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Abstract 

The term scale has been used in many ways. In continuous landscape analysis, the spatial scale consists of two 
components; grain and extent. Most previous studies on the scale issue were conducted in limited range or on one 
component of the scale. To further step up, we compared theory of scaling by applying indices developed for 
terrestrial static landscape to underwater vegetation. The result suggested that changing grain shows power-low 
scaling relationships for the most of landscape indices. Changing extent increased variation of above scaling 
relationships. We conclude that changing both components reveal the possibility to extrapolate these indices into 
different scales or places. For the conservation of ecosystems, recognition of scaling relationships is necessary to 
build more spatially explicit planning and understanding of phenomenon. 
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1. Introduction 

Seagrass is a marine flowering plant which is known to have important functions such as high primary 
production, water clarification by nutrient absorption, sediment stabilization, and it provides a nursery 
area for commercially important fishes [1]. However, seagrass landscapes (so called seagrass beds) are 
decreasing world widely because of human induced effects [2]. Effective management strategies and 
detection of driving forces of the vegetation dynamics are required for their conservation. For this 
purpose, researches considering large spatial area are necessary [3]. By remote sensing approach, we 
expect to find appropriate indices to measure the state of seagrass dynamics because the spatial pattern is 
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the consequence of interaction of local processes affecting those vegetation dynamics [4]. For example, 
Sleeman et al. [5] quantified spatial patterns of seagrass bed fragmentation by comparison of 23 
landscape indices (measurement of landscape structures) which evaluating the patch structures such as 
area, density, area/perimeter ratio and distance of patches. They detected 8 indices as a representative of 
fragmentation and they also calculated single axis showing combination of these indices.  To apply this 
approach to the other seagrass vegetation, we need to clarify the generality of these indices across 
different study area and different resolutions.  

Inappropriate extrapolation from one to another scale fails to capture the true process or accurate 
distribution which is known as spatial transmutation [6]. This causes problems about selecting sampling 
area and resolution for monitoring and management plans. However, basic rules of spatial scaling 
(changing scale) were not clearly understood for empirical marine ecosystems [7,8]. The spatial scale is 
separated into grain (sampling resolution) and extent (range of study area) for the analysis of continuous 
landscape. Most previous studies on seagrass landscape considered only one of the two components, and 
over narrow range of variation [9]. For example, if we could not recognize increase of new germination in 
low resolution satellite image (large grain size) the seagrass possibly increase unexpectedly sudden over 
wide range of study area (large extent). In case of the situation which we record the rapid elongation of 
rhizome in a ground survey of seagrass patches in local area (narrow extent and small grain size), it does 
not always expect rapid increase in all over the area because of spatial heterogeneity. In addition, higher 
resolution (small grain size) is not always possible to treat in raw values because of a limitation of 
machine power and research budged. These make it difficult to carry out analyses of spatial dynamics 
over large extent with fine grain size. Toward the better understanding of scaling, more researches 
considering both extent and grain simultaneously over wider ranges are necessary. In case of terrestrial 
vegetation, there is an empirically derived theory which explains how landscape indices vary with 
changes in both components of the scale [10]. In summary, Wu mentioned that the most indices show 
linearity and follow the power-low and differing extent shows less robust patterns. It was not clear 
whether this theory also apply to aquatic vegetation, especially about the indices which previously 
pointed out as a representative of seagrass bed fragmentation. To answer this question, we first calculate 
grain and extent dependency of landscape indices. We then discussed about comparison of the scaling 
pattern of landscape indices between seagrass beds and those in theory. We also discuss the cause of 
variation of this pattern based on the known temporal dynamics and driving forces.  

2. Methods 

The analysis was conducted in the Futtsu Tidal Flat, Tokyo Bay which holding the largest seagrass bed 
in the bay which remaining after rapid land reclamation era from 1960’s to 70’s (Fig. 1). This seagrass 
bed is located at the north of the sandspit structure at the mouth of the inner part of the bay and known to 
show different dynamics by the location [9]. The bed consists of dominance species Zostera marina L and 
two other spices which were not dominate in our quadrats.  

