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Abstract

This paper has two themes that are intertwined. The first is the dynamics of certain piecewis
maps onRm that arise from a class of analog-to-digital conversion methods calledΣ∆ (sigma–delta)
quantization. The second is the analysis of reconstruction error associated with each such m

Σ∆ quantization generates approximate representations of functions by sequences that
restricted set of discrete values. These are special sequences in that their local averages
function values closely, thus enabling simple convolutional reconstruction. In this paper, we a
cerned with the approximation of constant functions only, a basic case that presents surp
complex behavior. Anmth orderΣ∆ scheme with inputx can be translated into a dynamical syst
that produces a discrete-valued sequence (in particular, a 0–1 sequence)q as its output. When th
schemes are stable, we show that the underlying piecewise affine maps possess invariant
tile Rm up to a finite multiplicity. When this multiplicity is one (the single-tile case), the dynam
within the tile is isomorphic to that of a generalized skew translation onTm.

The value ofx can be approximated using any consecutiveM elements inq with increasing accu
racy inM. We show that the asymptotical behavior of reconstruction error depends on the reg
of the invariant sets, the orderm, and some arithmetic properties ofx. We determine the behavio
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in a number of cases of practical interest and provide good upper bounds in some other cas
exact analysis is not yet available.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

This paper is motivated by the mathematical problems exhibited in and sugges
a class of real-world practical algorithms that are used to perform analog-to-digita
version of signals. There will be two themes in our study of these mathematical prob
The first theme is the dynamics of certain piecewise affine maps onRm that are associ
ated with these algorithms. The second theme is the analysis of the reconstructio
While the first theme is somewhat independent of the second and is of great interes
own, the second theme turns out to be crucially dependent on the first and is of inter
theoretical as well as practical reasons.

Let us start with the following abstract algorithm for analog-to-digital encoding.
each input real numberx in some intervalI , there is a mapTx on a spaceS , and a finite
partitionΠx = {Ωx,1, . . . ,Ωx,K } of S . For a fixed set of real numbersd1 < · · · < dK , and
a typically fixed (but arbitrary) initial pointu0 ∈ S , we define a discrete-valued outp
sequenceq := qx via

q[n] = di if u[n−1] := Tn−1
x (u0) ∈ Ωx,i . (1.1)

We would like the mappingx �→ q to be invertible in a very special way: for aninput-
independentfamily of averaging kernelsφM ∈ �1(Z), M = 1,2, . . . , we require that for al
x ∈ I , asM → ∞,

(q ∗ φM)[n] :=
∑

k

φM [k]q[n − k] → x, uniformly in n. (1.2)

For normalization, we ask that the size of the averaging window (i.e., the support oφM )
grow linearly inM ,1 and the weights satisfy

∑
n φM [n] = 1.

Note that such an encoding of real numbers is inherently different from bin
expansion (or any other expansion in a number system) in that, due to (1.2), equal
segments of the sequenceq are required to be equally good in approximating the va
of x. Hence, there is a “translation-invariance” property in the representation.

This setting is a special case of a more general one in whichx = (x[n])n∈Z is a bounded
sequence taking values inI and

q[n] = di if u[n−1] ∈ Ωx[n],i , (1.3)

1 It will be of interest to use infinitely supported kernels as well. We will define the necessary modificati

handle this situation later.
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where we now defineu[n] := Tx[n](u[n−1]), and require that

(q − x) ∗ φM → 0 uniformly. (1.4)

The basic motivation behind this type of encoding is the following intuitive idea. Le
elementsx[n] be closely and regularly spaced samples of a smooth functionX :R → I .
Since local averages of these samples around any pointk would approximatex[k], i.e.,
x ∗ φM ≈ x for suitableφM , (1.4) would then imply that the sequencex (and therefore the
functionX) can be approximated by the convolutionq ∗ φM .

Such analog-to-digital encoding algorithms have been developed and used in ele
engineering for a few decades now. Most notable examples are theΣ∆ quantization(also
calledΣ∆ modulation) of audio signals and the closely relatederror-diffusion in digital
halftoning of images. There are several sources in the electrical engineering literat
the theoretical and practical aspects ofΣ∆ quantization [6,10,22]. Digital halftoning an
its connections toΣ∆ quantization can be found in [1,2,4,20,26]. Recently,Σ∆ quantiza-
tion has also received interest in the mathematical community, especially in approxim
theory and information theory, since a very important question is the rate of conver
in (1.4) [5,9,13,14,16].

