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Abstract

The Ras/Raf/MEK/ERK signaling cascade that integrates an extreme variety of extracellular stimuli into key biological responses controlling
cell proliferation, differentiation or death is one of the most studied intracellular pathways. Here we present some evidences that have been
accumulated over the last 15 years proving the requirement of ERK in the control of cell proliferation. In this review we focus (i) on the spatio-
temporal control of ERK signaling, (ii) on the key cellular components linking extracellular signals to the induction and activation of cell cycle
events controlling G1 to S-phase transition and (iii) on the role of ERK in the growth factor-independent G2/M phase of the cell cycle. As ERK
pathway is often co-activated with the PI3 kinase signaling, we highlight some of the key points of convergence leading to a full activation of
mTOR via ERK and AKT synergies. Finally, ERK and AKT targets being constitutively activated in so many human cancers, we briefly touched

the cure issue of using more specific drugs in rationally selected cancer patients.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Cells receive constantly clues from their environments via
activation of surface receptors and extra-cellular matrix.
Intracellularly, cells need to integrate the extent and timing of
diverse signaling pathways to trigger an appropriate biological
response. The Ras/Raf/MEK/ERK signaling cascade is one of
the key signaling pathways that integrates extracellular clues.
ERK1 and ERK2 isoforms are highly conserved serine/threonine
kinases activated via phosphorylation on both threonine and
tyrosine residues within the TEY sequence in their activation
loop by the dual specificity kinase MEK. Activated ERK phos-
phorylates cytoplasmic, membranous and nuclear substrates,
many of which are protein kinases such as RSK whose activity
prolong and diversify the signaling cascade. However, in the Raf
branch of Ras signaling, ERK is a central and key player for
several reasons. Upstream of MEK, Raf can activate very few
partners other than MEK, and no other substrates for MEK than
ERK have been found so far. Downstream of ERK, signaling
cascades continue to flow, but no single downstream kinase can
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activate the wide variety of ERK substrates. Furthermore,
accumulating evidences suggests that subtle differences in the
spatio-temporal activation of ERK generate variations in
signaling outputs that regulate biological responses. Moreover,
crosstalk between ERK and other pathways has been shown to
be crucial for determining cell fate decisions.

This review will first recapitulate the array of evidences that
led to establish that ERK activation is absolutely indispensable
for cell proliferation to occur in mature differentiated eukaryotic
cells. Then we will study the cascades of events driven by ERK
activation that lead cells to proceed into proliferation, review the
necessary interplay between the ERK and the PI3K/AKT
pathways for normal proliferation to occur, and finally assess
the difficulties encountered when blocking MEK/ERK activa-
tion to fight cancer.

2. ERK activation is required for cell proliferation to
proceed: array of evidences

2.1. Cell proliferation needs long term but controlled ERK
activation

Several years prior to ERK identification in 1991 [1], the
close correlation between mitogen action and the increased
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phosphorylation of two proteins of 41 and 43 kDa on
phosphotyrosine, phosphothreonine and/or phosphoserine was
revealed by two-dimensional polyacrylamide-gel electropho-
resis [2,3]. Because of the sustained phosphorylation during
the critical part of GO/G1 phase of the cell cycle, these two
proteins known as p41 and p43 were suspected of playing a
key role in cell cycle entry. Just after the discovery of ERK it
was demonstrated in fibroblasts that ERK activation occurred
in two phases, an initial rapid phase lasting about half to 1
h in response to many stimuli, and a late phase lasting several
hours that is induced by the persistent presence of mitogenic
agonists. For example, the mitogenic agonist alpha-thrombin
induces a biphasic activation of ERK in CCL39 cells,
addition of a thrombin antagonist after 30 s allowed the
first phase of ERK activation while the late phase of
activation was abolished and DNA synthesis prevented [4]
Furthermore, serotonin, which is not a mitogen by its own,
had no effect on late phase ERK activity, but synergized with
basic fibroblast growth factor to induce late ERK activation
and DNA synthesis. Many observations converged, letting to
propose that sustained ERK activation is an obligatory event
for growth factor-induced cell cycle progression [4—8§]
(reviewed by [9]). Recent evidences indicate that ERK
activation throughout G1 is required for entry in S phase
[10,11].

However experiments in PC12 pheochromocytomas cells
indicate that the critical role of prolonged versus transient
activation of ERK to trigger biological outcome maybe dictated
by cell fate. Stimulation of PC12 cells by nerve growth factor
(NGF) leads to growth arrest and neuronal differentiation,
whereas insulin or epidermal growth factor (EGF) stimulates
cell proliferation. Stimulation with NGF leads to the sustained
activation of ERK, whereas insulin or epidermal growth factor
induces the transient activation of ERK. Temporal control of
ERK is the key modulator for inducing proliferation versus
differentiation in PC12 cells, since overexpression of the insulin
or the EGF receptor [12,13] led to prolonged ERK activation
and differentiation.

Why would late phase ERK activation correlate with
proliferation in fibroblasts and cell differentiation in PC12
cells remains to be understood. One hypothesis resides in the
possibility that the fate of fibroblasts is to proliferate whereas
the fate of PC12 cells is to differentiate, thus the prolonged
activation of ERK may be necessary for the cell fate to be
accomplished. As will be detailed later, long-term ERK
activation can promote accumulation of p2lcipl an inhibitor
or cell cycle entry. Cell types may need different threshold of
ERK activity to tip the balance between proliferation and
growth arrest, in this case, PC12 would be more sensitive to the
duration of ERK activation than fibroblasts. In neuronal and
kidney cells, complete deregulation of ERK activity leads to
ERK dependent cell death [14,15]. Similarly, many cytotoxic
drugs are known to induce a prolonged activation of ERK, that
is required for promoting apoptosis [16—19]. These findings
illustrate the need for a potent control of ERK temporal
activation which is achieved by a sharp temporal induction of
specific ERK phosphatases [20].

