle$ denote the non-commutative polynomial algebra over the rational numbers in two indeterminates *x* and *y*, and let \mathfrak{H}^1 and \mathfrak{H}^0 denote the subalgebras $\mathbb{Q} + \mathfrak{H}y$ and $\mathbb{Q} + x \mathfrak{H}y$, respectively. We define the \mathbb{O} -linear map $Z: \mathfrak{H}^0 \to \mathbb{R}$ by $Z(1) = 1$ and

$$
Z(x^{k_1-1}yx^{k_2-1}y\cdots x^{k_n-1}y) = \zeta(k_1,k_2,\ldots,k_n).
$$

We also define the Q-linear map \overline{Z} : $\tilde{y}^0 \rightarrow \mathbb{R}$ by $\overline{Z}(1) = 1$ and

$$
\overline{Z}(x^{k_1-1}yx^{k_2-1}y\cdots x^{k_n-1}y)=\zeta^{\star}(k_1,k_2,\ldots,k_n).
$$

The degree (resp. degree with respect to y) of a word is the weight (resp. the depth) of the corresponding MZV or MZSV. Let $d: \tilde{p}^1 \rightarrow \tilde{p}^1$ be a \mathbb{Q} -linear map defined by

$$
d(wy) = \gamma(w)y
$$

for $w \in \mathfrak{H}$, where γ is the automorphism on \mathfrak{H} given by

$$
\gamma(x) = x, \qquad \gamma(y) = x + y.
$$

It is well known that the identity $\overline{Z} = Zd$ holds.

For $k_1, \ldots, k_l \geqslant 1$ with some $k_q > 1$, the CSF for MZV's

$$
\sum_{j=1}^{l} \sum_{i=1}^{k_j-1} \zeta(k_j - i + 1, k_{j+1}, \dots, k_l, k_1, \dots, k_{j-1}, i) = \sum_{j=1}^{l} \zeta(k_j + 1, k_{j+1}, \dots, k_l, k_1, \dots, k_{j-1}) \tag{1}
$$

is proven in Hoffman and Ohno [4] by means of partial fraction expansions and the CSF for MZSV's

$$
\sum_{j=1}^{l} \sum_{i=1}^{k_j-1} \zeta^{\star}(k_j - i + 1, k_{j+1}, \dots, k_l, k_1, \dots, k_{j-1}, i) = k\zeta(k+1),
$$
\n(2)

where $k = k_1 + \cdots + k_l$, in Ohno and Wakabayashi [9] in a similar way. Hoffman and Ohno also introduced in [4] an algebraic expression of the CSF for MZV's. They formulated the CSF using two cyclic derivatives C_w and \overline{C}_w on \mathfrak{H} as follows.

A cyclic derivative $\phi_{\bullet} : \mathfrak{H} \to \text{End}(\mathfrak{H})$ is defined by a Q-linear map with the property

$$
\phi_{w_1w_2}(W) = \phi_{w_1}(w_2W) + \phi_{w_2}(Ww_1)
$$

for any $w_1, w_2, W \in \mathfrak{H}$. Such a cyclic derivative is uniquely determined by ϕ_x and ϕ_y . Let C_{\bullet} (resp. $\overline{C_{\bullet}}$) be the cyclic derivative defined by $C_x = 0$, $C_y = L_x R_y$ (resp. $\overline{C}_x = L_x R_y$, $\overline{C}_y = 0$), where, for $w \in \mathfrak{H}$, the map L_w (resp. R_w) is a Q-linear map, called left- (resp. right-) multiplication, defined by $L_w(W)$ = *wW* (resp. $R_w(W) = WW$) for any $W \in \mathfrak{H}$. Let $\check{\mathfrak{H}}^1$ be a subvector space of \mathfrak{H}^1 generated by words of \mathfrak{H}^1 except for powers of *y*. Then:

Theorem 1.1 *(Hoffman–Ohno). For any word* $w \in \check{S}^1$, we have

$$
Z\big((\overline{C}_w - C_w)(1)\big) = 0.
$$

2. Main results

In this section, we give an algebraic formulation of the CSF for MZV's, which the authors have been inspired by works for double Poisson algebras introduced in [1]. The method of the formulation is a little different from Hoffman–Ohno's. Then we present an algebraic proof of the CSF for MZV's by reducing it to (the linear part of) Kawashima's relation.

