
Computers and Mathematics with Applications 64 (2012) 3828–3839

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

The SIMTHESys multiformalism modeling framework
M. Iacono a,∗, E. Barbierato b, M. Gribaudo c

a Seconda Università di Napoli, Dip. di Studi Europei e Mediterranei, Caserta, Italy
b Università di Torino, Dip. di Informatica, Torino, Italy
c Politecnico di Milano, Dip. di Elettronica e Informazione, Milano, Italy

a r t i c l e i n f o

Keywords:
Modeling languages
Metamodeling
Performance evaluation

a b s t r a c t

The usage of models is a fundamental activity in designing and verifying a system.
Mastering different modeling techniques and scaling their application to complex systems
is not an easy task and requires both advanced skills and proper tools. One of the
means that allow modelers to leverage the power of proper modeling techniques (e.g.
stochastic techniques) is the application of abstractions byusinghigh level formalmodeling
languages. This paper presents SIMTHESys, a framework for the development of formal
modeling languages and the solution ofmultiformalismmodels by automatically generated
solvers based on different solving engines.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling is one of the most powerful tools developed to master the complexity of reality. The scale of the systems
currently in charge to support human activities and the concurrency of different non-functional specifications require that
modeling techniques would offer abstraction mechanisms that allow modelers to face such complexity while exploiting
mathematically foundedmethods. Such abstractionmechanisms can be constituted of formal modeling languages and their
solution algorithms. A broad and well spread example set is given by stochastic modeling techniques.

Literature offers many such modeling formalisms, more or less abstract and fit to model systems from a given point
of view: examples are Petri nets, fault trees, stochastic automata, process algebras, queuing networks and many others
that have been given a stochastic variant or interpretation. Nevertheless, all these useful and powerful abstractions are built
over common low-level tools, such asMarkov chains. Their existence enablesmodelers to copewithmore difficult problems
keeping the same well-known advantages.

SIMTHESys (Structured Infrastructure for Multiformalism modeling and Testing of Heterogeneous formalisms and
Extensions for SYStems) is a framework for the definition of new formalisms and the generation of related solvers,
that allow the combination of more formalisms in the same models. Formalisms and models definition is supported
by a family of languages based on XML. SIMTHESys is mainly a conceptual framework that assists the process of
defining new formalisms. As the definition of new formalisms would not be useful without the availability of related
solvers, SIMTHESys is complemented with a solver generation tool (namely SIMTHESysER), capable of automatically
building simple multiformalism solvers based on generic elementary solvers (solving engines, in SIMTHESys terminology).
SIMTHESys supports the design and the experimentation of modeling abstractions that can be used to ease the
modeling process by encapsulating different solution methods and techniques into high level, customizable modeling
languages.

∗ Corresponding author.
E-mail address:mauro.iacono@unina2.it (M. Iacono).

0898-1221/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2012.03.009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82661434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2012.03.009
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:mauro.iacono@unina2.it
http://dx.doi.org/10.1016/j.camwa.2012.03.009


M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839 3829

Fig. 1. The SIMTHESys workflow.

Stochastic formalisms are supported by the framework in the current phase of the project, though any kind of formalisms
can be implemented in line of principle.

The goal of this paper is to introduce SIMTHESys, its main ideas and its contribution to the field of multiformalism
modeling: a formal description of the framework is thus out of the scope of this paper. Currently, being the focus of our
research the exploration of a new multiformalism modeling paradigm, optimization of solvers (indeed an important topic)
is out of the scope of our research and will be faced in the future.

In this paper the SIMTHESys modeling framework is presented: Section 2 explains how formalisms and models can be
designed, and with which limitations and possibilities; Section 3 examines the architecture that allows solvers generation
and themodel solution process; Section 4 shows some examples of use of SIMTHESys; finally Section 5 presents conclusions
and future work. For this purpose, some general information about the framework and other similar approaches is
needed.

1.1. Framework description

A sound description of the framework should deal with both model description and analysis aspects. The SIMTHESys
framework consists of the modeling stack, the solving stack and SIMTHESysER. The two goals of the framework (producing
solvers for new formalisms and describing models to be solved) are accomplished by two complementary processes, that
are both represented in the SIMTHESys workflow in Fig. 1. In the figure, tools and documents that are involved in the two
processes are depicted with different symbols. The solver generation process, described in Section 3.3, is described by the
lower part of the figure. The figure also includes DrawNET [1], an external general-purpose GUI generator that is adopted as
graphical interface for the framework and is used to assist the user in writing MDL model documents by a graphical editor.
DrawNET can generate a custom GUI by associating graphical primitives to the information obtained from the analysis
of a FDL formalism document. Besides SIMTHESysER and DrawNET, the ovals represent the automatically generated tools
obtained by their execution, that form the elements of the modeling process. The dotted line stresses the fact that the MDL
document must conform to the FDL document in the process.