2.2. Blunting mitogen-induced ERK activation blocks cell
proliferation

The first indication that ERK activation was required for
fibroblast cell proliferation came from the transient expression
of the entire antisense mRNA for ERK1 or non-phosphoryla-
table mutant of ERK1 (T192AY194F) into CCI39 Chinese
hamster fibroblasts [21]. Both approaches strongly inhibited
endogenous ERK1/ERK?2 activation, which led to diminished
cell growth. The very elevated transient expression of a full-
length antisense mRNA or of the dominant-negative ERK1
were sufficient to block the activation of the other ERK isoform,
and thus could also block ERKS5 activation (not known at that
time), however co-expression of wild-type-ERK1 reversed the
inhibition, establishing the requirement of ERK1 for cell cycle
entry. Later the discovery of specific MEK inhibitors confirmed
the implication of MEK/ERK activation in the control of cell
proliferation. First PD98059 inhibited stimulation of cell
growth and reversed the phenotype of ras-transformed BALB
3T3 mouse fibroblasts and rat kidney cells [22]. However, it
was later discovered that PD98059 was also inhibiting MEKS,
the activator of ERKS [23]. The discovery of inhibitors that
discriminate between MEK1/2 and MEKS5 [24] led to more
conclusive experiments.

Indeed growth factor-stimulated ERK activity was com-
pletely inhibited by concentrations of PD184352 (CI-1040)
below 1 puM that do not affect ERKS activation [24].
Furthermore, serum-stimulated cyclin D1 expression and
DNA synthesis were inhibited by low doses of PD184352,
which abolished ERK activity but had no effect on ERKS [25].
These results indicate that the antiproliferative effect of
PD184352 is due to inhibition of the classical ERK pathway
and does not require inhibition of the ERKS5 pathway. Other
kinases are likely not to be inhibited due to the uncommonly
high specificity of this series of MEK inhibitors [26].

Further an independent proof that ERK activation is
absolutely required for cell proliferation and differentiation
came from gene targeted disruption of both ERK1 and ERK2 in
thymocytes. To determine the roles of ERK in thymocytes
proliferation and differentiation, conditional mice for erk2 were
crossed with mice harboring a germline deficiency in erkl [27].
In thymocytes development the transition from DN3 stage to the
DN4 stage requires six to eight rounds of cell division. After
conditional knock-out of erk2 gene, at first sight thymocytes
lacking erkl and erk2 genes did not display any decrease in
DN4 cells. However, because erk2 was conditionally deleted,
there are cells that escape the recombination event. Indeed, it
was found that only the DN4 cells expressing ERK2 continue to
divide indicating that in the absence of ERK 1, hence there is a
selection for the retention of ERK2 for proliferation to proceed
[27].

2.3. Nuclear translocation of ERK is necessary for cell cycle
entry

Interestingly, not only ERK activity needs to be elevated
persistently during the G1 phase of the cell cycle to proceed to
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S-phase entry, ERK must be able to translocate to the nucleus.
Indeed, mitogenic stimulation triggers the translocation of
ERK from the cytoplasm to the nucleus, whereas all the
upstream activators of the module remain cytosolic. The
expression of a catalytically inactive form of cytoplasmic
MAP kinase phosphatase (MKP-3/DUSP6) [28] was found to
be sufficient to sequester ERK in the cytoplasm. Sequestering
ERK in the cytoplasm did not alter its ability to phosphorylate
cytoplasmic substrates but strongly inhibited Elk1-dependent
gene transcription and the ability of cells to reinitiate DNA
replication in response to growth factors. This observation
indicated that nuclear substrates, most likely ERK-regulated
transcription factors, were required for quiescent cells to enter
the cell cycle.

Natural biological regulation of ERK nuclear localization
has been demonstrated to regulate cell proliferation. For
example, the cytoplasmic PEA15 protein that associates
tightly with ERK is actively exported out of the nucleus via
a nuclear export sequence [29]. Increased PEA15 expression
impedes ERK entry in the nucleus, ERK-dependent transcrip-
tional regulation and cell proliferation. Indeed over-activation
of AKT has been shown to prevent the nuclear translocation
of ERK by stabilizing endogenous PEA1S5, resulting in cell
proliferation restriction [30]. This is one example of the many
cross-talk regulations between the ERK and Akt signaling
pathways; here a balanced activation of Akt is required to
avoid blocking ERK nuclear translocation, and thus blocking
cell proliferation.

3. Targets of ERK implicated in cell proliferation

3.1. ERK regulates the production of building blocks for cell
growth

Prior to engage into division, cells must insure that the
metabolites required for building new proteins, DNA, ribosomal
RNA and membranes are present or that the cell will be able to
synthesize them de novo. It appears that the activity of many
regulators of the production of metabolites is orchestrated by
ERK activation.

