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Abstract The oxalate oxidase enzyme expressed in barley roots
is a thermostable, protease-resistant enzyme that generates
H2O2. It has great medical importance because of its use to
assay plasma and urinary oxalate, and it has also been used to
generate transgenic, pathogen-resistant crops. This protein has
now been purified and three types of crystals grown. X-ray
analysis shows that the symmetry present in these crystals is
consistent with a hexameric arrangement of subunits, probably a
trimer of dimers. This structure may be similar to that found in
the related seed storage proteins.
z 1998 Federation of European Biochemical Societies.
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1. Introduction

Oxalate oxidase (EC 1.2.3.4) (ox-ox), the enzyme that de-
grades oxalate to hydrogen peroxide and carbon dioxide, was
¢rst described by Zaleski and Reinhard [1] in a study of wheat
£our, and it has since been shown to be widespread in mi-
crobes and plants [2]. The particular form of this enzyme ex-
pressed in barley roots is of great medical importance because
of its use in kits to assay plasma and urinary oxalate [3]. In
addition, it has been used to produce transgenic crops with
improved tolerance to those fungal pathogens such as Sclero-
tinia sclerotiorum that use oxalic acid as a toxin ([4], Dunwell
et al., unpublished). The barley isoform was recently [5,6]
found to be homologous to the well-known wheat protein
germin, a glycosylated, thermostable, protease-resistant pro-
tein, present at high levels in the extracellular matrix, pro-
duced during germination, and presumed to be the enzyme
¢rst identi¢ed more than 80 years ago [1]. In addition to the
isoform highly expressed during embryo germination in
cereals, there are a large number of related germin-like
proteins (GLPs) [7,8], many of them induced during exposure
of plants to important pathogens such as powdery mildew
[9,10]. Some of these proteins are also induced by abiotic
stresses, for example by saline conditions in barley [11]
and Mesembryanthemum crystallinum (GenBank sequences
giM2725646, giM2995935), by manganese de¢ciency in tomato
(giM2979494), by aluminium treatment in wheat [12], and by
submergence in rice (giM2952338, giM3201969). The biochemi-
cal connection between these stress responses is unclear but it
may be associated with the link between oxalate, its precursor

ascorbate, and its product H2O2 (ox-ox itself is highly resist-
ant to H2O2). Speci¢cally, oxalate and peroxide are likely to
be part of a signalling cascade [9], and in addition, ascorbate
and H2O2 are known to be involved in the generation of
hydroxyl (cOH) radicals capable of cleaving cellulose and oth-
er cell wall polysaccharides [13].

It was proposed recently, on the basis of sequence similar-
ities, that ox-ox, the GLPs, and the seed storage proteins
(these latter proteins in particular have extreme desiccation
tolerance) have all evolved from identi¢able microbial progen-
itors [14,15], and are members of a new superfamily of func-
tionally diverse proteins designated as cupins (from the Latin
term cupa, a small barrel or cask) [2] on the basis of their
conserved L-barrel structural element found by X-ray crystal-
lography of the bean storage protein vicilin [16]. Cupins exist
in two forms, one (c. 100^200 AAs) with a single domain (e.g.
ox-ox, phosphomannose isomerase, polyketide synthase [14])
and the other (c. 400^500 AAs) having two domains (e.g.
oxalate decarboxylase [14], sucrose binding protein [17], stor-
age proteins [16]). It is intended to establish the validity of this
hypothesis by determining the tertiary structure of other mem-
bers of this proposed superfamily.

