

Topology and its Applications 123 (2002) 87-90

www.elsevier.com/locate/topol

On compact fibered spaces $\stackrel{\text{\tiny{thema}}}{\to}$

J. Gerlits^{a,*}, Z. Szentmiklóssy^b

 ^a Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1364 Budapest, Hungary
^b ELTE, Department of Analysis, Kecskeméti u. 10–12, H-1053 Budapest, Hungary

Received 3 March 1999; received in revised form 19 April 1999

Abstract

A space X is called *fibered* if there exists a countable family γ of sets closed in X such that $\gamma(x) = \bigcap \{F: x \in F \in \gamma\}$ is metrizable for each $x \in X$. In the paper we answer two problems of Tkachuk raised in [Topology Proc. 19 (1994) 321–334] about compact fibered spaces. © 2002 Elsevier Science B.V. All rights reserved.

AMS classification: 54C99; 54E35; 54D55

Keywords: Fibered; Metrizably fibered; Sequential space; Helly space; Galvin-Telgarsky game

A space is *metrizably fibered* if it can be mapped onto a separable metrizable space with metrizable fibers (i.e., the inverse image of any point is metrizable). See Tkachuk's paper [3] for a proof that a Tychonoff space X is metrizably fibered iff there is a countable family γ of zero sets in X such that

 $\gamma(x) = \bigcap \{F: x \in F \in \gamma\}$

is metrizable for each point $x \in X$.

This characterization justifies the following definition: a space X is said to be *fibered* if there is a countable family of closed sets γ in X such that

 $\gamma(x) = \bigcap \{F: x \in F \in \gamma\}$

is metrizable for each point $x \in X$. Our terminology differs from that of Tkachuk, he calls these spaces weakly metrizably fibered. The same class of spaces was defined also by Tkachenko [2]; he called these spaces metrizable-approximable.

^a Research partially supported by Hungarian National Foundation for Scientific Research grant OTKA 25745. ^{*} Corresponding author.

E-mail addresses: gerlits@renyi.hu (J. Gerlits), zoli@math-inst.hu (Z. Szentmiklóssy).

^{0166-8641/02/}\$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0166-8641(01)00172-9

In his paper [3] Tkachuk proves that a compact fibered space has countable tightness and shows by an example that it is not necessarily Frechet. Hence he raises the following natural question (Problem 3.7): is a compact fibered space sequential? We show that the answer is yes, but first we give the following result.

Lemma 1. A countably compact fibered space is compact.

Proof. Let *X* be a countably compact fibered space, γ be a countable family of closed subsets with $\gamma(x) = \bigcap \{F : x \in F \in \gamma\}$ metrizable for $x \in X$ and choose an open cover \mathcal{G} of the space *X*. For each $x \in X$ the subspace $\gamma(x)$ is metrizable and countably compact, hence it is compact and so there exists a finite $\mathcal{G}_x \subset \mathcal{G}$ covering $\gamma(x)$. By countable compactness, there exists a finite $\gamma_x \subset \gamma$ with $x \in \bigcap \gamma_x \subset \bigcup \mathcal{G}_x$.

Hence the family of those finite intersections of members of γ which can be covered with finitely many members of \mathcal{G} , form a cover of *X*. As γ has only countably many finite subsets, *X* can be covered with a countable subfamily of \mathcal{G} . The countable compactness of *X* now implies that there is also a finite subcover of \mathcal{G} . \Box

The following lemma is taken from [3], it is included here only to make the paper selfcontained.

Lemma 2 (V. Tkachuk). Let X be a fibered compact Hausdorff space. Then X has a point of countable character.

Proof. Let $\gamma = \{F_n : n \in \omega\}$ be a fibering of *X*. It is easy to choose a sequence of nonempty open sets $\{U_n : n \in \omega\}$ with $\overline{U_{n+1}} \subset U_n$ such that $U_n \subset F_n$ or $U_n \cap F_n = \emptyset$ for $n \in \omega$. Let $H = \bigcap \{U_n : n \in \omega\}$. Then *H* is a non-empty G_δ subset of *X* and *H* is metrizable, because $H \subset \gamma(x)$ for any $x \in H$, hence any point of *H* is a G_δ -point in *X*. \Box

Proposition 1. A compact Hausdorff fibered space X is sequential.