3.1.1. Synthesis of pyrimidine

In order to build more DNA and rRNA, ERK activation
instructs the cell to produce more pyrimidine nucleotides. The
rate-limiting step of the de novo synthesis of pyrimidine
nucleotides pathway is catalysed by carbamoyl phosphate
synthetase (CPS II), part of the multifunctional enzyme CAD.
ERK increases the activity of CAD by phosphorylating
threonine 456 of CPS II which induces allosteric modifications
[31]. Interestingly, when CAD is actively located in the nucleus,
it is more phosphorylated on threonine 456 than when it is
trapped in the cytosol [32]. Trapping CAD in the nucleus had a
minimal effect on pyrimidine metabolism. In contrast, when
CAD was excluded from the nucleus, the rate of pyrimidine
biosynthesis, the nucleotide pools, and the growth rate were
reduced by 21, 36, and 60%, respectively. ERK is located in the
nucleus of fibroblasts only upon long lasting mitogenic

stimulation [33], hence the prolonged increase of pyrimidine
nucleotide synthesis may occur only during the long lasting
second phase of ERK activation, in response to mitogenic
signaling.

3.1.2. Chromatin remodeling

Transcriptional activation is not linked solely to increase
activation of transcription factors; concomitant regulation of
chromatin structure is also required. To constitute chromatin,
DNA is wrapped by proteins, including histones and high
mobility group proteins (HMG-proteins).

ERK activation leads to increase stimulation of its substrates
MSK1 and MSK2 that in turn phosphorylate histone H3 and
HMG-14, leading to chromatin remodeling [34]. In mice
lacking MSK1 and MSK2, histone H3 and HMG-14 phosphor-
ylation is severely reduced or abolished, leading to reduced
induction of immediate early gene transcription.

3.1.3. Ribosome synthesis

Cell proliferation requires more synthesis of ribosomes to
meet the increased demand of protein synthesis. Transcription
of the ribosomal RNA genes by RNA polymerase I is rapidly
activated upon ERK stimulation. This activation is mediated by
direct phosphorylation of the HMG box DNA binding domains
of the architectural transcription factor UBF. In fact ERK
phosphorylation of UBF prevents DNA bending by its first two
HMG boxes, leading to a cooperative unfolding of the
enhancesome, and increased transcription of ribosomal RNA
genes [35,36].

3.1.4. Protein translation

One direct substrate of ERK, the protein kinase MNK1 is
responsible for induced phosphorylation of the translation
initiation factor 4E (elF4E) on serine 209 following cell
stimulation [37]. This phosphorylation increases the affinity of
elF4E for capped mRNA, leading to increased translation.
Analysis of embryonic fibroblasts from single KO mice revealed
that MNK is responsible for the inducible phosphorylation of
elF4E in response to ERK (and p38MAPK) activation, whereas
MNK2 mainly contributes to elF4E’s basal, constitutive
phosphorylation [38].

Another pathway to regulated protein translation is mTOR/
p70S6K pathway (reviewed by [39]). One important regulator
of mTOR is the heterodimer TSC1/TSC2, a tumor suppressor
complex which “represses” mTOR activity. Mutations in TSC1
or TSC2 genes induce a tumor syndrome called tuberous
sclerosis. The main regulator of TSC function is mediated via
activation of the PI3K/AKT pathway that leads to the direct
phosphorylation and inactivation of TSC2 by AKT on serine
939 and threonine 1462 (reviewed by [40]). However, it has
been shown recently, that ERK phosphorylates TSC2 predom-
inantly on serine 664 in vitro and in vivo, leading to the
disruption of the TSC1-TSC2 complex, and ultimately elevated
mRNA translation upon unleashing of mTOR activity [41].
Furthermore, the kinase RSK, a direct downstream substrate of
ERK, can also phosphorylate TSC2 on serine 1798 to inhibit the
function of TSC1/TSC2 complex [42].
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This cooperation between the AKT and the ERK pathway to
activate TOR is one of the many synergies developed by cells
between these two pathways to regulate cell proliferation, in this
case to increase protein translation and metabolism.

3.2. ERK role in G1/S phase transition

The key step for quiescent cells to undergo cell cycle entry is
the formation of an active cyclinD-CDK4/6 complex. This
complex is formed when newly synthesized cyclin D associates
with existing CDKs (cyclin dependent kinases). CDK4/6 kinase
activity release E2F family of transcription factors from Rb
repression inducing expression of a second class of G1 cyclins,
cyclin E required for S phase entry. It is worthy to note that the
stimulatory effects of cyclins can be counteracted by CDK
inhibitors (CDKIs). Repression of CDKIs is also a pre-requisite
for G1/S phase transition, elevating the level of cyclin D1 for
example is not sufficient to induce cell cycle entry. ERK
activation acts at several levels to increase the activity of CDKs
in late G1, ERK also plays a role in the inhibition of CDKIs.

3.2.1. ERK regulates cyclin DI transcriptional induction via
Fos family members

ERK activation was first implicated in the induction of cyclin
D1 expression, when it was shown that activation of the ERK
pathway by stimulating the stably expressed chimera deltaRaf1:
ER led to increase cyclin D1 expression; whereas blocking ERK
activity by expressing a dominant negative form of MEK led to
decreased cyclin D expression [43]. Cyclin D1 is induced
several hours after growth factor addition, interestingly it was
then shown that only a sustained ERK activity could lead to
PDGF-induced cyclin D1 expression [44]. Indeed, blocking
ERK activity by adding 10 pM of the MEK inhibitor PD98059
up to 6 h post-stimulation was sufficient to block cyclin DI
expression and cell proliferation.

What are the intermediates between ERK persistent
activation and the delayed expression of cyclin D1? Candidates
are members of the Fos family of transcription factors since
mouse embryo fibroblasts lacking fos-B and c-fos genes display
a profound proliferation defect that can be restored by ectopic
expression of cyclin D1 [45].