Sequence analysis of wheat germin and its closely related
ox-ox from barley show a protein size of about 200 AA (plus
a targeting sequence to direct secretion to the cell wall), and a
molecular mass of 21.2 kDa for the non-glycosylated form.
(The native protein is glycosylated with a mass of about 26
kDa.) Both proteins are multimeric and enzyme activity is
only associated with the assembled protein, and not with
the monomer [5]. Additionally, although the oligomeric
form of the enzyme survives treatment with trypsin, chymo-
trypsin, or Staphylococcus aureus protease in the presence 27
mM SDS, the monomeric form is digested in these conditions
[18]. Despite these detailed biochemical studies, biophysical
measurements of the exact oligomeric status have proved in-
conclusive. Early results [18] on the barley enzyme suggested a
dimeric structure with 75 kDa subunits, whereas later studies
either favoured a tetrameric structure (MW of 100 kDa, [6])
or did not try to estimate the oligomeric status because of the
uncertainties of gel-based assays [19]. In contrast, wheat ger-
min is usually reported to have a homopentameric structure
with a molecular mass of about 125 kDa [5], and a barley
GLP has been described as tetrameric or pentameric [8]. The
distant homology of these proteins to the seed storage pro-
teins [14,20] (trimeric proteins with two-domain subunits) fa-
vours a hexameric composition, a conclusion supported by a
recent homology modelling study which used the known crys-
tal structure of the storage protein vicilin to produce a model
of the wheat germin [21]. This model also provided a valuable
insight into the possible active site residues by identifying
three histidines which form a cluster of adjacent side chain
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imidazole groups lying on neighbouring anti-parallel L-
strands.

In an attempt to solve the dilemma about the oligomeric
status of this important enzyme, the present study was de-
signed to use the latest method for puri¢cation of barley ox-
ox [22], to generate crystals, and to use these for X-ray anal-
ysis. Information on subunit composition would also be of
immediate value in relating its structure to the known crystal
structure of the storage proteins [16].

2. Materials and methods

2.1. Isolation, puri¢cation and assay of oxalate oxidase
from barley roots

The partially puri¢ed ox-ox was a gift of Sigma/Aldrich plc. All
procedures were performed at 4³C. Lyophilised powder (11 g) was
dissolved in 110 ml of S16 bu¡er (100 mM potassium acetate, 3 mM
magnesium acetate, 20 mM HEPES, pH 7.5) with 1% polyvinylpyr-
rolidine, and centrifuged at 20 000Ug for 1 h. Solid (NH4)2SO4 was
then added slowly to the supernatant and the less dense brown layer
in the fraction between 30% and 80% was removed carefully before
redissolving in 90 ml succinate bu¡er (20 mM, pH 3.8). This viscous
brown layer contains the ox-ox, together with polysaccharides and
phenolic compounds. Ice-cold acetone was slowly added to this sol-
ution and the resulting pellet in the fraction between 25 and 50% was
dissolved in 100 ml S16 bu¡er. The solution was centrifuged at
20 000Ug for 1 h to remove insoluble material before ¢ltration
through a centrifugation ¢lter kit (VIVA SPIN 15) with 0.2 Wm clar-
i¢cation cup, and dialysis with 20 mM sodium acetate bu¡er pH 5.0.
The acetone precipitation and ¢ltration steps aided removal of the
brown colour, but some colour remained. The resultant enzyme sol-
ution was applied (£ow rate 0.36 ml/min) to a dye-a¤nity column
comprising Procion turquoise MX-G (commonly known as Blue
140, a dichlorotriazine dye with a copper phthalocyanine group) im-
mobilised on Sepharose CL-4B (Pharmacia, code no. 17-0150-01) pre-
viously equilibrated in 20 mM sodium acetate at pH 5.0 (method
adapted from [22]). The column was washed with 50 ml bu¡er to
remove unbound material, before bound ox-ox enzyme was eluted
with 15 ml equilibration bu¡er containing 1 M CaCl2. Those fractions
with ox-ox activity were pooled, concentrated and dialysed against 10
mM Tris-HCl pH 8.5 before being subject to FPLC. The resulting
enzyme solution (1 ml) was injected into an FPLC Mono Q column
and the bound enzyme eluted with equilibration bu¡er containing 1 M
NaCl. Those fractions with ox-ox activity were pooled and dialysed
against 10 mM sodium acetate bu¡er (pH 5.0). The ¢nal yield of
enzyme was 0.4 mg/g of crude extract and the protein was homoge-
neous as estimated by SDS-PAGE analysis.

2.2. Assay of oxalate oxidase activity
The procedure adopted was that of Zhang et al. [23]. The assay

solution was prepared as follows: 40 mM succinic acid/KOH (pH
3.8), 60% (v/v) ethanol, 2 mM oxalic acid, 5 U/ml horseradish per-
oxidase (Sigma, P-8000), 20 Wl/100 ml N,N-dimethylaniline, 8 mg/100

ml 4-aminoantipyridine. The above solution (1.5 ml) was preincubated
at 30³C for 5 min, and then the enzyme solution (20 Wl) was added.
After 10 min, the reaction was stopped by addition of 20 Wl of 1 M
NaOH, and the absorbance of the resulting solution was measured at
555 nm. One unit of enzyme activity was de¢ned as the amount of
enzyme which produced 1 Wmol H2O2 per min in the standard assay
system.