Let $n \geqslant 1$. We denote an action of $\mathfrak H$ on $\mathfrak H^{\otimes (n+1)}$ by " \diamond ", which is defined by

 $a \diamond (w_1 \otimes \cdots \otimes w_{n+1}) = w_1 \otimes \cdots \otimes w_n \otimes a w_{n+1}$ $(w_1 \otimes \cdots \otimes w_{n+1}) \diamond b = w_1 b \otimes w_2 \otimes \cdots \otimes w_{n+1}.$

The action \diamond gives a $\mathfrak{H}\text{-bimodule}$ structure on $\mathfrak{H}^{\otimes (n+1)}.$

Let *z* = *x* + *y*. We define the Q-linear map $C_n : \mathfrak{H} \to \mathfrak{H}^{\otimes (n+1)}$ by

$$
C_n(x) = x \otimes z^{\otimes (n-1)} \otimes y, \qquad C_n(y) = -(x \otimes z^{\otimes (n-1)} \otimes y)
$$

and

$$
C_n(ww') = C_n(w) \diamond w' + w \diamond C_n(w')
$$
 (3)

for any $w, w' \in \mathfrak{H}$. The map \mathcal{C}_n is well defined because of the identities

$$
a \diamond (b \diamond w) = ab \diamond w, \qquad (w \diamond a) \diamond b = w \diamond ab,
$$

where $a, b \in \mathfrak{H}, w \in \mathfrak{H}^{\otimes (n+1)}$. We also find that $\mathcal{C}_n(1) = 0$ by putting $w = w' = 1$ in (3). Let $M_n : \mathfrak{H}^{\otimes (n+1)} \to \mathfrak{H}$ denote the multiplication map, i.e.,

$$
M_n(w_1\otimes\cdots\otimes w_{n+1})=w_1\cdots w_{n+1},
$$

and let $\rho_n = M_n C_n$ ($n \geq 1$). Then our main theorem is the following.

 $\bf{Theorem 2.1.}$ *For* $n \geqslant 1$ *, we have* $\rho_n(\check{ \mathfrak{H}}^1) \subset \ker Z$ *.*

The theorem contains Theorem 1.1 because of the following proposition.

Proposition 2.2. For any $w \in \mathfrak{H}$, we have $\rho_1(w) = (\overline{C}_w - C_w)(1)$ *.*

To prove the proposition, we firstly show the following lemma.

Lemma 2.3. For cyclically equivalent words $w, w' \in \mathfrak{H}$, we have $\rho_1(w) = \rho_1(w')$.

Proof. Let $u_1, \ldots, u_l \in \{x, y\}$ and sgn $(u) = 1$ or -1 according to $u = x$ or y . Since

$$
C_1(u) = \text{sgn}(u)(x \otimes y)
$$

for $u \in \{x, y\}$, we have

T. Tanaka, N. Wakabayashi / Journal of Algebra 323 (2010) 766–778 769

$$
C_1(u_1 \cdots u_l) = \sum_{j=1}^l u_1 \cdots u_{j-1} \diamond C_1(u_j) \diamond u_{j+1} \cdots u_l
$$

=
$$
\sum_{j=1}^l \text{sgn}(u_j) (x u_{j+1} \cdots u_l \otimes u_1 \cdots u_{j-1} y),
$$

where we assume $u_1 \cdots u_{i-1} = 1$ if $j = 1$ and $u_{i+1} \cdots u_l = 1$ if $j = l$. Therefore we have

$$
\rho_1(u_1 \cdots u_l) = \sum_{j=1}^l \text{sgn}(u_j) x u_{j+1} \cdots u_l u_1 \cdots u_{j-1} y.
$$

Since the right-hand side does not change under the cyclic permutations of $\{u_1, \ldots, u_l\}$, we conclude the lemma. \square

Proof of Proposition 2.2. Let $z_k = x^{k-1}y$ $(k \ge 1)$. It suffices to show the identity for words $w =$ $z_{k_1} \cdots z_{k_l}$ and x^q $(q \geqslant 1)$ because of Lemma 2.3.

If $w = x^q$, we easily calculate

$$
C_w(1) = 0
$$
, $\overline{C}_w(1) = \rho_1(w) = qz_{q+1}$,

and hence the proposition holds.

When $w = z_{k_1} \cdots z_{k_l}$, Hoffman and Ohno showed in [4] that

$$
(\overline{C}_w - C_w)(1) = \sum_{j=1}^l \sum_{i=1}^{k_j - 1} z_{k_j - i + 1} z_{k_{j+1}} \cdots z_{k_l} z_{k_1} \cdots z_{k_{j-1}} z_i - \sum_{j=1}^l x z_{k_{j+1}} \cdots z_{k_l} z_{k_1} \cdots z_{k_j}.
$$
 (4)

To prove the proposition, we show that $\rho_1(w)$ equals the right-hand side of this identity.

By the definition of C_1 , we calculate

$$
C_1(z_k) = \sum_{j=1}^{k-1} z_{k-j+1} \otimes z_j - x \otimes z_k.
$$

Therefore we have

$$
C_1(w) = \sum_{j=1}^l \sum_{i=1}^{k_j-1} z_{k_j-i+1} z_{k_{j+1}} \cdots z_{k_l} \otimes z_{k_1} \cdots z_{k_{j-1}} z_i - \sum_{j=1}^l x z_{k_{j+1}} \cdots z_{k_l} \otimes z_{k_1} \cdots z_{k_j},
$$

and hence, $\rho_1(w)$ equals the right-hand side of (4). \Box

We find that the operator ρ_1 induces the CSF for MZV's because of Proposition 2.2 and Theorem 1.1. According to Lemma 2.3 and Proposition 2.2, we also find that Theorem 1.1 holds if $w \in \mathfrak{H}$, where \dot{y} is a subvector space of \dot{y} generated by words of \dot{y} except for powers of *x* and powers of *y*.