However, c-Fos must act indirectly to induce cyclin DI
transcription [46] because c-Fos expression strongly repressed
cyclin D1 reporter promoter expression [47]. In fact, c-Fos has
been shown to interact with the transcriptional repressor p300
[48], whose ectopic expression induces cell cycle arrest in
GO0/G1 [49]. Contrary to c-Fos, Fra-1 (another member of the
Fos family) led to moderate activation of the cyclin D1
promoter [47]. Interestingly, it was shown that only the late
phase activity of ERK lead to Fra-1 expression [50] while the
initial phase was sufficient to induce Fos mRNA. When
looking at chromatin it became evident that Fos family
members display a dynamic temporal pattern of binding. For
example, it was shown that Fra-1 was expressed and bound to
chromatin only when c-Fos expression and binding to
chromatin decreased [46]. Taken collectively these data
converge to propose a model, in which a well-orchestrated

spatio-temporal activation of ERK is required for cyclin D1
expression via Fos family members.

First phase: active ERK phosphorylates pre-existing tran-
scription factors, such as Elk to induce transcription of c-fos
gene [51]. Transient activation of ERK is not sufficient to
express c-Fos protein for extended periods. The reason is that
although transient and sustained ERK activations induce as well
c-fos gene transcription, only sustained ERK activity can
phosphorylate C-terminal phosphorylation sites on c-Fos
[52,53]. The unmasking of the FXFP site/DEF domain upon
c-fos C-terminal sites phosphorylation increases c-Fos binding
to ERK to ensure phosphorylation of the other sites for full
stabilization of the c-Fos protein.

Second phase: persistent activation of ERK leads to
persistent expression of c-Fos in the nucleus. c-Fos increases
the transcription of many genes, such as Fra-1 and at the same
times c-Fos blocks transcription of cyclin DI.

Third phase: after several hours, when persistent ERK
activity declines, especially in the nucleus, c-Fos protein is
dephosphorylated and degraded. Fra-1 replaces c-Fos in the
cyclin D1 promoter, brings-in new transcriptional activators and
cyclin D1 is expressed [46]. This sequence stresses the
importance of inhibition of ERK in the nucleus during the
long lasting phase of ERK activation [54].

3.2.2. ERK also regulates cyclin DI transcription via myc

Another candidate to mediate ERK transcriptional induction
of cyclin D1 gene is the Myc transcription factor. ERK
phosphorylates serine 62 of Myc which increases its stability
[55], then Myc participates directly in the transcriptional
induction of the cyclin D1 gene as indicated by nuclear run-
on experiments [56].

3.2.3. ERK regulates the assembly of cyclin/CDK complex

Induction of cyclin E by E2F regulates CDK2 to enforce Rb
phosphorylation, creating a positive feedback loop that helps
contribute to the irreversibility of the G1/S transition (reviewed
by [57]). The formation of the cyclinE/CDK2 complex seems to
be indirectly regulated by ERK at two levels.

First of all ERK activity is required for proper nuclear
translocation of CDK2 in the nucleus, a compartment where it has
to go to be activated by phosphorylation of threonine 160 by CDK
activating kinase (CAK) and dephosphorylation of threonine 14
and tyrosine 16 by the CDC25 phosphatase. Blocking ERK
activation did not modify the levels of cyclin E/CDK2 complexes,
solely the nuclear localization of CDK2 [58].

Second, ERK activity has been shown to regulate phosphor-
ylation of threonine 160 of CDK2, an activating site of CDK2
[59]. The pathways linking ERK activation to the ERK-
dependent CDK2 nuclear translocation and activating threonine
160 phosphorylation are not known, further studies are awaited
to resolve these questions.

3.2.4. ERK represses the transcription of anti-proliferative
genes

Cells cease to enter S phase if ERK is inactivated even in late
G1 phase. A means for ERK to mediate this effect was unveiled
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recently: ERK is required for the continuous down-regulation of
antiproliferative genes throughout G1 phase to allow cell cycle
progression [10]. Up to 175 genes have been identified whose
expression is diminished during the G1 phase of the cell cycle
via an ERK-dependent mechanism. Interestingly, withdrawal of
serum or MEK inhibition during the G1 phase was sufficient to
re-establish normal expression of these antiproliferative genes,
and co-incidentally block S phase entry. The down-regulation of
many genes was shown to be dependent on AP1 activity since
transfection of dominant negative c-Fos protein blocked the
down-regulation of many antiproliferative genes. Forced
expression in late G1 of two “antiproliferative proteins” blocked
S phase entry (JunD and Gadd45alpha expressed at normal
levels). The molecular mechanism of action of these anti-
proliferative genes is unknown for most of them. However
among them, both Tob1 and JunD have been shown to regulate
cyclin D1 expression negatively [60,61], providing another
means for ERK to control cell cycle progression.

3.2.5. Conclusion

ERK activation plays a fundamental role for G1/S transition
since its activation is required for the induction of the cyclin D1
protein via several mechanisms, and sustained activity of ERK
is required for the down-regulation of many antiproliferative
genes throughout the whole G1 phase of the cell cycle.
Furthermore, it seems that ERK activation induces CDK2
nuclear localization and co-activation by phosphorylating
threonine 160. However, as we will study later, ERK activation
is not sufficient by itself to promote cell cycle entry.

3.3. Role of ERK at the G2/M transition

The implication of ERK in the meiotic M phase progression
is beyond the scope of this review; suffice to say that Mos/ERK
activates MPF at the onset of meiosis I and Mos/ERK induces
metaphase arrest in meiosis II.