For the extraction of the seagrass distribution we used aerial photographs taken during the winter for 
the purpose of location survey. Supervised classification was applied to extract the vegetation in 0.5m 
resolution. Extracted dataset was resampled into different grain sizes from 1 m to 128 m resolution 
directly from original dataset [8]. Four 400 m quadrats (E, F, M, W in Fig. 1) were extracted from the 
above dataset to represent different extent size. The effect of extent was examined at two scales. One is 
the each 400m quadrates and the other is all four quadrates averaged as a large extent analysis.  

Fragstats [11] was used to calculate a total of 22 landscape indices (Table 1). We chose 12 indices 
which basically had strong linear scaling relationships based on Wu [10], Nine of these were picked up as 
indices showing power-low scaling. Among these indices LPI, Area_MN, Area_SD, Area_CV, 
Shape_AM and Frac_AM were not robustly follow this pattern all the time compares to others.  8 indices 
(3 overlapped) which represent fragmentation were also chosen from Sleeman et al. [5]. 2 other indices 
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which directly represent fragmentation and dynamics of the bed was also calculated (CONTIG and 
Veg_size_change).  We compared scaling characteristics of each index in three different phases of 
seagrass dynamics ( the decrease phase from 1992 to 1993, no-change in 2000, the increase phase from 
2006 to 2007; Fig. 2). Best fit model was selected among linear, logarithm, power-low and exponential 
scaling relationships by R square value of minimum least square method.  We then compared the effect of 
extent for each index using summed value of all quadrats.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Location of Futtsu Tidal Flat in Tokyo Bay and quadrats E, F, M, W placed on the aerial photograph.  

 
 
 
 
 
 
 
 

 

Fig. 1. Annual vegetation dynamics in 1 m and 64 m resolutions at the quadrats E F M W and all area (left to right). (see Yamakita 
and Nakaoka 2009 for more details).  
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Table 1. Landscape indices and those characteristics used for the model. Characteristics of each index based on McGarigal et al. 
(2002)  and summary of the selected models by previous researches are also listed. 

Abbreviation Name Characteristics Wu 2004 
Slee
et al
2005

AREA_CV Patch Size Coefficient of 
Variation (CV) 

Coefficient of variation (standard deviation divided by the average) 
of size of patches.  Power  

AREA_MN Mean Patch Size Average size of patches. Power  

AREA_SD Patch Size Standard 
Deviation (SD) Standard deviation of patch sizes. Linear  

FRAC_AM Area-Weighted Mean 
Fractal Dimension 

Representing shape complexity which is calculated by 2 times the 
logarithm of patch perimeter divided by the logarithm of patch area. Power  

LPI Largest Patch Index Ratio of maximum size of patch and total study area. Log.  

LSI Landscape Shape Index Representative of aggregation. This is calculated by ratio between 
total length of perimeter and minimum length of perimeter. Power  

PD Patch Density Number of patches divided by the area. Power  

SHAPE_AM Area-Weighted Mean 
Shape Index 

The ratio between perimeter of a patch and the most simple shape 
patch with same area as a correction of perimeter-area ratio. Power  

TE Total Edge Absolute values of total length of patch perimeter. Power  
Veg_Size Vegetation size Total area of the vegetation. na Sele

ED Edge Density TE divided by total area and multiplied by 10,000 to be per ha 
value. Power Sele

NP Number of Patches Counting number of patches. Power Sele

 DIVISION  Landscape division 
Cumulative patch area distribution calculated by 1 minus the sum 
of patch area divided by total landscape area, quantity squared, 
summed across all patches of the corresponding patch type. 

 Sele

 ENN_CV 
CV of Euclidean Nearest-
Neighbor Distance of 
each patch 

CV of distance to the nearest neighbouring patch. The minimum 
value depends on cell size.  Sele

 GYRATE_AM Area-weighted Mean 
radius of gyration See GYRATE_MN.  Sele

 GYRATE_MN  Mean radius of gyration 
Mean distance of each cell within each patch and the patch centroid 
which represent patch extent (effected by both patch size and 
patch compaction). 