2.3. Crystallisation
Ox-ox was concentrated with a Centricon (Amicon), using a 10K

cut-o¡ membrane, to 8.2 mg/ml (assuming an OD280 of 1.0 corre-
sponds to a ¢nal concentration of 1 mg/ml). Crystallisation experi-
ments were conducted using the hanging drop method at 18³C, and
the Hampton Screening Kits I and II [24]; crystals grew with PEG
4000 or 8000 in the pH range 4.6^8.5. Depending on the particular
combination of conditions, three types of crystals were produced (Ta-
ble 1). Type I crystals were rectangular with a size of 0.20U0.17U0.10
mm, type II were long needle-shaped (0.80U0.10U0.12 mm), and
type III were cubic (0.20U0.20U0.20 mm). It should be noted that
no attempt was made to deglycosylate the enzyme before crystallisa-
tion.

2.4. Data collection and processing
X-ray di¡raction data from a type I crystal were collected at room

temperature using the beam line DW42 at LURE, Orsay, France, and
data from type II and type III crystals were obtained using an in-
house MacScience (Siemens) rotating anode generator with double
mirrors and a DIP 1030 image plate system. Because rapid radiation
damage occurred when crystals were irradiated at room temperature,
they were transferred to a cryosolution consisting of mother liquor
supplemented with 20% 2-propanol and 10% 2-methyl-2,4-pentanediol
(MPD) (for type II crystals) or 8% 2-propanol and 20% glycerol (type
III) before being cryocooled in the nitrogen stream of an Oxford
Cryosystems Cryostream at 100 K. The data were processed using
DENZO and SCALEPACK [25]. All crystallographic calculations
were made using the CCP4 program suite [26] unless otherwise stated.

3. Results

Details of the three crystal types are summarised in Table 1.
Only a few images were collected using type I crystals but
quite complete data were collected from crystal types II and
III. Data from a type II crystal showed that it belonged to the
space group P4212. The merged data were 97.7% complete
(98.6% for the highest resolution shell), had a merging
Rsym(I) of 0.079 (0.191), and 45% (42%) were measured 9^
12 times. The unit cell parameters give a Vm of 3.03 or 2.02
Aî 3/Da assuming two or three monomers in the asymmetric
unit, respectively; these values are within the range considered
to be acceptable [27]. The self rotation function was calculated
using the program POLARRFN. Using a resolution of 5^10
Aî , there are signi¢cant peaks on the U= 120³ and U= 180³
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Table 1
Summary of the three types of ox-ox crystal

Type I Type II Type III

Growth conditions PEG 4000 18% PEG 4000 16% (NH4)2SO4 2 M
(NH4)2SO4 0.2 M (NH4)2SO4 0.06 M 2-propanol 5%
pH 8.5 (0.1 M Tris) pH 8.5 (0.1 M Tris) (initial pH 5.3)

Cryoprotectants ^ MPD 10% glycerol 20%
2-propanol 20% 2-propanol 8%

Space group P1 (4.0 Aî ) P4212 (5.0 Aî ) R32 (2.5 Aî )
Crystal parameter a = 61.4 Aî , b = 67.3 Aî a = 71.5 Aî a = 127.7 Aî

c = 72.1 Aî c = 237.7 Aî c = 73.1 Aî
K= 72.1³, L= 79.3³ K= 90³, L= 90³ K= 90³, L= 90³
Q= 87.3³ Q= 90³ Q= 120³