In somatic cells, from the time of ERK discovery it has been
shown that ERK was also activated during the G2/M phase of
the cell cycle, whereas it was dephosphorylated in metaphase-
arrested cells [7]. In synchronized HeLa and NIH 3T3 cells, it
has then been shown that phosphorylation and activation of
ERK occurred in late S phase and persisted until the end of
mitosis. Blocking ERK activation by transfection of dominant
negative MEK [62] or MEK inhibitors [63] first retarded the
entry into mitosis and then increased the duration of mitosis due
to the retarded progression from metaphase to anaphase. When
ERK is inhibited during G2/M transition, M phase is nearly
twice longer in mammalian cultured cells [62].

Entry into mitosis requires the formation of the cyclin B/
CDC2 complex which like cyclinE/CDK2 is activated in the
nucleus upon phosphorylation by CAK on threonine 161 and
dephosphorylated by CDC25 on threonine 14 and tyrosine 15.

3.3.1. ERK participates in the nuclear translocation of cyclinB1

It has been shown recently that ERK can phosphorylate two
of the four phosphorylation sites of the cytoplasmic retention
sequence (CRS) of cyclin B1, a third site is phosphorylated by

the kinase Plx while the identity of the kinase that phosphor-
ylates the fourth site is not known. Phosphorylation of the four
sites of the CRS of cyclin Bl is necessary for nuclear
localization of cyclin B1 and mitosis progression, probably by
interfering with the nuclear export sequence localized in the
CRS [64]. Consequently, when ERK activity is inhibited, cyclin
B/Cdc2 complex is retained in the cytosol, leading to a poor
activation of Cdc2 and retardation in mitosis entry.

3.3.2. ERK, via RSK, blocks negative phosphorylation of Cdc2
by Mytl

The kinase RSK has been shown to phosphorylate and
inactivate Mytl [65], a dual specificity kinase that regulates
negatively Cdc2—cyclin B complexes by phosphorylating Cdc2
on threonine 14 and tyrosine 15 [66]. RSK being a direct substrate
of ERK, upon ERK inhibition, RSK activity decreases, Mytl
becomes active and inhibits Cdc2 by double phosphorylation on
tyrosine 15 and threonine 14, leading to G2/M phase arrest.

3.3.3. Controlling the strength of ERK activation during G2/M
transition is critical: the case of BRCAI ectopic expression

Germ line mutations in the BRCA1 gene are associated with
an increased susceptibility to the development of breast and
ovarian cancers. It has been shown that ectopic expression of
BRCAL in human cells trigger an ERK-dependant G2/M cell
cycle arrest [67].

BRCAL transfection increases markedly ERK activity in
G2/M which blocks Cyclin B/Cdc2 activity by three mechan-
isms. First, ERK activity increases activity of the kinase Weel
that phosphorylates Cdc2 on tyrosine 15 to inactivate the cyclin
B/Cdc2 complex. Second, ERK activity increases activity of
the kinase Chkl which induces the cytoplasmic retention and
degradation of CDC25. When the phosphatase CDC25 is not in
the nucleus, it cannot dephosphorylate Cdc2 on tyrosine 14 and
threonine 15 to activate it. Finallyy, BRCAl-induced ERK
activation leads to decreased expression of the CDC25
phosphatase due to its degradation in the cytoplasm. CDC25
expression is reversed upon inhibition of MEK/ERK activity
[67].

Altogether, ERK activity is required for mitosis but too much
ERK activity at the G2/M transition, for instance as a
consequence of reduced VHR/DUSP3 activity [68] blocks
entry in mitosis.

3.3.4. Localization of active MEK and active ERK at the G2/M
transition

Two reports showed that activated ERK was present in
mitosis on kinetochores and mitotic tubulin of proliferating
PtK1 and HeLa cells [69,70]. Active MEK localization on
kinetochores is likely to be an artefact of the phospho-antibody.
Indeed phospho-MEK antibody recognises phosphorylation
sites on nucleophosmin/B23, a protein phosphorylated by Cdc2
during mitosis [71,72]. However, the localization of active
MEK and active ERK on the spindle and midbody during
mitosis was recently confirmed in Swiss 3T3 cells [73].

One of the putative targets of active ERK localized on
microtubules in mitosis is CENP-E. CENP-E has been shown to



1304 J.-C. Chambard et al. / Biochimica et Biophysica Acta 1773 (2007) 1299-1310

be phosphorylated in vitro by ERK on sites that are known to
regulate its interactions with microtubules and was found to
associate in vivo preferentially with active ERK during mitosis
[70]. Hence, ERK may play a role to organise interactions
between chromosomes and microtubules at mitosis through
CENP-E.

In conclusion, ERK is clearly implicated in the regulation of
the G2/M transition, furthermore a strict control of the kinetic
and strength of ERK activation is required for mitosis to occur
normally. However the exact cascades of events occurring in
G2/M phase downstream of ERK activation are not yet fully
understood. In particular the nature of the signals reactivating
ERK at the G2/M transition are not fully resolved.

4. Deregulation by over-activation of ERK pathway
4.1. Persistant over-activation of ERK blocks cell cycle entry

It has been known for long time that expression of the
activated form of Ras induced growth arrest in many cells
unless a functional collaborating oncogene was present
[74,75]. One of the targets of Ras activation is the Raf/
MEK/ERK pathway, thus activating ERK could also induce
cell cycle arrest. This apparent paradox was solved using cells
expressing stably deltaRaf:ER chimeras [76]. Upon addition
of estrogen or tamoxifen, the catalytic moiety of the chimeras
is unmasked and the Raf/MEK/ERK pathway is persistently
activated. Interestingly, only a very intense Raf activity
triggered cell cycle arrest while modest activation led to
enhanced cell cycle entry. Next it was demonstrated that high-
intensity Raf signaling caused cell cycle arrest by inducing
massive expression of the cell cycle inhibitor (CDKI) p21cipl
[77,78]. In mouse embryo fibroblasts lacking p2lcipl, strong
Raf activity led to robust cell-cycle entry as measured by
thymidine incorporation [78].