1.2. Comparison with other frameworks

SIMTHESys is based on the application of metamodeling techniques to the description and the analysis of performance
models (where performance should be interpreted in the broadest sense). Metamodeling is used to found formalisms
extensibility and multiformalism capabilities on common features, supplied by the SIMTHESys metametamodel. The
metametamodel is the foundation on which the metamodels are built. Metamodels form the layer of SIMTHESys on which
the main focus is, because they are the formalisms with which models can be created. To better focus the perspective
in which metamodeling is used in SIMTHESys, a light comparison with eCore [2] is useful. eCore is the metamodeling
stack on which the Eclipse Modeling Framework is founded. eCore is used to allow the description of software entities
independently from the platform on which they will be implemented: an eCore model is thus equivalent to an object-
oriented application with its business logic, and it is used to generate plain source code in the desired language for the
desired platform when needed. The focus in eCore is thus on models, and the eCore metamodel, designed to describe
a generic object oriented language for software development, is generally used as it is. In the case of SIMTHESys, the
purpose is to develop different metamodels, each of which is a formalism and shares the common metametamodel, so that
models written according to different metamodels can interact though showing different characteristics, logic and internal
organization.

To the best of our knowledge, SIMTHESys [3–6] is the only framework designed to support rapid formalism development
(and automatic solver synthesis). Nevertheless, other extensible multiformalism modeling frameworks have provided
the main contributions to the field. A different metamodeling approach has been adopted by AToM3 [7], that exploits



3830 M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839

metamodeling to implement model transformations, used to solve models by its solver. OsMoSys [8] uses metamodeling to
allow the modeler to write composed multiformalism models, based on an object oriented representation of formalisms
and model elements, and solves them by using a workflow based approach that integrates external solvers, properly
wrapped. Within other non-metamodeling based approaches, Mobius [9] is based on a sound model organization to
manage composition and multiformalism and generates executables that solve the single model applying the best
solving approach in the specific case. Sharpe [10], SMART [11] and the DEDS toolbox [12] provide multiformalism
modeling, with a minor stress on extensibility of the set of supported formalisms with respect to the other references
presented.

1.3. A comparative analysis

A brief comparison between SIMTHESys and the most similar approaches can be based on four main points: model
structure, extensibility of the supported formalisms set, multiformalism and multisolution.

From the point of view ofmodel structure, OsMoSys and SIMTHESys share themain organization: both of them represent
a main metaformalism (metametamodel) on which formalisms (metamodels) are based, and that describe the elements
available in models; OsMoSys supports formalism inheritance (at formalism and element level), while both of them can
extend formalisms by adding new elements. Both allow model composition by inclusion of submodels, with OsMoSys
supporting generic submodels and information hiding. Both support multiformalism models with bridge formalisms,
while SIMTHESys also allows interformalism connection elements and a more flexible interaction. Mobius presents a
more complex model architecture, in which several different model types, organized in a logic tree, take care of different
information needed to instantiate, parameterize and solve a model. AToM3 describes models as user-defined graphs, with
the support of metamodeling that supplies a grammar oriented to graph transformations.

With respect to the extension of the supported formalisms set, SIMTHESys, Mobius, OsMoSys and AToM3 explicitly offer
specific mechanisms. Being the first oriented to rapid formalism development, adding a new formalism just requires the
XML description of its elements properties and semantics, in terms of use of one or more elementary solvers. Eventually,
the development of a new elementary solver is requested, if the new formalism is based on a completely different logic
with respect to the existing ones. The second allows specification of a new formalism by XML as well, by describing
elements properties, but requires the corresponding solver to exist as an external tool and the development of a proper
wrapper (namely adapter) to manage it. The latter allows a new formalism to be translated into existing ones by providing
a proper model transformation description. Mobius, being oriented to models solution rather than on formalisms/models
manipulations, can be extended by adding proper software modules.

With respect to multiformalism, SIMTHESys and OsMoSys support the development of multiformalism models by
composition of submodels written in different formalisms by exploiting the benefits of metamodeling. AToM3 deals with
multiformalism by applying model transformations, while Mobius exploits its Abstract Functional Interface (AFI) that acts
as a generalized superformalism to which all formalisms refer.

Multisolution is dealt in SIMTHESys, OsMoSys and Mobius in a different way. Although they are absolutely not
comparable from the point of view of solution efficiency and sophistication, Mobius and SIMTHESys present some
similarities in the generation of the final solver. Such a solver is synthesized automatically, but in the case of Mobius it is
obtained in the form of an optimized executablemodel, based on the description given by the user. In the case of SIMTHESys,
a solver that can solve all models based on the same formalism combination is generated. OsMoSys solves models by (semi-
automatically) generating a business process, executed by its workflow engine, that describes the solution in terms of
external solvers activations. From this point of view, it could be said that a Mobius model is executed, a SIMTHESys model
is interpreted and an OsMoSys model is orchestrated.

2. Modeling in SIMTHESys

The SIMTHESysmodeling framework is based onmetamodeling.Metamodeling is the study of the rules and the structures
that allow the specification of models. Since a model is an abstraction of the real world, a metamodel is an abstraction of
a class of models. According to metamodeling theories, a certain class of models that share the same substanding logic can
be described by a common metamodel, that denotes the general elements, their constraints and the relationships between
them. Such a metamodel can be considered the description language for the class of models. This kind of approach supports
the exploration of the structure of modeling techniques and can be applied recursively to extrapolate the structure of
metamodels and to find more abstract common description rules for metamodels. A clear presentation of metaformalism
concepts and applications is given in [13–15].