To prove our main theorem (Theorem 2.1), we use the linear part of Kawashima's relation introduced in [7], which is stated as follows. Let *ϕ* be the automorphism on H given by

$$
\varphi(x) = x + y, \qquad \varphi(y) = -y.
$$

The product "*" stands for the harmonic product on \mathfrak{H}^1 introduced in Hoffman [3], which is known to be associative and commutative. Under these notations, the linear part of Kawashima's relation for MZV's is the following.

Theorem 2.4 *(Kawashima).* $L_x \varphi(\mathfrak{H} \mathfrak{v} * \mathfrak{H} \mathfrak{v}) \subset \ker Z$.

The theorem is used in [12] to prove the quasi-derivation relation for MZV's. To prove Theorem 2.1 by reducing the CSF for MZV's to Theorem 2.4, we should show

Proposition 2.5. For $n \ge 1$, we have $\rho_n(\check{S}^1) \subset L_x\varphi(\mathfrak{H}y * \mathfrak{H}y)$.

This proposition holds because of the Key Proposition and the lemma below. Let $A_0 = 1$ and $A_i =$ z^{j-1} *y* for *j* ≥ 1, where *z* = *x* + *y*.

Proposition 2.6. For $k_1 \geqslant n, k_2, \ldots, k_l \geqslant 1$, we have

$$
\varphi L_{x}^{-1} \rho_n(A_{k_1+\cdots+k_l-n+1}-A_{k_1-n+1}A_{k_2}\cdots A_{k_l})=\sum_{m=2}^l \frac{(-1)^{l-m}}{m}\sum_{j=1}^l \sum_{\substack{\alpha_1+\cdots+\alpha_m=l\\ \alpha_1,\ldots,\alpha_m\geq 1}}H(j,\alpha_1,\ldots,\alpha_m).
$$

Here, $H(j, \alpha_1, \ldots, \alpha_m)$ *is given by*

 $H(j, \alpha_1, ..., \alpha_m) = (z_{k_1} \cdots z_{k_{\alpha_1+j-1}}) * (z_{k_{\alpha_1+j}} \cdots z_{k_{\alpha_1+\alpha_2+j-1}}) * \cdots * (z_{k_{\alpha_1+\cdots+\alpha_{m-1}+j}} \cdots z_{k_{\alpha_1+\cdots+\alpha_m+j-1}}),$

where the subscripts of k's of the right-hand side are viewed as numbers modulo $l \in \{1, \ldots, l\}$ *.*

Proof. First we give some notations. Let $U = U(k_1, \ldots, k_l)$ be the set of tuples consisting of at most *l* components, each of which is the sum of some of k_1, \ldots, k_l , such that each k_i occurs in exactly one of the components. For example,

$$
U(k_1, k_2) = \{(k_1, k_2), (k_2, k_1), (k_1 + k_2)\},
$$

\n
$$
U(k_1, k_2, k_3) = \{(k_1, k_2, k_3), (k_1, k_3, k_2), (k_2, k_1, k_3), (k_2, k_3, k_1), (k_3, k_1, k_2),
$$

\n
$$
(k_3, k_2, k_1), (k_1 + k_2, k_3), (k_2 + k_3, k_1), (k_3 + k_1, k_2), (k_1, k_2 + k_3),
$$

\n
$$
(k_2, k_3 + k_1), (k_3, k_1 + k_2), (k_1 + k_2 + k_3)\},
$$

and so on. For $1 \le i \le l$, let $I_i = I_i(k_1, \ldots, k_l)$ be the set of tuples in *U* such that k_{i-1} occurs in a component that lies to the left of the one containing k_i . For example,

$$
I_1(k_1, k_2) = \{(k_2, k_1)\},
$$

\n
$$
I_2(k_1, k_2) = \{(k_1, k_2)\},
$$

\n
$$
I_1(k_1, k_2, k_3) = \{(k_3, k_1, k_2), (k_3, k_2, k_1), (k_2, k_3, k_1), (k_3, k_1 + k_2), (k_3 + k_2, k_1)\},
$$

\n
$$
I_2(k_1, k_2, k_3) = \{(k_1, k_2, k_3), (k_1, k_3, k_2), (k_3, k_1, k_2), (k_1, k_2 + k_3), (k_1 + k_3, k_2)\},
$$