After noting in the previous paragraph that exquisite
temporal regulation of ERK activation is required for cell
cycle entry, here regulation of the strength of ERK signaling
also proves to be essential. Intense ERK activation throughout
G1 leads to the accumulation of p2lcipl that inhibits cyclin
E/CDK2 complexes to block S-phase entry. Controlled ERK
activation leads to a modest induction of p2lcipl that is
progressively titrated by nascent cyclinD/CDK4 complexes
during G1 phase progression [79]. When p2lcipl bound to
cyclin E-CDK2 lowers under a threshold level, cyclin E-CDK2
activity is released from inhibition rendering S-phase progres-
sion irremediable. The level of p2lcipl expression can be
considered a sensor of ERK signal strength.

4.2. What are the mechanisms linking ERK hyper-activation to
massive induction of the CDK inhibitor p2lcipl?

(1) ERK activation increased the phosphorylation of the
transcription factors Ets2, C/EBPalpha, and C/EBPbeta, and
rapidly increased transcription from the p21 promoter via
multiple Ets- and C/EBP-elements within the enhancer region
[80].

(2) As seen previously, ERK increases cyclin D1 protein
expression, and hyper-activation of the ERK pathway leads to a
massive accumulation of cyclin D1 protein [77,78]. p21 is a
short-lived protein that is degraded through association with the
C8alpha subunit of the 20S proteasome catalytic complex [81]
Upon high ERK activation, cyclin DI protein accumulates
massively, associates with p21cipl to inhibit its degradation by
masking the binding site of p2lcipl to C8alpha [82]. This
process is somewhat autocatalytic because p21 binding to cyclin
D1 impedes cyclin D1 export out of the nucleus, and its
subsequent degradation in the cytoplasm [83].

(3) Hence, a combination of ERK driven transcriptional
induction of p2lcipl and cyclin D1 (by different transcription
factors), and auto-stabilization of the p2lcipl/cyclin D1
complex, triggers a massive accumulation of both cyclin D1
and p21cipl during abnormal hyper-activation of ERK, leading
to cell cycle arrest by p21cipl.

4.3. How Ras transformation bypass the p21cip l-mediated
growth arrest mediated by hyper-activation of the ERK
pathway?

In melanomas, an active form of NRas is associated with
wild type PTEN, on the contrary a constitutive active form of
BRaf is frequently associated to a defect in PTEN [84]. The
phosphatase PTEN is a negative regulator of AKT, thus
inactivation of PTEN leads to constitutive activation of the
PI3BK/AKT pathway. Considering the fact that NRas can
activate both the ERK and the PI3K/AKT pathway, whereas
BRaf can activate only the ERK pathway, a simple explanation
for the frequent association of PTEN and B-Raf mutations
considers that both the PI3K/AKT and the ERK pathways must
be constitutively activated to induce tumorigenic growth.

Indeed, it has been shown that constitutive activation of AKT
can override the G1 cell cycle arrest caused by over-activation
of the ERK pathway. This has been demonstrated in cells
harboring conditionally active, steroid hormone-regulated
forms of Raf and AKT in which activation of Raf/MEK/ERK
and AKT could be performed independently or in combination
[85]. Under conditions where activation of neither Raf nor AKT
alone promoted S-phase progression, co-activation of both
kinases elicited a robust cell proliferation. In this setting, while
ERK activation induced p2lcipl, AKT activation promoted
nuclear export of p21Cipl into the cytoplasm where it is
degraded by the proteasome. As a consequence, p21Cipl levels
diminished and the cyclinE/cdk2 complex ceased to be
inhibited, cell cycle progression goes on [85].

Nuclear export of p21Cipl upon AKT activation is not the
sole convergent aspect of the Raf/MEK/ERK and the PI3K/
AKT pathways to promote cell proliferation. Previously we
have already seen that over-activation of PI3K/AKT pathway
prevents ERK nuclear translocation in some cells by stabiliza-
tion of the PEA-15 protein, hence blocking cell proliferation. In
addition we have seen that AKT, ERK and RSK can
phosphorylate TSC2 on distinct sites to cooperate in the
disruption of the TSC1/TSC2 complex and thus diminishing
repression of mTOR to increase protein synthesis. Hereafter are
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other examples of cooperations between these two signaling
pathways to induce cell proliferation.

4.4. Cooperation between ERK and AKT to induce Cyclin DI
expression

We have seen previously, that ERK activation leads to cyclin
D1 transcriptional induction and protein stabilization. None-
theless, full induction of cyclin D1 by mitogens requires
activation of the PI3K/AKT pathway, to negatively regulate
GSK3beta (reviewed by [57]). Indeed, GSK3beta phosphor-
ylates threonine 286 of cyclin D1, which enhances its nuclear
export, and accelerates its ubiquitin-dependent proteasomal
degradation in the cytoplasm, shortening the half-life of cyclin
DI to as little as 10 min. Direct phosphorylation of GSK3beta
by AKT can inhibit its activity, thus impeding GSK3beta-
mediated cyclin D1 degradation.