Metamodeling is currently a consolidated conceptual tool, that is applied in different fields (e.g.ModelDriven Engineering
[16], software engineering [17] and multiformalism modeling [8,18,7]). Metamodeling is in some relation with ontologies
[19], as a metamodel can be considered a formally defined ontology.

In SIMTHESys, models are written according to metamodels known as formalisms, that are expressed by the
metametamodel known as the SIMTHESys metaformalism. In the SIMTHESys framework, metamodeling is used to offer the
users a consistent tool for the specification of modeling formalisms and to obtain a formalism organization that allows



M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839 3831

Fig. 2. SIMTHESys metamodeling stack.

formalisms extension and solvers synthesis (see Fig. 2).1 The metamodeling architecture of the SIMTHESys framework is
thus designed for three main goals:
• allowing a fast specification of new formalisms (also exploiting existing ones by extension);
• supporting multiformalism modeling;
• automatically generating solvers for (customized) formalisms (combinations).

SIMTHESys metamodeling structure is inspired to OsMoSys [8] (and DrawNET). The main difference between the two
approaches lays in the description capabilities of the metaformalism in SIMTHESys with respect to the metaformalism in
OsMoSys, due to the different aims of the two projects. While OsMoSys metaformalism is a consistent foundation for the
description of static aspects of formalisms elements and constraints (mainly syntactical), SIMTHESys metaformalism has
been designed to describe both static and dynamic aspects (specially focusing on execution semantics of the elements of a
formalism), to allow a further customization of the framework.

2.1. The SIMTHESys metaformalism

The metaformalism specifies the grammar by which the user can describe formalisms. It is designed to allow the
description of every abstract model element, in terms of the structure of its inherent information and its possible evolutions
in themodel according to the conditions thatwill bemet duringmodel evolution. The three key concepts of every SIMTHESys
formalism are the element, the property and the behavior. An element is a syntactic atomic component of a formalism
(e.g. a place, a transition or an arc in the PN formalism). It is characterized by a number of properties, representing its status
information, and a number of behaviors, describing its dynamics. The reader could see some similarities with the concept
of Object Oriented programming.

Fig. 3 gives an UML-like description of the SIMTHESys metaformalism and an example formalism (Stochastic Petri Nets)
with two extensions (in gray and light gray) thatwill be considered in Section 2.2. In the upper part the packageM2describes
in detail the parts of a formalism that have been presented. The figure presents elements and some specialized formalism
elements, that indicate submodels written in a formalism, and can contain other elements as specified by containing. An
element has properties and behaviors. A property allows the definition of a value and a type (not represented in the figure)
and can be a constant, a variable or a result. A behavior defines an action that the element can perform, eventually on other
elements (not represented in the figure) and it corresponds to a method in Object Oriented programming. An example of
how the method bodies are defined and how methods are related to each others for the enabling and firing rules of a PN
transition can be found in [6]. An element uses one ormore solver interfaces to define which solving engine(s) should be used
with it (it is generally the case of formalism elements), and one or more behavioral interfaces to reuse existing abstractions.
Moreover, an element implements a behavioral interface by explicitly defining all or some behaviors and properties specified
in it. The role of interfaces will be further examined in Section 3.

Such a structure allows us to satisfy the three goals of the framework: extensibility of formalisms, compositionality
of models and possibility of multiformalism modeling. Extensibility of formalisms2 is supported by the fact that every
element can be enriched by adding more behaviors or properties and every formalism element can be enriched by adding
more elements. Compositionality of models is provided by the fact that a formalism element can contain other formalism
elements, that allows models to contain other (sub)models. Multiformalism is granted by compositionality of models and
explicit specification of behaviors in every element. Potentially, this allows any element to be able to use behaviors typical
of elements from different formalisms and transparently acting as a bridge, thanks to the solver generating mechanism of
the framework (that builds a proper solver by examining behaviors). These three concepts will be presented again but from
the point of view of the modeler in Section 2.2.

2.2. SIMTHESys formalisms

Formalisms describe a certain formal language in terms of elements, properties and behaviors. Every formalism depends
on its formalism element for the specification of its general solutionmechanism through the interfaces. It defines its internal

1 Common metamodeling stacks consider four layers, since they include reality as the object to be modeled. In SIMTHESys case models are actually the
reality that has to be modeled, since the focus is on formalisms: thus the models layer is indicated as M0.
2 Note that formalism extension is a kind of inheritance in the sense of object orientation. At the moment, pure formalism and element inheritance are

not supported.



3832 M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839

Fig. 3. Elements of the SPN formalism (with extensions) and the metaformalism.

dynamic behavior by a proper specification of its behaviors and of its elements behaviors. Composition of models of the
same formalism is enabled by specifying the formalism model itself (renamed in this case submodel element) as an element
of the formalism. Every formalism can specify how to interface with its submodels by exploiting the bridging elements
and their behaviors. The interface with submodels can be defined as a whole or with inner elements by defining proper
export mechanisms, in the form of additional or specialized elements of the formalism itself. Multiformalism features
can be enabled by specifying different formalism elements as elements of a formalism. A formalism that is designed to



M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839 3833

interface only other different formalisms is named composition formalism. The elements for which behaviors are designed
for the interaction with elements of different formalisms are named hybrid elements. Since composition formalisms are
not substantially different from other formalisms (and are actually a subset of them), hybrid elements can also be added to
existing formalisms by formalismextension. The described behavior-based approach allows specifying complex interactions
between heterogeneous models in a compact, atomic way that is transparent to simple modelers. It appears as a feature of
a special formalism that can be applied to ownmodels without any further knowledge of behavior design logic. Conversely,
the possibility of specifying in a formalism the interaction between different formalisms offers a unique tool for the design
of multiformalism models without forcing a formalism designer to redesign related solvers. Section 3 explains how this is
obtained.