We give in Section 2 the original description of anmth orderΣ∆ modulation scheme
in terms of difference equations. The underlying specific mapTx , which we then refe
to asMx (the “modulator map”), is described in Section 4;Mx is the piecewise affine
transformation onS = Rm defined by

Mx(v) = Lv + (x − di)1 if v ∈ Ωx,i, (1.5)

whereL := Lm is them×m lower triangular matrix of 1’s and1 := 1m := (1, . . . ,1)� ∈
Zm. EachΣ∆ scheme is therefore characterized by its orderm, the partitionΠx , and the
numbers{di}. A scheme is calledk-bit if the sizeK of the partitionΠx satisfies 2k−1 <

K � 2k . If the numbers{di} are in an arithmetic progression, this is referred to asuniform
quantization. As a consequence of the normalization

∑
n φM [n] = 1, the input numbersx

are chosen inI ⊂ [d1, dK ]. A scheme is said to bestableif for eachx, forward trajectories
under the action ofMx are bounded inRm. (More refined definitions of stability will be
given in Section 4.) The partitionΠx is an essential part of the algorithm for its central r
in stability.

It is natural to measure the accuracy of a scheme by how fast the worst case
‖(x − q) ∗ φM‖∞ converges to zero. It is known that for anmth order stable scheme, an
an appropriate choice for the familyF = {φM} of filters,2 this quantity isO(M−m) [9]. The
hidden constant depends on the scheme as well as the input sequencex. Here, the exponen
m is not sharp; in fact, form = 1 andm = 2, improvements have been given for vario
schemes [13,15]. We will review the basic approximation properties ofΣ∆ quantization in
Section 2.

2 We shall adopt the electrical engineering terminology “filter” to refer to a sequence (or function) tha

convolutionally.
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In applications, it is also common to measure the error in the root mean square
due its more robust nature (this norm is defined in Section 3). It is known for a
class of schemes we callideal, and a small class of sequences (basically, constants
pure sinusoids) that this norm, when averaged over a smooth distribution of valuex,
has the asymptotic behaviorO(M−m−1/2) [8,11,17]. The analyses employed in obtain
these results rely on very special properties of these ideal schemes, such as em
an (effective)m-bit uniform quantizer for themth order scheme. It was not known ho
to extend these results to low-bit schemes (in particular, 1-bit schemes) of high ord
which experimental results and simulation suggested similar asymptotical behavior
root mean square error.

It is the topic of this paper to provide a general framework and methodology to
lyzeΣ∆ quantization in an arbitrary setup (in terms of partition and number of bits) w
inputs are constant sequences. With regard to the first theme of this paper, we p
Section 5 that the mapsMx have an outstanding property of yieldingtiling invariant sets,
up to a multiplicity that is determined by the map. In the particular case of single
being invariant underMx (which also appears to be systematically satisfied by all prac
Σ∆ quantization schemes), we develop a spectral theory ofΣ∆ quantization. This consti
tutes the second theme of the paper. The particular consequence of tiling that enab
spectral analysis is presented in Section 6. The resulting new error analysis for gene
particular cases is presented in the remainder of the paper.

Some notation

The symbolsR, Z, andN denote the set of real numbers, the set of integers an
set of natural numbers, respectively.T denotes the set of real numbers modulo 1,
T = R/Z. Functions onRm that are 1-periodic in each dimension are assumed to be de
on Tm via the identificationT = [0,1), and functions defined onTm are extended toRm

by periodization.
Vectors and matrices are denoted in boldface letters. Transpose is denoted by an

script �. The j th coordinate of a vectorv is denoted byvj , unless otherwise specifie
Sequence elements are denoted using brackets, such as inω = (ω[n])n∈Z. The sequencẽω
denotes time reversal ofω defined byω̃[n] := ω[−n], and the symbol∗ is used to denote
the convolution operation.

We define two types of autocorrelation. For a square integrable real-valued functf ,
we define

Af (t) := (f ∗ f̃
)
(t) =

∫
f (ξ)f (ξ + t)dξ.

On the other hand, we define the autocorrelationρω for a bounded (real-valued) sequen
ω by the formula

ρω[k] := lim
1

N∑
ω[n]ω[n + k],
N→∞ N
n=1
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provided the limit exists.
The Fourier series coefficients of a measureµ on T are given by

µ̂[n] :=
∫
T

e−2πinξ dµ(ξ),

and the Fourier transform of a sequenceh = (h[n])n∈Z is denoted by the capital letterH ,
i.e.,

H(ξ) :=
∑
n∈Z

h[n]e2πinξ .