 Sele

 PARA_AM  Area-weighted  Mean 
perimeter  to area ratio 

Area waited mean of the perimeter/ area ratio as a simple measure 
of shape complexity.  Sele

CONTIG_MN Contiguity of patches Used to assess spatial connectedness, or contiguity.   

Veg_Size_change 
Changes of the size of 
vegetation to the 
following year 

Difference of the absolute values from one year to the next year.   

3. Results 

The scaling analysis of seagrass landscape selected power-low scaling functions for most landscape 
indices when we changed the grain size (Table 2; Fig. 3).  LPI, a part of DIVISION and 
Veg_Size_change shown linear relationships among the landscape indices used for this analysis. Fitness 
of the models was differed in some years and quadrats (Table 3).  Best fit model for AREA_MN, 
PARA_CV and Veg_Size_change was different in some time. The R square values were over 0.9 in most 
indices but it was low for some indices such as CONTIG_MN, LPI, PARA_CV, Veg_size, and 
Veg_Size_change (Table 3. Mean).  

Variations of these variables were greater at the larger extent in general (Table 3. SD of all years). 
Amount of the variation was highly depending on years and sites. Especially in AREA_SD, LPI, 
Veg_size, DIVISION, ENN_CV, GYRATE_AM, CONTIG_MN, Veg_Size_change showed high 
variance caused by large annual fluctuation of the model fitness because of a low fitness in some quadrats.  
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Fig. 3. Examples of scatter plot of landscape indices by different grain size of data at four quadrats (E to W). Lines are smoothing of 
each plot of average value and error bars showing standard deviation derived from the data of different years. 

Table 2. Number of selected scaling relationships in each landscape index. Linear, logarithmic, power-low and exponential 
relationships was used for the model.   

Types of scaling relationships 

Linear Logarithmic Power-low Exponential

AREA_CV 0 0 11 0

AREA_MN 4 2 13 0

AREA_SD 0 1 10 0

FRAC_AM 0 0 19 0

LPI 10 2 7 0

LSI 0 0 19 0

PD 0 0 19 0

SHAPE_AM 0 0 19 0

TE 0 0 19 0

Veg_Size 0 5 14 0

ED 0 0 19 0

NP 0 0 19 0

 DIVISION 8 4 7 0

 ENN_CV 2 3 1 0

 GYRATE_AM 2 7 10 0

 GYRATE_MN 0 2 17 0

 PARA_AM 0 0 19 0

CONTIG_MN 1 1 15 0

Veg_Size_change 6 2 4 0
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Table 3. Effect of the extent on the scaling relationships. The mean and standard deviation of R square values of fitted models in 
each quadrate are shown.  

 1992  1993  2000  2006  2007  ALL years 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