Each formalism is described by a Formalism Description Language (FDL) document.
In Fig. 3 the UML-like model M1 defines the SPN formalism, that is shown as example (white rectangles only). It has

the SPN formalism element that represents the entire formalism and it is composed of elements Place, Transition and Arc.
An SPN can contain any number of these elements. The figure describes for each element the interfaces that are used and
implemented by uses and implements association arcs and their properties and behaviors by has composition arcs. For each
property or behavior, in association arcs indicate whether it is specified by an interface. The FDL documents for SPN is an
XML description of this UML-like model. To enable the solution of a SPNmodel written in this formalism, its SPN formalism
element uses the ExpEvent solving engine. This is accomplished by means of the ExpEventSolver solver interface and the
ExpEventModel solver helper interface. ExpEventModel requires the implementation of some behaviors to allow the solving
engine to initialize, compute and set the result indexes (for this kind of engine, state and impulse reward variables). More
information about the steps to integrate a formalism within the framework can be found in [20].

Note that the SIMTHESys metamodel is oriented to general graph based formalisms. This results in an explicit
representation of arcs in the example (more frequently, Petri Nets are represented by omitting arcs and indicating input
and output bags for each transition).

Algorithm 1 fire
1: for all a ∈ Arc where a.from = this do
2: a.push();
3: end for
4: for all a ∈ Arc where a.to = this do
5: a.pull();
6: end for

A simple behavior implementation example is in Alg. 1. The behavior states that a Transition acts soliciting all the
elements that refer to it for a push operation, and all the elements referred by it for a pull operation. These operations are
defined in the PushPull behavioral interface, used by Transition and implemented by Arc. Similarly, isActive will check the
enabling rule by Arcs isActive behaviors, and enable fire. This simple organization is also the base for hybrid elements, that
implement multiformalism: in case firing this transition should cause a queue to get a new request enqueued, it is sufficient
to introduce a new Arc-like element implementing PushPull and the behavioral interface used by the queue, with a behavior
capable of performing the desired interformalism action.

A hypothetical extension of SPN is also presented in Fig. 3 where gray rectangles are used to show how the extension
mechanism can be used. The extension introduces set arcs (arcs that can produce tokens in a place with an arbitrary
set rule) by extending the formalism with an additional SetArc element. It (i) implements the PushPull behavioral
interface, (ii) extends Transition with the cmd property to specify the additional rule and (iii) extends SPN with the Exec
behavior, capable of executing the additional rules when needed. This extension is obtained as a new instantiation of the
metaformalism, by designing a new formalism that adds new elements, properties and behaviors to an SPN3.

2.3. SIMTHESys models

Eachmodel is described by aModelDescription Language (MDL) document. In Fig. 3 theM0package describes an example
of model written in the SPN formalism just defined (details are omitted). The figure evidences the fact that places, arcs and
transitions must be contained into a SPN. This model cannot contain submodels, since the formalism does not specify a self
contains relation.

3. Solving in SIMTHESys

The solution architecture of SIMTHESys is designed for the generation of solvers according to specific needs. The
formalism designer specifies the proper formalism or formalism combination. In this way, SIMTHESysER, the SIMTHESys

3 The new formalism could also be obtained by refinement of SPN: this possibility is currently unavailable but on the SIMTHESys roadmap.



3834 M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839

Fig. 4. (a) Solving stack and components relations. (b) Model generation sequence diagram.

framework support tool, has the capability to generate the desired solver by using solving engines, software components
that implement basic solution algorithms. SIMTHESysER (whose organization, limits and capabilities are described in [20])
exploits the interfaces to obtain the correct composition and to fill the semantic gap between formalisms and solving engines.

The resulting solvers can evaluate all models written by users that are compliantwith the chosen formalism or formalism
combination. Abusing naming conventions, it can be noted that while solvers generate results, SIMTHESysER generates
metaresults, being solvers the results of the analysis of FDL specifications. The structure of the solving stack and the
relationships between its components are depicted in Fig. 4(a).

An exponential event solver S generates its internal representation of a model M as depicted in Fig. 4(b). S (exploiting
ExpEventModel, in this example) requestsM to identify the enabled events by calling InitEvents(). This behavior loops through
all the elements implementing the isActive behavior and invokes its occurrence. Behaviors are invoked by generating a
Behavior Adapter using the Generating Behavior function. The solver can determine the changes in the model caused by
an event and an exponential time after which the event occurs using the Schedule function. Repeated application of this
sequence allows the solver to get all the needed information to run.

Being InitEvents defined by the formalisms as a behavior of its model element, the whole mechanism can be modified if
needed, to match the logic of different formalisms.

3.1. Solving engines

Each solving engine is designed to provide a basic solution method to the framework. A solving engine evaluates one
or more metrics, that are available to the framework by means of a proper solver interface. Formalisms designed over the
same solving engines are said to belong to the same formalism family. The set of the available solving engines is open, so
that the framework can be enriched by the development of completely new engines or by including external solvers. There
is virtually no limitation over engines, provided that they offer a solver interface, but the more specialized is the solution
method, the less wide the related formalism families can be.