Cell volume 2.78U105 Aî 3 1.22U106 Aî 3 1.03U106 Aî 3

Number of monomers in asymmetric unit (6)a 3 1
aCompatible with six molecules per unit.
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sections (Fig. 1). The heights of the peaks corresponding to
the non-crystallographic two-fold and three-fold axes have
identical values of 0.61, compared with values of 1.00 for
the peaks corresponding to the crystallographic symmetry.
Two non-crystallographic two-fold axes occur at g, P, U an-
gles of (45³, 0³, 180³, respectively) and (135³, 270³, 180³) (Fig.
1a) and a single non-crystallographic three-fold axis occurs at
(125³, 45³, 120³) (Fig. 1b). The native data from the type III
crystal were 91.3% complete (58.0% for the highest resolution
shell) to 2.5 Aî with an Rsym(I) value of 0.092 (0.123); a total
of 7253 re£ections were used in scaling, and the number of
data measured ¢ve times was 31% (3.7%). This crystal type
belongs to space group R32 with a single molecule in the
asymmetric unit and a Vm value of 2.3 Aî 3/Da.

A hexameric structure is clearly supported by the data from
the type III crystals. Such a structure would have its molec-
ular three-fold axis coincident with the crystallographic three-
fold axis and its three two-fold axes coincident with the crys-

tallographic two-fold axes. Consideration of the crystallo-
graphic and non-crystallographic symmetry of type II crystals
also leads to the conclusion that a hexameric structure is
likely. In this case, the hexameric molecular three-fold axis
is non-crystallographic; this three-fold axis relates the three
molecules in the asymmetric unit. One of the three molecular
two-fold axes is crystallographic and generates the hexamer,
whilst the other molecular two-fold axes are non-crystallo-
graphic (Fig. 1a). The angles between these axes are consistent
with this proposal. The available data from type I crystals
tentatively supports a hexameric structure.

The cross-rotation function calculated using the ALMN
program and type II and III data in the range 15 Aî to 6 Aî

with Patterson radii of 20 Aî to 5 Aî shows a single signi¢cant
peak at 3c. This suggests that the packing in type II and type
III crystals is similar.

4. Discussion

The results from this X-ray analysis are of importance for a
number of reasons. First, by showing that in the crystalline
form, ox-ox packs as a hexamer of subunits, they substantiate
the previous prediction from homology modelling [21] that
ox-ox may be a trimer of dimers, and they thus provide evi-
dence to support the discovery [14,20] of the evolutionary link
between germin (and the GLPs) and the seed storage proteins;
these latter proteins are trimeric with two-domain subunits
[16]. The present results are therefore incompatible with the
long-held belief that wheat germin, and the equivalent ox-ox
from barley are pentameric [5,22] or tetrameric [6] in compo-
sition; they endorse the conclusion that gel-based assays are
not a reliable means of estimating the total molecular mass of
this particular multimeric protein [8,9]. (B.G. Lane and E.F.
Pai, personal communication, have previously reported that
they have evidence incompatible with a pentameric structure
for germin.)

The second important conclusion concerns subunit dissoci-
ation. As the hexameric state of ox-ox does not vary in the pH
range 4.8^8.5, dissociation of the oligomeric structure cannot
account for the known loss of enzymatic activity at high pH
[22]. Such loss of activity is therefore more likely to be asso-
ciated with a change in ionisation state of a catalytic amino
acid or in amino acid binding to a metal co-factor.

Final resolution of the detailed structure of this enzyme at
the atomic level must await additional investigations. When
available, such data will be of particular signi¢cance in con-
¢rming the identity of the active site ligands and the role of
the histidine cluster de¢ned recently [21]. Such information
would be of considerable commercial signi¢cance as it may
facilitate site directed mutagenesis as a means of improving
the e¤ciency of the enzyme used in medical diagnosis. It will
also aid the analysis of the structure/function relationships of
the ox-oxs and GLPs, many of which are induced by a range
of plant pathogens [8^10] and abiotic stress responses [11,12].
Since the trimeric storage proteins are known to bury a large
amount of non-polar surface area during oligomerisation, it
will be of particular interest to study the relationship between
the monomer-monomer interfaces and the unique stability of
this family of proteins in physical and chemical conditions
that promote the degradation of most other proteins.
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Fig. 1. Results of the self-rotation function calculation for type II
crystals. a: U= 180³ section. b: U= 120³ section. If the three-fold
axis of the ox-ox hexamer is consistent with peak A (125³, 45³,
120³) and one of the three two-fold molecular axes is placed accord-
ing to the crystallographic peak B, then the other two non-crystallo-
graphic two-fold axes correspond to peaks C and D.
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