4.5. Cooperation between ERK and AKT to activate Myc and
repress p27kipl

One of the consequences of ERK activation in early Gl
phase is the induction of the myc protein, an absolute
requirement for cell cycle entry. It has been known for many
years that ERK phosphorylates directly Myc on serine 62 which
increases its stability [55]. Phosphorylated serine 62 constitutes
a priming site for GSK3-mediated threonine58 phosphorylation
leading to the rapid degradation of Myc via the proteasome [86].
AKT activation intervenes again by phosphorylating and
inhibiting GSK3beta, thus impeding phosphorylation of
threonine 58. This regulation is essential for the orderly
expression of Myc protein during cell cycle progression. In
fact early into G1, the activation of the ERK and AKT pathways
synergize to increase myc expression, however late in G1 the
decrease of AKT activity unlashes GSK3beta to phosphorylate
myc and induce its degradation. Persistent AKT activation
would lead to persistent inhibition of GSK3beta and persistent
myc expression which could lead to induction of apoptosis.

One of the many consequences of Myc stabilization is
p27kipl degradation. p27kipl is another cyclin dependent
inhibitor (CDKI) that must be degraded for cell progression to
proceed. Myc affects both p27kip1 gene transcription [87] and
p27kipl protein degradation [88].

Another way for AKT to regulate p27kip1 occurs via FOXO
family of transcription factors. FOXO enhance transcription of
p27kipl leading to increased protein expression. However,
upon phosphorylation of FOXO by AKT, FOXO is exported out
of the nucleus and degraded; leading to p27kipl reduced
transcription [89,90].

Overall, the molecular cooperations between ERK and PI3K/
AKT activation provide explanations for the strong synergy
observed between many growth factors (potent ERK activators)
and insulin/IGF-I (potent AKT activator) to promote cell cycle
entry in many cell types. Furthermore, the main target of the
cooperation between ERK and AKT pathways in early G1 is the
regulation of the transcription, complex-assembly and nuclear
transport of G1 cyclins (cyclin D and E). This cooperation

renders Gl-cyclins an essential growth factor sensor, most
likely the molecular culprit of Pardee’s cell cycle restriction
point.

5. Blocking ERK pathway to fight cancer

5.1. ERK is constitutively activated in many cancer and cancer
derived cell lines

It has been shown that many primary human tumors and
derived cell lines display constitutive activation of ERK. For
example, among 138 tumor cell lines and 102 primary tumors
derived from various human organs, 36% display constitutive
activation of ERK [91]. In fact it is known for long time that
about 15% of human cancer harbor mutations of the Ras protein
that renders it constitutively active. More recently it has been
shown that B-Raf was mutated in many human cancers, to the
point of being constitutively active in about 60% of all
melanomas [92]. Considering that B-Raf is the most potent
kinase isoform for ERK activation, this array of evidences
highlights the Ras/Raf/MEK/ERK pathway as therapeutic target
for cancer treatment.

5.2. Inhibitors to block ERK activation in vivo

To block activation of this pathway, the focus has been put
on MEK inhibitors due to their very unusual specificity among
kinase inhibitors, since they are not ATP competitors. Potent
Raf inhibitors such as BAY43-9006 are presently tested in
clinical trials. ERK inhibitors have not yet received as much
attention due to the fact that the ATP binding pocket of ERK is
similar to that of cyclin dependent kinases, rendering specificity
of inhibition difficult.

In melanoma cell lines where B-Raf is constitutively active,
knock-down of B-Raf, but not A-Raf nor C-Raf was sufficient
to reduce markedly cell cycle entry and increase apoptosis, an
effect that was mimicked by a specific Raf inhibitor (BAY43-
9006). Furthermore, in vivo, colon carcinoma tumor growth
was inhibited as much as 80% in mice with the MEK inhibitor
PD184352 (also named CI-1040) [93], furthermore the Raf
inhibitor BAY43-9006 led to a substantial growth delay in
melanoma tumor xenografts [94]. In fact it has just been
demonstrated that B-Raf mutations confer a preferential
sensitivity to MEK inhibition in human cancer cells. In cells
that display B-Raf mutations, doses of MEK inhibitor
PD184352 that block ERK activation were sufficient to block
cyclin D1 expression which was not the case with cells that did
not display B-Raf mutations. In tumor cells where B-Raf is
normal, higher doses of MEK inhibitor were necessary to lower
cyclin D1 expression than to decrease ERK activity. Further-
more, the concentration of inhibitor that led to 50% inhibition of
cell proliferation was much lower in cells harboring B-Raf
mutations (24-111 nM) compared to cells harboring wild-type
B-Raf (100 to 500 nM) [95].

These encouraging results in mice prompted clinical trials
to treat human cancers. For example, phase II clinical study
was undertaken to assess the anti-tumor activity and safety of
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the MEK inhibitor, PD184352 (CI-1040) in breast cancer,
colon cancer, non-small-cell lung cancer, and pancreatic
cancer. PD184352 was generally well tolerated but clinical
trials were not continued due to insufficient anti-tumor
activity in the four types of tumors tested [96]. In the 2005
ASCO meeting it was reported that a more potent MEK
inhibitor (PD0325901) was able to strongly suppressed ERK
activity in tumors, thus PD 0325901 is being tested in phase
IT clinical trials at present. A recent review details all the
strategies engaged to target Raf/MEK/ERK pathway to fight
cancer [97].