The framework currently provides six solving engines for stochastic evaluation. These engines support two formalism
families, named Exponential Events (EEF) and Exponential and Immediate Events (EIEF). They allow the computation of
state rewards and impulse rewards performance indexes (similarly to [21]). State rewards compute performance measures
asmean values of some function of the state of amodel (mean length of a queue,mean number of tokens in a Petri net place).
Impulse rewards compute performance indices in terms of the number of times in which an event occurs (throughput of
queues or of Petri net transitions).

Se and Sg are classic event based simulators based on [22], with exponential interarrival times (without and with the
possibility of immediate non stochastic events respectively). The execution is performed by a proper behavior that identifies
all enabled events and draws the needed exponentially distributed samples.

Ces and Cgs are designed to generate Continuous Time Markov Chains (CTMCs) and perform steady state analysis
(respectivelywithout andwith the possibility of immediate non stochastic events). The engines are based on a state snapshot
logic and exploit a behavior to obtain the needed information from the high-level formalismmodel. This process starts from
the generation of the initial state, then it produces the transition graph of the CTMC by executing all the states including
enabled transitions in each step, until all states that are generated are already present in a snapshot. The transition graph is
then used to obtain the generator matrix, and the steady state solution vector is computed.

Cet and Cgt are designed to generate Continuous Time Markov Chains (CTMCs) and perform transient analysis
(respectively without and with the possibility of immediate non stochastic events), with similar approaches with respect to
Ces and Cgs.



M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839 3835

Since the nature of the solving engines is independent from formalisms and from the solvers generation process and
thanks to the presence of the interfaces, other engines of different nature based on different solution paradigms can be
integrated in the framework.

3.2. Interfaces

The possibility of sharing common sets of behaviors between different elements is formalized through the concept of
interfaces. Interfaces constitute the intermediate layer of the SIMTHESys solving stack. Interfaces are divided into three
categories: solver interfaces, solver helper interfaces and behavioral interfaces. Interfaces are used to bind solving engines and
formalisms.

Solver interfaces export the capabilities of solving engines towards formalisms. A formalism should use a solver interface
in order to be able to define which engine is to be used when generating the solver and to specify the implementation of
the methods used to invoke the engine. An example of use of a solver interface is in Fig. 3. In the figure, the SPN formalism
element uses the ExpEventSolver solver interface (that is supported by Se, Ces and Cet ).

Solver helper interfaces offer solving engines the hooks to obtain the information related to a specific model using a
certain (multi)formalism. A formalism implements a solver helper interface by guaranteeing that a number of behaviors and
properties are mandatory in all models written in the specified (multi)formalism. The behaviors offer the solver the means
to access the information needed for the solution process by specifying how it can be computed by model parameters and
state. The properties instruct the solver about how to construct the data structures needed by the solution process (e.g. the
state space). Generally, a formalism family shares the same solver helper interface. An example of use of a solver helper
interface is in Fig. 3. In the figure, the SPN formalism element implements the ExpEventModel solver helper interface (that is
required by Se, Ces and Cet ), by implementing behaviors InitEvents, setStateRewards, setImpulseRewards, countStateRewards
and computeStateRewards. For the exponential event solving engines, countStateRewards is used to return the number of
state rewards of a model; computeStateRewards is used to compute all the rewards in a given state (by using other behaviors
of the variousmodel elements to compute the values related to the specific primitives, such as the tokens in a place element
to evaluate theMeanTokens property); setStateRewards is used by the solving engine to return computed indices (e.g. setting
MeanTokens); listImpulseRewards is used to list the reward names of all the impulse rewards associated to a model; and
setImpulseRewards is used similarly to setStateRewards.

Behavioral interfaces offer reusable facilities, in terms of pre-built sets of behaviors and properties. Such interfaces can
provide functionalities that are typical of specific concepts (e.g. the arc in Petri nets-like models, or the communication
protocols primitives in a formalism for computer networks modeling). They are used to implement easily similar modeling
patterns in similar formalisms, or can aggregate complex sequences of simple behaviors into higher level behaviors, to
offer the modeler an easier modeling paradigm for more abstract modeling domains. An example of implementation of a
behavioral interface is in Fig. 3. In the figure, the Transition element uses the PushPull behavioral interface (typical of elements
that take and produce a number of items by input and output arcs, and implemented by theArc element) and implements the
Active behavioral interface (typical of elements that need to be scheduled by event based solving engines) by implementing
the isActive behavior.

The use of interfaces is of paramount importance for decoupling formalisms and solving engines and for allowing the
design of hybrid formalism elements, thus the enactment of multiformalismmodeling. In the first case, the same formalism
can be used to build different solvers founded on different solving engines, simply by using a different solver interface. Also,
different formalisms can be mapped onto a same solving engine, by implementing the same solver helper interface. In the
second case, a hybrid element, allowing a multiformalism solver to be built, can be created by composing in it two different
behavioral interfaces, typical of two formalisms, and describing the composition by properly mapping to each other related
behaviors.