\n
$$
I_3(k_1, k_2, k_3) = \{(k_2, k_3, k_1), (k_2, k_1, k_3), (k_1, k_2, k_3), (k_2, k_3 + k_1), (k_2 + k_1, k_3)\},
$$

and so on. We also define $W: U \rightarrow \mathfrak{H}$ by

$$
W(k_1,\ldots,k_l)=z_{k_1}\cdots z_{k_l}
$$

for $k_1, \ldots, k_l \geqslant 1$. Then we find

$$
\sum_{\mathbf{k}\in U} W(\mathbf{k}) = z_{k_1} * \cdots * z_{k_l}
$$
 (5)

and

$$
U\setminus\{(k_1+\cdots+k_l)\}=\bigcup_{i=1}^l I_i.
$$
 (6)

Since

$$
\varphi L_{\mathbf{x}}^{-1} \rho_n(A_{k_1+\cdots+k_l-n+1}-A_{k_1-n+1}A_{k_2}\cdots A_{k_l}) = z_{k_1+\cdots+k_l}+(-1)^l \sum_{j=1}^l z_{k_j}\cdots z_{k_l}z_{k_1}\cdots z_{k_{j-1}},
$$

it suffices to show

$$
z_{k_1+\dots+k_l} + (-1)^l \sum_{j=1}^l z_{k_j} \dots z_{k_l} z_{k_1} \dots z_{k_{j-1}} = \sum_{m=2}^l \frac{(-1)^{l-m}}{m} \sum_{j=1}^l \sum_{\substack{\alpha_1+\dots+\alpha_m=l\\ \alpha_1,\dots,\alpha_m \ge 1}} H(j, \alpha_1, \dots, \alpha_m), \quad (7)
$$

where the subscripts of *k*'s of the right-hand side are viewed as numbers modulo $l \in \{1, ..., l\}$.

Put $N^{(l)} = \{n \in \mathbb{N} \mid 1 \leqslant n \leqslant l\},\ N^{(l)}_j = N^{(l)}\setminus\{j\} \,\,(1 \leqslant j \leqslant l) \,\,\text{and}\,\, A = \{\alpha_1 + \cdots + \alpha_s + j \mid 1 \leqslant s < m\} \,\,\text{for a}$ fixed $(\alpha_1,\ldots,\alpha_m)$ with $\alpha_1+\cdots+\alpha_m=l$, $\alpha_1,\ldots,\alpha_m\geqslant 1$. Expanding the harmonic products, we have

$$
H(j, \alpha_1, \ldots, \alpha_m) = \sum_{\mathbf{k} \in \bigcap_{r \in N_j^{(j)} \setminus A} I_r} W(\mathbf{k}).
$$

Hence, we obtain

$$
\sum_{\substack{\alpha_1 + \dots + \alpha_m = l \\ \alpha_1, \dots, \alpha_m \ge 1}} H(j, \alpha_1, \dots, \alpha_m) = \sum_{\substack{\alpha_1 + \dots + \alpha_m = l \\ \alpha_1, \dots, \alpha_m \ge 1}} \sum_{\mathbf{k} \in \bigcap_{r \in N_j^{(l)} \setminus A} I_r} W(\mathbf{k})
$$

$$
= \sum_{\substack{S \subset N_j^{(l)} \\ |S| = m - 1}} \sum_{\mathbf{k} \in \bigcap_{r \in N_j^{(l)} \setminus S} I_r} W(\mathbf{k}).
$$

Adding up from $j = 1$ to *l*, we obtain

$$
\sum_{j=1}^{l} \sum_{\substack{S \subset N_j^{(l)} \\ |S| = m-1}} \sum_{\mathbf{k} \in \bigcap_{r \in N_j^{(l)} \setminus S} I_r} W(\mathbf{k}) = m \sum_{\substack{T \subset N^{(l)} \\ |T| = m}} \sum_{\mathbf{k} \in \bigcap_{r \in N^{(l)} \setminus T} I_r} W(\mathbf{k})
$$

$$
= m \sum_{0 < i_1 < \cdots < i_{l-m} \leq l} \sum_{\mathbf{k} \in \bigcap_{p=1}^{l-m} I_{ip}} W(\mathbf{k}).
$$

The reason why the middle term of the last equation is multiplied by *m* is because $m - 1$ elements belonging to *S* have been already removed from $N_f^{(l)}$ at the third summation of the first term and there are *m* ways to get rid $N^{(l)}$ of the additional element in *T*. Owing to the above equation, we obtain

$$
\sum_{m=1}^{l-1} \frac{(-1)^{l-m}}{m} \sum_{j=1}^{l} \sum_{\substack{\alpha_1 + \dots + \alpha_m = l \\ \alpha_1, \dots, \alpha_m \ge 1}} H(j, \alpha_1, \dots, \alpha_m) = \sum_{m=1}^{l-1} (-1)^{l-m} \sum_{0 < i_1 < \dots < i_{l-m} \le l} \sum_{\mathbf{k} \in \bigcap_{p=1}^{l-m} I_{ip}} W(\mathbf{k})
$$
\n
$$
= \sum_{m=1}^{l} (-1)^m \sum_{\substack{0 < i_1 < \dots < i_m \le l \\ 0 < i_1 < \dots < i_m \le l} \sum_{\mathbf{k} \in \bigcap_{p=1}^{m} I_{ip}} W(\mathbf{k})
$$
\n
$$
= - \sum_{\mathbf{k} \in \bigcup_{i=1}^{l} I_i} W(\mathbf{k}).
$$