5.3. Pitfalls of ERK inhibition to fight cancer

The failure of the MEK inhibitor PD184352 to cure several
types of human tumors was disappointing, but xenograft
experiments had already indicated the difficulty to get tumors
regression by using MEK inhibitors. For example, anti-tumor
effectiveness of a new MEK inhibitor (PD184161) has been
assessed after implanting human hepatocellular carcinoma
(HCC) cells in nude mice [98]. PD184161 significantly sup-
pressed tumor engraftment and initial tumor growth however,
established tumors were not significantly affected. After the first
exposure of the cells and tumors to PD184161, MEK activity
was reduced markedly; however MEK activity became normal
in HCC xenografts during long-term treatment [98]. The
systemic efficacy of PD184161 is unlikely to be responsible
for the lack of drug effectiveness because in the lung, high
MEK/ERK activity was effectively suppressed after repeated
PD184161 treatments. This observation may simply indicate
that the cells that survive the first dose of treatment adapted
rapidly and lost the high sensitivity to MEK inhibition that was
described in many human tumors cells after the first exposure to
the MEK inhibitor [95].

In line with these results we have shown in the laboratory
that reducing the level of both MEK1 and MEK?2 expression by
up to 95% with siRNA had no effects on the kinetic of ERK
activity following serum stimulation (J. Shama J. Pouyssegur
and E. Vial; personal communication). Furthermore, siRNA-
mediated ablation of ERK1 and ERK?2 levels (more than 95%),
diminished ERK activity and cell proliferation only 40 to 50%
(R. Lefloch, J. Pouysségur and P. Lenormand; personal
communication). These results imply that the MEK/ERK
pathway is resilient to diminution of its components, and can
adapt rapidly to maintain ERK activation nearly normal. A
likely biochemical explanation for the lack of impact of MEK1
and MEK2 knock-down is provided by stoichiometric analysis
of this pathway. It was shown recently that activating only 5%
of the MEK kinase pool was sufficient to activate up to 60% of
the total ERK pool. Indeed, there is a large stoichiometric
excess of MEK over Raf, and about twice as much MEK than
ERK [99]. If inhibitors spare a small percentage of MEK, the
downstream impact on ERK activity may be negligible, not
taking into account negative feed-back loops that would
certainly restore ERK activation to near normal levels. For
example, many downstream regulatory phosphatases are
induced upon ERK activation, thus decreasing ERK activity

will lead to diminished expression of the phosphatases and more
sustained ERK activation.

Another explanation for the decreased efficiency of MEK
inhibitors during long-term treatment lies in the fact that the
tumor environment is altered during tumorigenesis, conse-
quently the cells may require less activity of a particular
signaling pathway for tumor growth. Initially, tumor cells are
surrounded by normal tissue and later mostly by tumor tissue.
As a consequence, tumor cells may encounter autocrine
factors, a different cell matrix and neo-vascularization. One
experimental setting has demonstrated that oncogenic Ras
needed full downstream activities only to initiate tumor growth
in vivo (RalGEF, Raf and PI3K pathways) [100]. Once tumors
have been established, during what is called tumor mainte-
nance, only the PI3K activity downstream of oncogenic Ras
was necessary for tumor progression. This was demonstrated
by injecting tumor cells co-expressing oncogenic Ras mutated
to avoid activating Raf and deltaRaf:ER. These cells engage in
tumor formation only if deltaRaf:ER is active from the
beginning. Once the tumors are formed, removal of tamoxifen
led to reduced Raf activity, which did not induce tumor
regression. On the contrary, in tumors co-expressing oncogenic
Ras mutated to avoid PI3K activation and ER:AKT, removal
of tamoxifen led to reduced AKT activity and tumor regression
[100].

Recent evidences indicate that many tumors encompass
cancer stem cells (reviewed by [101]). Although cancer stem
cells represent a very small portion of the tumor mass (0,1 to
2%), they may grow independently of strong MEK/ERK
activity. Indeed, it is known that embryonic stem cells do not
require ERK activity for proliferation [102]. On the contrary,
strong ERK activation appears to impair self-renewal of
embryonic stem cells by promoting their differentiation [103].
If cancer stem cells behave similarly to embryonic stem cells,
then treatment with MEK inhibitors will not eradicate this
population, which then has the potential to promote recurrence
of the tumor.

In conclusion, targeting the Raf/MEK/ERK pathway to
control tumorigenicity is tempting, considering the frequent
occurrence of constitutive activation of this pathway in human
cancers. Restricting treatment to patients that display tumors
with constitutive activation of ERK will certainly be beneficial.
However, combinatorial therapies will certainly be needed to
induce regression of pre-existing tumors, especially considering
the cytostatic effect of MEK inhibition in most tumor cells. For
example, in cancer cells where ERK is constitutively activated,
MEK inhibitors induce p27kipl and cell cycle arrest [104].
Furthermore, in pancreatic cancer cells, it was demonstrated that
the cytostatic effect of MEK inhibitors was mainly due to
increased p27kipl expression, since inhibition of p27Kipl
expression restored the activity of cyclin/cdk2 and partially
relieved the effects of the MEK inhibitor U0126 on pancreatic
cancer cell cycle arrest [105]. However, MEK inhibitors may
prove to be highly beneficial to slow tumor-metastasis. In fact
when human melanoma cells were injected in the lateral vein of
the tail of mice, most cells died within 1 day, only the ones that
could implant in the lung formed tumors. In this model of
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metastatic melanoma cells, administration of PD184352
inhibited formation of pulmonary metastases [106].

More specific drugs are being developed and we must be
ready to offer by a set of functional markers a simple profile of
active signaling pathways to stratify in a rational way each
cancer patient for the best appropriate cure.
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