3.3. Solvers

As for models, general characteristics about solvers cannot be given, since their capabilities and use obviously depend on
the solving engine(s) and the formalism(s) to which they are related. A SIMTHESys solver is a stand-alone software tool that
is able to parse MDL documents describing models that conform to the specific (multi)formalism for which the solver has
been generated. Besides the MDL documents, some solver could also need additional input data (e.g. if is designed to work
in-the-loop with the real system that the model represents), in form of other documents or data streams. A solver generates
results in form of documents.

Solvers are generated by SIMTHESysER, a dedicated tool4 that is one of the components of the SIMTHESys framework.
The solver is synthesized by combining the specified formalism definitions, interfaces and solving engines as shown in Fig. 5
(more details about the steps to be carried out to get automatically a solver for the newmulti-formalismcanbe found in [20]).
SIMTHESysER exploits the definition of the main formalism element of the (multi)formalism to select the needed solving

4 The tool, written in Java with some components in C++ to enhance performance, is currently available and freely downloadable from the SIMTHESys
web site www.dem.unina2.it/simthesys: see it also for examples and references.

http://www.dem.unina2.it/simthesys


3836 M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839

Fig. 5. The components needed to build a solver.

Fig. 6. The creation process of a solver.

engines by using the information obtained from the solver interfaces. Themain cycle of the solver is built on the solver helper
interface(s), while the internal mechanisms of the solver are obtained from the behavioral interfaces. This synthesis process
is performed by the two main internal components of SIMTHESysER, the FDL Analyzer and the Solver Generation Facility
(see Fig. 6). The FDL Analyzer reads a FDL document and generates the MDL parser, building the classes that implement the
description of the elements of the formalism(s) by exploiting the interfaces. The Solver Generation Facility consists of scripts
that generates the code for the evaluation of formalism specific performance metrics, the code of main cycle of the solver
by combining the interfaces and the solving engines, and the final solver.

Currently, with the set of solving engines discussed in 3.1, SIMTHESysER has been used for the automatic generation of
solvers for Stochastic Petri Nets (SPN) [23], Stochastic Petri Nets with exception handling, Generalized Stochastic Petri Nets
(GSPN) [23], Generalized Stochastic Petri Nets with exception handling, Markov Chains (MC), Queuing Networks (QN) [24],
Finite Capacity QueuingNetworks (FCQN) [25], Fault Trees (FT) [26], a stochastic verification formalism inspired to stochastic
automata [4] and custom multi-formalisms based on their composition.

4. Using SIMTHESys

This section describes an example of a new formalism that can be used to add the features of software rejuvenation [27]
to a performance model written in any formalisms that can be solved by the EEF or the EIEF engines. The importance of
including all the elements related to software rejuvenation in a performance model in modular way was addressed in [28]
and later extended in [29]. Specifically, the latter addressed the possibility of identifying blocks that can describe the various
features of the rejuvenation, and use them to produce high-level models of the feature. However, in that work the various
features had to be converted manually by the user in Fluid Stochastic Petri Nets [30], and, although suggested, no automatic
conversion procedure was proposed.

In this section, those concepts are extended by creating a new formalism called SR (Software Rejuvenation), that adds
specific primitives tomodel the preventive rejuvenation of software systems. In the case presented in this paper, phase-type
distributions [31] are used. In order to show the flexibility of the proposed approach, the scope is limited to the software
system, where rejuvenation is implemented by restarting the application (note that this approach can represent a limitation
when modeling a real system). The formalism includes three new primitives: the Degradation, the Rejuvenation and the
Crash and a new arc called RateControl. The Degradation models the system degradation, i.e. the aging of the system. It is
implemented by a sequence of exponential events according to the Markov Chain shown in Fig. 7. Each state i represents a
different degradation level φi: in particular 0 ≤ φi ≤ 1 is a factor that slows down the exponential firing time of the events
to which the degradation is connected using a RateControl arc. The mean sojourn in each state i is exponentially distributed
with a mean time of 1/λi. At the end of stage i, the models jump to the next state i + 1, up to a maximum degradation level
represented by state n where the system remains until it crashes or it is rejuvenated.

The system can experience failures, that are modeled by the Crash primitive. Each crash primitive alternates between
two states: working and under repair. The sojourn time in the first state, which represents theMean Time To Failure (MTTF),
is distributed according to a phase type distribution with a total of n phases. The jump rate from phase i to i + 1 is λCi , and
the probability of crashing is ψC

i . Similarly, the sojourn time in the second state, that represents the Mean Time To Repair



M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839 3837

Fig. 7. Degradation.

Fig. 8. Crash.

Fig. 9. Rejuvenation.