Proof. Let $H \subset X$ be sequentially closed; we have to prove that it is also closed in *X*. We can suppose that *H* is not countably compact because otherwise it would be compact by Lemma 1. Choose a countably infinite subset $D \subset H$ closed discrete in *H* and let *F* be the set of all cluster points of *D* in *X*. Then *F* is nonempty and there is a point $x \in F$ which is a G_{δ} -point in *F* by Lemma 2. But *F* is also a G_{δ} -set in $\overline{D} = D \cup F$ hence the point *x* is a G_{δ} -point in the compact set \overline{D} . Consequently *x* is a point of countable character in \overline{D} and so there is a subsequence of *D* converging to the point $x \notin H$, contradicting that *H* is sequentially closed. \Box

Another problem mentioned in [3, Problem 3.8]: Is the Helly space (i.e., the subspace of I^{I} with the topology of pointwise convergence which consists of the monotone functions) (metrizably) fibered? The answer is affirmative.

Proposition 2. The Helly space H is metrizably fibered.

Proof. We prove that *H* can be mapped into the separable metrizable space I^{ω} in such a way that the inverse image of any point is metrizable.

Let Q denote the set of the rationals in I and let π be the projection of H onto I^Q . The projection $\pi(f)$ of a function $f \in I^I$ is just the restriction of the function f to Q. Observe now that for any monotone function $g \in I^Q$, for all but countably many $x \in I$ the limits

$$g(x-0) = \lim_{\substack{q \to x-0 \\ q \in Q}} g(q),$$

$$g(x+0) = \lim_{\substack{q \to x+0 \\ q \in Q}} g(q)$$

are equal. If now $S = \{x \in I: g(x-0) \neq g(x+0)\}$ and $I_x = [g(x-0), g(x+0)]$ for $x \in S$ then

$$\pi^{-1}(g) = \prod_{x \in S} I_x \times \prod_{x \in I-S} \{g(x)\}$$

is homeomorphic to the separable metrizable space I^S . \Box

The last theorem of the paper is connected with the Galvin–Telgarsky game [1]. Let X be a topological space and consider the following two-person game on X: White (**W**) chooses a point $x_0 \in X$ then Black (**B**) selects an open set G_0 with $x_0 \in G_0$. In the *n*th turn of the play **W** chooses a point $x_n \in X$ and **B** answers with a neighbourhood G_n of x_n and so on. **W** wins if the family $\{G_n\}$ is a cover of X, otherwise **B** wins. Although originally only the ω -length game was considered, we can continue it through the ordinal numbers: the game ends if the selected open sets form a cover of the space. Call a space X winnable for **W** *in countably many steps* if **W** has a strategy such that any play ends at some countable ordinal. Observe that a hereditarily Lindelöf-space is winnable in countably many steps: if **W** always chooses a new point (i.e., a not yet covered one) then the points chosen form a right separated subspace so it has to be countable. As far as we know, the following problem is open:

Problem 1. Is every compact first countable space winnable in countably many steps?

Proposition 3. Every compact fibered space is winnable for W in countably many steps.

Proof. We prove that if X is compact, γ is a countable system of closed sets in X such that $\gamma(x) = \bigcap \{F: x \in F \in \gamma\}$ is winnable for W for any $x \in X$ then also X is winnable for W.

Take any $x_0 \in X$ and win the subspace $\gamma(x_0)$ in countably many steps. Let the open set G_0 be the union of the answers of **B**. In the α th turn choose a point x_{α} not covered by the previous G_{ξ} 's and let **W** win the subspace $\gamma(x_{\alpha})$ in countably many steps. We have to prove that the play ends at some countable ordinal.

As $\gamma(x_{\xi}) \subset G_{\xi}$ for each ξ considered, the compactness of X implies that there exists a set H_{ξ} which is a finite intersection of members of γ and $\gamma(x_{\xi}) \subset H_{\xi} \subset G_{\xi}$. Note that these H_{ξ} 's are all different: if $\xi < \eta$ then $x_{\eta} \notin G_{\xi}$ hence $x_{\eta} \in H_{\eta} - H_{\xi}$. But γ is countable so it has only countably many finite subsets. \Box

References

- [1] F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. 26 (1978) 445-449.
- [2] M.G. Tkachenko, P-approximable compact spaces, Comment. Math. Univ. Carolin. 32 (1991) 583–595.
- [3] V.V. Tkachuk, A glance at compact spaces which map "nicely" onto the metrizable ones, Topology Proc. 19 (1994) 321–334.