The last equality is by the inclusion–exclusion property. Because of (6) and (5) , we obtain

$$
- \sum_{\mathbf{k} \in \bigcup_{i=1}^{l} I_i} W(\mathbf{k}) = - \sum_{\mathbf{k} \in U \setminus \{(k_1 + \dots + k_l)\}} W(\mathbf{k})
$$

$$
= z_{k_1 + \dots + k_l} - \sum_{\mathbf{k} \in U} W(\mathbf{k})
$$

$$
= z_{k_1 + \dots + k_l} - z_{k_1} * \dots * z_{k_l}.
$$

Therefore we conclude (7) . \Box

We also need the following lemma.

Lemma 2.7. The set {A_{k1+…+k|} − A_{k1} · · · A_{k|} | k₁, . . . , k_| ≥ 1, *l* ≥ 1} is a set of bases of $\check{\mathfrak{H}}^1$.

Proof. Since the indeterminates *y* and $z(= x + y)$ can be generators of \mathfrak{H} , the set $X = \{A_{k_1} \cdots A_{k_l}\}\$ $k_1,\ldots,k_l\geqslant 1\}$ is a set of bases of $\mathfrak{H}^1.$ For each $k\geqslant 1,$ the dimension of the space of weight k generated by the set $Y = \{A_{k_1} \cdots A_{k_l} - A_{k_1 + \cdots + k_l} \mid k_1, \ldots, k_l \geq 1\}$ is one less than the space of weight *k* generated by *X*. Also we find that any power of *y* cannot be expressed by elements of *Y* . Therefore we conclude the lemma. \Box

Thus we obtain Proposition 2.5, and hence Theorem 2.1 because of Theorem 2.4.

3. For MZSV's

In Section 2, we exploited a new algebraic formulation to prove the CSF for MZV's by reducing it to Kawashima's relation. In this section, we describe an algebraic formulation and a proof of the CSF for MZSV's.

As in the previous sections, let *z* be $x + y$ and γ the automorphism on \mathfrak{H} given by

$$
\gamma(x) = x, \qquad \gamma(y) = x + y.
$$

We notice that γ^{-1} is also the automorphism on $\mathfrak H$ given by

$$
\gamma^{-1}(x) = x, \qquad \gamma^{-1}(y) = y - x.
$$

We define the Q-linear map $\overline{C}_n : \overline{S} \to \overline{S}^{\otimes (n+1)}$ by

$$
\overline{\mathcal{C}}_n(x) = x \otimes y^{\otimes n}, \qquad \overline{\mathcal{C}}_n(y) = -(x \otimes y^{\otimes n})
$$

and

$$
\overline{\mathcal{C}}_n(ww') = \overline{\mathcal{C}}_n(w) \diamond \gamma^{-1}(w') + \gamma^{-1}(w) \diamond \overline{\mathcal{C}}_n(w')
$$

for any $w, w' \in \mathfrak{H}$. The map $\overline{\mathcal{C}}_n$ is well defined and $\overline{\mathcal{C}}_n(1) = 0$. Let $\overline{\rho}_n = M_n \overline{\mathcal{C}}_n$ $(n \geq 1)$. Then:

Lemma 3.1. For any $n \ge 1$, we have $\rho_n = d\overline{\rho}_n$ on \mathfrak{H} .

Proof. It suffices to show $\rho_n(w) = d\overline{\rho}_n(w)$ for $w = z_{k_1} \cdots z_{k_l} x^q$, where $q \geq 1$, $l \geq 0$ and $z_k = x^{k-1} y$ $(k \geqslant 1)$. By the definition of C_n and C_n , we calculate

$$
C_n(w) = \sum_{p=1}^q x^{q-p+1} \otimes z^{\otimes (n-1)} \otimes z_{k_1} \cdots z_{k_l} z_p
$$

+
$$
\sum_{j=1}^l \sum_{i=1}^{k_j-1} z_{k_j-i+1} z_{k_{j+1}} \cdots z_{k_l} x^q \otimes z^{\otimes (n-1)} \otimes z_{k_1} \cdots z_{k_{j-1}} z_i
$$

-
$$
\sum_{j=1}^l x z_{k_{j+1}} \cdots z_{k_l} x^q \otimes z^{\otimes (n-1)} \otimes z_{k_1} \cdots z_{k_j}
$$

and

$$
\overline{C}_n(w) = \sum_{p=1}^q \gamma^{-1} (x^{q-p+1}) \otimes y^{\otimes (n-1)} \otimes \gamma^{-1} (z_{k_1} \cdots z_{k_l}) z_p
$$