(MTTR), is represented also by a phase type distribution, with parameters m, λRi and ψR
i . The Markov chain that describes

the Crash primitive is shown in Fig. 8.
Finally, to reduce the faults, the system might execute some preventive restoration by restarting the service. This is

modeled by the Rejuvenation component, which alternates between two states that represent the normal operation and the
duration of the Rejuvenation. The sojourn time in both states is also phase type distributed with parameters n, λCi ,ψ

C
i ,m, λRi

and ψR
i respectively, and their underlaying Markov chain is represented in Fig. 9. The various elements included into a SR

sub-model can interact together according to the rules described in Table 1. Specifically, each time a Crash occurs, the system
identifies the fault and restarts the system. During this period, the system is not working, and degradation or rejuvenation
are blocked. As soon as the system resumeworking, both degradation and rejuvenation restart their timing by resetting their
phase to the initial one. It is assumed that crashes cannot occur during the repair of a faulty system. Under the rejuvenation,
the degradation is reset to its initial phase to model the effect of restarting the software. A crash may happen during the
rejuvenation; this occurrence does not reset the phase of the crash and it does not block the corresponding event. However,
the interaction between the degradation and the crash has been modeled. The actual rate at which the phase can change
(and the event can occur in a phase) for the crash block, has been made inversely proportional to the degradation: in this
way, themore the system is degraded, the higher is the possibility of having a crash. Under this hypothesis, the rejuvenation
has also an indirect effect that reduces the crash probability by reducing the rate at which the faulty event can happen.

The previous primitives can be employed to control a model with respect of other formalisms by using still the same
set of properties that characterize the software rejuvenation. For example, in Fig. 10, the SR primitives are used to control a
simple server (with a single buffer position), modeled by an SPN. In this case, a timed transition Srv represents the service
of a customer, whose arrival is determined by the firing of transition Arr. The service transition is controlled by the SR
sub-model which introduces the software rejuvenation. The relations between the two models are defined by the inhibitor
(CheckLT ), test (CheckGE) and rate control (RateControl) arcs. In particular, the rate control arc that connects the degradation
to the Srv transition models the effect of the aging of the component: transition Srv is slowed down by the degradation
factor corresponding to the current degradation phase. When the system is stopped, either for a crash or for an ongoing
restart, the server transition cannot fire due to presence of the CheckLT arc that connects the SR block to the transition.
Since the SR block implements the getOccupancy behavior by returning 1 if the system is either crashed or rejuvenating, this
correctly models the desired feature. Finally, in order to model the fact that the system can only crash or degrade when it
is working, two CheckGE arcs connect the place containing the client currently in service (the token that enables transition



3838 M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839

Fig. 10. Model.

Table 1
Interaction among the events of the SR formalism.

Event Deg. phase Rej. phase Rej. state Deg. Rej. Crash

Crash 0 0 Normal Blocked Blocked NA
Rejuv. 0 NA NA Blocked NA Blocked

Fig. 11. Crash probability and throughput for different times between the rejuvenation, and different rejuvenation lengths.

Srv) to the Crash and the Degradation elements of the SR model. Since all these interactions are governed by behaviors, the
same primitives can be used to control other formalisms, like a queuing network, in the same way.

To prove the efficacy of the model using the methods described in Sections 2 and 3, Fig. 11 shows the crash probability
and the response time that have been obtained by varying both the time between two consecutive rejuvenation, and the
duration of the rejuvenation. As it can be seen, the throughput increases, but also the crash probability becomes larger by
increasing the time between two resets.

5. Conclusions and future work

This paper has outlined the SIMTHESys approach, and shown its applicability by presenting a way to add software
rejuvenation to a model written in a different formalism. The approach, although relatively new, has proven to be very
flexible in several tests due to the architecture of the behaviors that make the framework parameterizable. Currently,
SIMTHESys supports the extension of common formalisms like Petri Nets, Fault Trees and Queuing Networks, to include new
features such as testing specific conditions, throwing and catching exceptions, and implementing software rejuvenation
policies. Our current work focuses on the development of new solution components that allow the construction of
formalisms which are not only based on exponential events, but also on other features including continuous variables
(i.e.fluid and hybrid models), or spatial distributions (i.e. Markovian agents and cellular automata).

References

[1] M. Gribaudo, D.C. Raiteri, G. Franceschinis, Drawnet, a customizable multi-formalism, multi-solution tool for the quantitative evaluation of systems,
in: QEST, 2005, pp. 257–258.

[2] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Modeling Framework, second ed., Addison–Wesley Professional, 2008.
[3] E. Barbierato, M. Gribaudo, M. Iacono, Defining formalisms for performance evaluation with simthesys, Electric Notes Theoretical Computer Science

275 (2011) 37–51.
[4] E. Barbierato, M. Gribaudo, M. Iacono, Exploiting multiformalism models for testing and performance evaluation in simthesys, in: Proceedings of 5th

International ICST Conference on Performance Evaluation Methodologies and Tools — VALUETOOLS 2011, 2011.



M. Iacono et al. / Computers and Mathematics with Applications 64 (2012) 3828–3839 3839

[5] E. Barbierato, M. Gribaudo, M. Iacono, S. Marrone, Performability modeling of exceptions-aware systems in multiformalism tools, in, in: K. Al-Begain,
S. Balsamo, D. Fiems, A. Marin (Eds.), ASMTA, in: Lecture Notes in Computer Science, vol. 6751, Springer, 2011, pp. 257–272.