AREA_CV 0.97  0.01  0.96   0.99   0.98  0.01  0.95  0.06  0.97  0.03  

AREA_MN 0.87  0.10  0.89  0.01  0.95  0.06  0.93  0.01  0.96  0.02  0.92  0.06  

AREA_SD 0.92  0.02  0.38   0.97   0.89  0.10  0.92  0.07  0.87  0.17  

FRAC_AM 0.93  0.03  0.97  0.02  0.95  0.04  0.93  0.02  0.90  0.08  0.94  0.05  

LPI 0.50  0.36  0.32  0.06  0.82  0.10  0.87  0.12  0.45  0.39  0.61  0.31  

LSI 0.90  0.08  0.92  0.02  0.96  0.06  0.93  0.01  0.95  0.05  0.93  0.05  

PD 0.88  0.10  0.88  0.00  0.95  0.07  0.93  0.01  0.95  0.05  0.92  0.06  

SHAPE_AM 0.91  0.02  0.95  0.01  0.94  0.04  0.91  0.03  0.87  0.07  0.92  0.05  

TE 0.90  0.07  0.91  0.02  0.95  0.06  0.93  0.02  0.95  0.05  0.93  0.05  

Veg_Size 0.61  0.15  0.58  0.24  0.89  0.11  0.43  0.36  0.91  0.07  0.69  0.27  

ED 0.89  0.08  0.90  0.02  0.95  0.07  0.92  0.02  0.94  0.06  0.92  0.05  

NP 0.88  0.10  0.88  0.00  0.96  0.06  0.93  0.01  0.95  0.05  0.92  0.06  

 DIVISION 0.50  0.34  0.59  0.28  0.86  0.07  0.89  0.09  0.49  0.38  0.67  0.30  

 ENN_CV 0.41     0.59   0.61   0.89  0.05  0.71  0.21  

 GYRATE_AM 0.66  0.18  0.36  0.23  0.33  0.36  0.55  0.27  0.44  0.41  0.47  0.30  

 GYRATE_MN 0.91  0.09  0.92  0.05  0.95  0.05  0.94  0.01  0.96  0.03  0.94  0.05  

 PARA_AM 0.88  0.08  0.93  0.01  0.95  0.06  0.92  0.01  0.95  0.05  0.93  0.05  

CONTIG_MN 0.54  0.45  0.70  0.17  0.52  0.17  0.64  0.13  0.41  0.32  0.56  0.27  

Veg_Size_change 0.41  0.21  0.43  0.17  0.59  0.25  0.75  0.09    0.56  0.21  

4. Discussion 

Most of the indices had linearity and followed power-low function as expected from theory when we 
changed the grain size of the analysis. Landscape metrics with this simple scaling relationship enable us 
to extrapolate use of these landscape indices as representative of fragmentation across wide spatial scales. 
Revealing scaling relationships between broad spatial pattern and local processes is also promising to 
detect the spatial range of dominant driving forces of the vegetation dynamics [4].  

Compare to changing grain, changing extent showed unpredictable scaling pattern, which agreed with 
the theory by Wu [10]. The variation of study area in the large extent seriously affected this result. The 
reason of this variance can be either of two types of spatial dependency on the location. One is the 
different physical setup among these quadrats, the other is the inherent nonlinear scaling reaction of 
indices refracting the different reaction of the vegetation to the same driving forces. The first reason is not 
likely during our study term because of similar types of temporal changes are observed in our quadrats 
(Fig. 2). Because the most indices which have higher variance seem to be related with patch 
fragmentation/connectivity, latter reason will be the most appropriate. Even if there is no major difference 
in the physical disturbance itself, the local reaction of vegetation can be different depending on the status 
of vegetation. Although there is a similar trend of vegetation change in different quadrats, the absolute 
values of vegetation are totally different depending on the locations (Fig. 2). This can makes different 
pattern of fragmentation by different locations. For example, in case of dense distribution of the 
vegetation, intermidiate physical disturbance does not affect to the seagrass landscape. In contrast, in case 
of sparse vegetation, the disturbance can change the vegetation patterns. This type of different dynamics 
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caused by different status of vegetation has been discussed to be discipline of the complex ecosystem and 
detected as neighboring effect of the vegetation [4,8].  Asynchronous dynamics between local quadrats in 
long-term dynamics of the seagrass [9] is rarely a single effect of physical setup itself but possibly caused 
by interaction of direct physical disturbance and local reaction of the vegetation.   

We conclude that changing both components of scale revealed the possibility of extrapolation of 
landscape indices. This is especially true for changing grain size. Elucidating the cause of the variance 
component of scaling with different extent remains as important task. However, the variance of extent 
gives us an insight about the importance of plant-physical interaction to the vegetation dynamics not just 
from the viewpoint of the vegetation size but from the viewpoint of the landscape structure. This will give 
some answers to solve the problem that where to plan conservation areas or monitoring sites by using 
these indices. Revealing the cause of extent variance is also practically important to detect the driving 
forces of vegetation dynamics. For the conservation of ecosystems, both the recognition of scaling 
relationships and the use of scaling characteristics as a representative of the status of vegetation are 
encouraged to develop more relevant spatially explicit planning and to enhance understanding of 
phenomenon. 
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