+
$$
\sum_{j=1}^l \sum_{i=1}^{k_j-1} \gamma^{-1} (z_{k_j-i+1} z_{k_{j+1}} \cdots z_{k_l} x^q) \otimes y^{\otimes (n-1)} \otimes \gamma^{-1} (z_{k_1} \cdots z_{k_{j-1}}) z_i
$$

-
$$
\sum_{j=1}^l \gamma^{-1} (xz_{k_{j+1}} \cdots z_{k_l} x^q) \otimes y^{\otimes (n-1)} \otimes \gamma^{-1} (z_{k_1} \cdots z_{k_{j-1}}) z_{k_j}.
$$

According to the definition of the map *d*, we conclude $\rho_n(w) = d\overline{\rho}_n(w)$. \Box

We define $\alpha \in$ Aut(\mathfrak{H}) by

$$
\alpha(x) = y, \qquad \alpha(y) = x,
$$

and a Q-linear map $\widetilde{\alpha} : \mathfrak{H}^1 \to \mathfrak{H}^1$ by

$$
\widetilde{\alpha}(wy) = \alpha(w)y \quad (w \in \mathfrak{H}).
$$

We easily find that

$$
\varphi d = -d\widetilde{\alpha}.\tag{8}
$$

Let $\overline{*}$: $\mathfrak{H}^1 \times \mathfrak{H}^1 \to \mathfrak{H}^1$ be the Q-bilinear map defined by

(i) $1 \times w = w \times 1 = w$ for any $w \in \mathfrak{H}^1$, (ii) $z_p w \bar{*} z_q w' = z_p (w \bar{*} z_q w') + z_q (z_p w \bar{*} w') - z_{p+q} (w \bar{*} w')$ for any $p, q \geqslant 1$ and any $w, w' \in \mathfrak{H}^1$,

which is known as an associative and commutative product on \mathfrak{H}^1 , namely the harmonic product which is modeled by a series shuffle product rule of MZSV's. It is also known that the identity

$$
d(w \ast w') = d(w) * d(w')
$$
 (9)

holds for any $w, w' \in \mathfrak{H}^1$ (see [7,8] for example).

The linear part of Kawashima's relation for MZSV's proven in [7] is then stated as follows.

Theorem 3.2 *(Kawashima).* $L_x\widetilde{\alpha}$ ($\mathfrak{H}y \ast \mathfrak{H}y$) \subset ker \overline{Z} .

We easily obtain the following equivalence.

Proposition 3.3. For any $n \geqslant 1$, we have

$$
\overline{\rho}_n(\check{\mathfrak{H}}^1) \subset L_x \widetilde{\alpha}(\mathfrak{H} y \ast \mathfrak{H} y) \quad \Longleftrightarrow \quad \rho_n(\check{\mathfrak{H}}^1) \subset L_x \varphi(\mathfrak{H} y \ast \mathfrak{H} y).
$$

Proof. Assume that $\overline{\rho}_n(\check{S}^1) \subset L_x\widetilde{\alpha}(\check{S}y \ast \check{S}y)$. Using Lemma 3.1,

$$
\rho_n(\check{\mathfrak{H}}^1)=d\overline{\rho}_n(\check{\mathfrak{H}}^1)\subset dL_x\widetilde{\alpha}(\mathfrak{H}y\ast \mathfrak{H}y).
$$

Since the operators *d* and *Lx* commute,

$$
\rho_n(\check{\mathfrak{H}}^1) \subset L_x d\widetilde{\alpha}(\mathfrak{H} y \bar{\ast} \mathfrak{H} y) = -L_x \varphi d(\mathfrak{H} y \bar{\ast} \mathfrak{H} y) = -L_x \varphi (d(\mathfrak{H} y) \ast d(\mathfrak{H} y)).
$$

The first equality is by (8) and the second by (9). Therefore we have $\rho_n(\check{H}) \subset L_x\varphi(\check{H})$ because of $d(f(y)y) = f(y)$. In the same way, we can prove the reverse assertion. \Box

According to this proposition, we find that the CSF for MZV's is equivalent to that for MZSV's, which is also proven in Ihara, Kajikawa, Ohno and Okuda [5]. (Their proof is by direct calculation, which can also be applied to the *q*-analogue of MZV's.) Combining Theorem 3.2 with Proposition 3.3, we obtain

 C **orollary 3.4.** *For any n* \geqslant 1, we have $\overline{\rho}_n(\check{\mathfrak{H}}^1) \subset \ker \overline{Z}$ *.*

Therefore, the operator $\overline{\rho}_n$ induces relations among MZSV's.