[6] M. Iacono, M. Gribaudo, Element based semantics in multi formalism performance models, in: MASCOTS, IEEE, 2010, pp. 413–416.
[7] J. de Lara, H. Vangheluwe, Atom3: A tool for multi-formalism and meta-modelling, in: R.-D. Kutsche, H. Weber (Eds.), FASE, in: Lecture Notes in

Computer Science, vol. 2306, Springer, 2002, pp. 174–188.
[8] V. Vittorini, M. Iacono, N. Mazzocca, G. Franceschinis, The osmosys approach tomulti-formalismmodeling of systems, Software and SystemModeling

3 (1) (2004) 68–81.
[9] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J.M. Doyle, W.H. Sanders, P. Webster, The mobius modeling tool, in: Proceedings of the 9th

International Workshop on Petri Nets and Performance Models, PNPM’01, IEEE Computer Society, Washington, DC, USA, 2001, p. 241.
[10] K.S. Trivedi, Sharpe 2002: Symbolic hierarchical automated reliability and performance evaluator, in: DSN ’02: Proceedings of the 2002 International

Conference on Dependable Systems and Networks, IEEE Computer Society, Washington, DC, USA, 2002, p. 544.
[11] G. Ciardo, R.L. Jones III, A.S. Miner, R.I. Siminiceanu, Logic and stochastic modeling with smart, Performance Evaluation 63 (2006) 578–608.
[12] F. Bause, P. Buchholz, P. Kemper, A toolbox for functional and quantitative analysis of deds, in: Proceedings of the 10th International Conference on

Computer Performance Evaluation: Modelling Techniques and Tools, TOOLS ’98, Springer-Verlag, London, UK, 1998, pp. 356–359.
[13] J. Bézivin, On the unification power of models, Software and System Modeling 4 (2) (2005) 171–188.
[14] J.P. Van Gigch, System Design Modeling and Metamodeling/John P. van Gigch, Plenum Press, New York, 1991.
[15] M.A. Jeusfeld, M. Jarke, J. Mylopoulos (Eds.), Metamodeling for Method Engineering, MIT Press, Cambridge, MA, USA, 2009.
[16] J.D. Poole, Model-Driven Architecture: Vision, Standards, and Emerging Technologies. Position Paper Submitted to ECOOP 2001, 2001.
[17] O.M. Group, Unified modeling language standards version 2.3. URL http://www.omg.org/spec/UML/2.3/.
[18] H.M. Gholizadeh, M.A. Azgomi, A meta-model based approach for definition of a multi-formalism modeling framework, International Journal of

Computer Theory and Engineering 2 (1) (2010) 87–95.
[19] M. Uschold, M. Grninger, M. Gruninger, Ontologies: principles, methods and applications, Knowledge Engineering Review 11 (1996) 93–136.
[20] E. Barbierato, M. Gribaudo, M. Iacono, Simthesyser: a tool generator for the performance evaluation of multiformalismmodels, Tech. Rep., Università

degli Studi di Napoli, Belvedere Reale di San Leucio 81100 Caserta, Italy, February 2012.
[21] D.D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M. Doyle, W.H. Sanders, P.G. Webster, Themobius framework and its implementation, 2002.
[22] S. Robinson, Simulation: The Practice of Model Development and Use, John Wiley & Sons, Inc., New York, NY, USA, 2004.
[23] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, G. Conte, Modelling with Generalized Stochastic Petri Nets, John Wiley & Sons, Inc., New York, NY,

USA, 1994.
[24] S. Balsamo, V.D.N. Personè, P. Inverardi, A review on queueing network models with finite capacity queues for software architectures performance

prediction, Performed Evaluation 51 (2–4) (2003) 269–288.
[25] W. Gordon, G. Newell, Closed queueing systems with exponential servers, Operations Research 15 (2) (1967) 254–265.
[26] D.C. Raiteri, M. Iacono, G. Franceschinis, V. Vittorini, Repairable fault tree for the automatic evaluation of repair policies, in: DSN, IEEE Computer

Society, 2004, pp. 659–668.
[27] S. Garg, A. Puliafito, M. Telek, K. Trivedi, Analysis of software rejuvenation using markov regenerative stochastic petri net, in: Software Reliability

Engineering, 1995. Proceedings, Sixth International Symposium on, 1995, pp. 180–187.
[28] A. Bobbio, S. Garg, M. Gribaudo, A. Horvath, M. Sereno, M. Telek, Modeling software systemswith rejuvenation, restoration and checkpointing through

fluid stochastic petri nets, in: Petri Nets and Performance Models, 1999. Proceedings. The 8th International Workshop on, 1999, pp. 82–91.
[29] A. Bobbio, S. Garg, M. Gribaudo, A. Horvath, M. Sereno, M. Telek, Compositional fluid stochastic petri net model for operational software system

performance, in: Software Reliability Engineering Workshops, 2008. ISSRE Wksp 2008. IEEE International Conference on, 2008, pp. 1–6.
[30] G. Horton, V.G. Kulkarni, D.M. Nicol, K.S. Trivedi, Fluid stochastic petri nets: Theory, applications, and solution techniques, European Journal of

Operational Research 105 (1) (1998) 184–201.
[31] C.A. O’Cinneide, Characterization of phase-type distributions, Communications in Statistics. Stochastic Models 6 (1) (1990) 1–57.

http://www.omg.org/spec/UML/2.3/

	The SIMTHESys multiformalism modeling framework
	Introduction
	Framework description
	Comparison with other frameworks
	A comparative analysis

	Modeling in SIMTHESys
	The SIMTHESys metaformalism
	SIMTHESys formalisms
	SIMTHESys models

	Solving in SIMTHESys
	Solving engines
	Interfaces
	Solvers

	Using SIMTHESys
	Conclusions and future work
	References