4. Remarks

4.1. Special evaluations

We find that the following identities hold

$$
\rho_1(z_{k_1}\cdots z_{k_l})=\sum_{j=1}^l\sum_{i=1}^{k_j-1}z_{k_j-i+1}z_{k_{j+1}}\cdots z_{k_l}z_{k_1}\cdots z_{k_{j-1}}z_i-\sum_{j=1}^l xz_{k_{j+1}}\cdots z_{k_l}z_{k_1}\cdots z_{k_j},
$$

$$
\overline{\rho}_1(\gamma(z_{k_1}\cdots z_{k_l})-x^{k_1+\cdots+k_l})=\sum_{j=1}^l\sum_{i=1}^{k_j-1}z_{k_j-i+1}z_{k_{j+1}}\cdots z_{k_l}z_{k_1}\cdots z_{k_{j-1}}z_i-kz_{k+1},
$$

where $k = k_1 + \cdots + k_l$. Evaluating them by *Z* and \overline{Z} respectively, we obtain the CSF's (1) and (2).

4.2. An example

Here we introduce another way to show the CSF by means of the linear part of Kawashima's relation in a special case. We first prove a lemma.

 ${\bf Lemma \ 4.1.}$ *For any* $q\geqslant 1, \, w\in \mathfrak{H}$ $y, \, w'\in \mathfrak{H}^1,$ *we have*

$$
zw * z_q w' = z(w * z_q w') + z_q(zw * w'),
$$

where $z = x + y$ and $z_q = x^{q-1}y$ ($q \ge 1$).

Proof. Let $w = z_p W$ $(p \geqslant 1)$. We see that

$$
xw * z_q w' = z_{p+1} W * z_q w'
$$

= $z_{p+1} (W * z_q w') + z_q (z_{p+1} W * w') + z_{p+q+1} (W * w')$

and

$$
x(w * z_q w') = x(z_p W * z_q w')
$$

= z_{p+1}(W * z_qw') + z_{q+1}(z_p W * w') + z_{p+q+1}(W * w').

By subtracting one from another, we obtain the identity

$$
xw * z_q w' = x(w * z_q w') - z_{q+1}(w * w') + z_q(xw * w').
$$

We also know that

$$
yw * z_q w' = y(w * z_q w') + z_{q+1}(w * w') + z_q(yw * w').
$$

Adding up these two identities, we have the lemma. \Box

As a method to derive the CSF from the linear part of Kawashima's relation, we need to write down $\rho_n(z_{k_1} \cdots z_{k_l})$ explicitly in terms of the harmonic product. On the way, we find that the following identity holds.

Proposition 4.2. For any $n, k \geqslant 1$, we have

$$
\rho_n(z_k) = L_x \varphi(A_{k-1} * z_n).
$$

Proof. Note that the automorphism φ is an involution. Since

$$
\mathcal{C}_n(z_k) = \sum_{i=1}^{k-1} z_{k-i+1} \otimes z^{\otimes (n-1)} \otimes z_i - x \otimes z^{\otimes (n-1)} \otimes z_k,
$$

we have

$$
\varphi L_{\mathbf{x}}^{-1} \rho_n(z_k) = \sum_{i=1}^k A_{k-i} \mathbf{x}^{n-1} A_i.
$$

Hence, it is enough to show

$$
A_{k-1} * z_n = \sum_{i=1}^{k} A_{k-i} x^{n-1} A_i.
$$
 (10)

We prove (10) by induction on *k*. If $k = 1$, it holds because both sides become z_n . If $k = 2$,

LHS =
$$
y * z_n
$$
 = $yz_n + z_ny + z_{n+1}$,
RHS = $A_1x^{n-1}A_1 + x^{n-1}A_2 = yx^{n-1}y + x^{n-1}(x + y)y$.

Therefore the identity (10) holds. Assume that (10) holds for $k-1$ $(k \geq 2)$. By Lemma 4.1,

$$
A_{k-1} * z_n = z(A_{k-2} * z_n) + z_n A_{k-1}.
$$

By the induction hypothesis,

$$
A_{k-2} * z_n = \sum_{i=1}^{k-1} A_{k-i-1} x^{n-1} A_i,
$$

and hence, we have

$$
A_{k-1} * z_n = z \sum_{i=1}^{k-1} A_{k-i-1} x^{n-1} A_i + z_n A_{k-1}.
$$

Notice that $zA_j = A_{j+1}$ $(j \geq 1)$ but $zA_0 = A_1 + y$. Then, we have (10) and the proposition. \Box

When $k \geqslant 2$, the right-hand side of the identity of Proposition 4.2 is an element of $L_x\varphi(5y*\overline{5}y)$. Therefore we have

$$
\rho_n(z_k) \in \ker Z
$$

according to Theorem 2.4. As an easy application, we also obtain the following.

Corollary 4.3. For any $n, k \geqslant 1$, we have

$$
\rho_n(yz_k) = L_x \varphi(A_{k-1} * z_{n+1} - A_k * z_n).
$$

Proof. The corollary is proven by Proposition 4.2 and the identity

$$
\rho_n(zw) = \rho_{n+1}(w) \quad (w \in \mathfrak{H}). \qquad \Box \tag{11}
$$

This corollary and Theorem 2.4 yield $\rho_n(yz_k) \in \ker Z$ when $k \geqslant 2$.

4.3. Dimensions

Table 1

We denote by $\check{\mathfrak{H}}^1_{(d)}$ the degree- d homogeneous part of $\check{\mathfrak{H}}^1.$ For $n,d\geqslant 1,$ let

$$
CSF_d^n = \langle \rho_n(w) \mid w \in \check{\mathfrak{H}}_{(d)}^1 \rangle_{\mathbb{Q}}, \qquad \text{CSF}_d = \bigoplus_{n \geq 1} \text{CSF}_d^n.
$$

Then, we see the following filtration structure.

Proposition 4.4. For any $n, d \geqslant 1$, we have $\text{CSF}^{n+1}_d \subset \text{CSF}^n_{d+1}.$

Proof. The proof is just due to the identity (11) . \Box

We obtain Table 1 of dimensions of CSF_d^n by calculation using Risa/Asir, an open source general computer algebra system.

We also find that the sequence of $\dim_{\mathbb{Q}} \text{CSF}_d$ corresponds to the sequence of $\dim_{\mathbb{Q}} \text{CSF}_d^1$, which is the number of cyclically equivalent indices of weight *k* and depth $\leq k - 1$ given by

$$
-2+\frac{1}{k}\sum_{m|k}\phi\bigg(\frac{k}{m}\bigg)2^m,
$$

where $k = d + 1$ and $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$, Euler's totient function (see [10, Chap. 1, Ex. 27], [11, Chap. 7, Ex. 7.112] for example). We note that the same table can be obtained by considering Q-vector spaces generated by the CSF for MZSV's instead of the CSF for MZV's.

4.4. Algebraic formulations of the CSF and Derivation relation

Let "^{*}" be an action of \mathfrak{H} on $\mathfrak{H}^{\otimes (n+1)}$ defined by

$$
a \cdot (w_1 \otimes \cdots \otimes w_{n+1}) = aw_1 \otimes w_2 \otimes \cdots \otimes w_{n+1},
$$

\n
$$
(w_1 \otimes \cdots \otimes w_{n+1}) \cdot b = w_1 \otimes \cdots \otimes w_n \otimes w_{n+1}b.
$$

The action "∙" gives a *§*1-bimodule structure on $\mathfrak{H}^{\otimes (n+1)}$ called the outer bimodule structure. For $n \geqslant 1,$ we define the $\overline{\mathbb{Q}}$ -linear map $\mathcal{D}_n : \mathfrak{H} \to \mathfrak{H}^{\otimes (n+1)}$ by

$$
\mathcal{D}_n(x) = x \otimes z^{\otimes (n-1)} \otimes y, \qquad \mathcal{D}_n(y) = -(x \otimes z^{\otimes (n-1)} \otimes y)
$$

and

$$
\mathcal{D}_n\bigl(ww'\bigr)=\mathcal{D}_n(w)\cdot w'+w\cdot\mathcal{D}_n\bigl(w'\bigr)
$$

for any *w*, $w' \in \mathfrak{H}$. We find that the map \mathcal{D}_n is well defined. Let $\partial_n = M_n \mathcal{D}_n$. Then, we find that this *∂ⁿ* gives the derivation operator introduced in Ihara, Kaneko and Zagier [6], which induces Derivation relation for MZV's.

According to the above settings, we find that there is a nice resemblance between algebraic formulations of CSF and Derivation relation. The images of x and y of the operator \mathcal{D}_n coincide with those of the operator C_n . The only difference between D_n and C_n is the product rule appearing in their Leibniz rules.

Acknowledgments

The authors thank to Professor Masanobu Kaneko and Dr. Shingo Saito for many helpful comments and advice.

References

- [1] M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc. 360 (11) (2008) 5711–5769.
- [2] V.G. Drinfel'd, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal*(*Q*/*Q*)*, Leningrad Math. J. 2 (4) (1991) 829–860.
- [3] M. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997) 477–495.
- [4] M. Hoffman, Y. Ohno, Relations of multiple zeta values and their algebraic expression, J. Algebra 262 (2003) 332–347.
- [5] K. Ihara, J. Kajikawa, Y. Ohno, J. Okuda, MZV vs. MZSV, preprint.
- [6] K. Ihara, M. Kaneko, D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math. 142 (2) (2006) 307–338.
- [7] G. Kawashima, A class of relations among multiple zeta values, J. Number Theory 129 (4) (2009) 755–788.
- [8] G. Kawashima, T. Tanaka, Newton series and extended derivation relations for multiple *L*-values, arXiv:0801.3062.
- [9] Y. Ohno, N. Wakabayashi, Cyclic sum of multiple zeta values, Acta Arith. 123 (2006) 289–295.
- [10] R.P. Stanley, Enumerative Combinatorics, vol. 1, Cambridge Stud. Adv. Math., vol. 49, Cambridge University Press, Cambridge, 1997.
- [11] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Stud. Adv. Math., vol. 62, Cambridge University Press, Cambridge, 1999.
- [12] T. Tanaka, On the quasi-derivation relation for multiple zeta values, J. Number Theory 129 (2009) 2021–2034.