Hence, when Fourier inversion holds, we haveĤ [n] = h[n].
The “big oh” f = O(g) and the “small oh”f = o(g) notations will have their usua

meanings. When it matters, we also use the notationf �α g to denote that there exis
a constantC that possibly depends on the parameter (or set of parameters)α such that
f � Cg. We writef 
 g if f � g andg � f , which is the same asf = Θ(g).

2. Basic theory of Σ∆ quantization

In this section, we describe the principles ofΣ∆ quantization (modulation) via a set
defining difference equations. The description in terms of piecewise affine maps onRm will
be given in Section 4. Although the schemes representable by these difference eq
do not constitute the whole collection of algorithms called by the nameΣ∆ modulation,
they are sufficiently general to cover a large class of algorithms that are used in p
and many more to be investigated.

Let m be the order of the scheme, andx = (x[n])n∈Z be the input sequence. Then
sequence of state-vectors, denoted

u[n] = (u1[n], . . . , um[n])�, n = 0,1, . . .

and a sequence of output quantized values (or symbols), denotedq[n], n = 1,2, . . . , are
defined recursively via the set of equations

q[n] = Q(x[n],u[n−1]),
u1[n] = u1[n−1] + x[n] − q[n],
u2[n] = u2[n−1] + u1[n],

... = ...

um[n] = um[n−1] + um−1[n],


(2.1)

where the mappingQ :Rm+1 → {d1, . . . , dK }, called thequantization rule, or simply the
quantizerof theΣ∆ modulator, is specific to the scheme. In circuit theory, these equa

are represented as a feedback-loop system via the block diagram given in Fig. 1.
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Fig. 1. Block diagram of anmth orderΣ∆ modulator.

In addition to producing the output sequenceq, the role of the quantizerQ of a Σ∆

modulator is to keep the variablesuj bounded. A more precise definition of this notion
stability will be given later. Let us see how boundedness ofuj results in a simple recon
struction algorithm. It can be seen directly from (2.1) that for eachj = 1, . . . ,m, the state
variableuj satisfies

x − q = ∆juj , (2.2)

where∆ is the difference operator defined by(∆v)[n] = v[n] − v[n−1]. Considerj = 1,
and assume thatx is constant. From this, it follows that

∣∣∣∣∣x − 1

M

n+M∑
k=n+1

q[k]
∣∣∣∣∣= 1

M

∣∣∣∣∣
n+M∑

k=n+1

(
x − q[k])∣∣∣∣∣= 1

M

∣∣∣∣∣
n+M∑

k=n+1

(
u1[k] − u1[k−1])∣∣∣∣∣

= 1

M

∣∣u1[n+M] − u1[n]∣∣� 2

M
‖u1‖∞. (2.3)

This means that simple averaging ofanyM consecutive output valuesq[k] yields a recon-
struction withinO(M−1).

This approximation result can be generalized easily. For simplicity of the discus
let us assume that the difference equation (2.2) is satisfied on the whole ofZ (with some
care, this can be achieved via backwards iteration of (2.1)). For a given averaging
φ ∈ �1(Z) with

∑
n φ[n] = 1, let

ex,φ := x − q ∗ φ (2.4)

be the error sequence. Sincex is a constant sequence, we havex = x ∗ φ. Therefore

( ) ( )

ex,φ = (x − q) ∗ φ = ∆mum ∗ φ = um ∗ ∆mφ , (2.5)
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where at the last step we have used commutativity of convolutional operators. From
we obtain

‖ex,φ‖∞ � ‖um‖∞
∥∥∆mφ

∥∥
1. (2.6)

It is not hard to show that there is a family of averaging kernelsφM,m (which can be, for
instance, discrete B-splines of degreem) with support size growing linearly inM such that
‖∆mφM,m‖1 � CmM−m. Combined with (2.6), this yields the boundO(M−m) on the uni-
form approximation error. A proof of this result in the more general setting of oversam
of bandlimited functions can be found in [9,12].

3. Mean square error and its spectral representation

For the rest of this paper, we shall be interested in the mean square error (also
thetime-averaged square error) of approximation defined by

E(x,φ) := lim
N→∞

1

N

N∑
n=1

∣∣ex,φ[n]∣∣2, (3.1)

provided the limit exists (otherwise the lim is replaced by a lim sup). Theroot mean
square error is defined to be

√
E(x,φ). For convenience in the notation, we shall wo

with E(x,φ).
The mean square error enjoys properties that are desirable from an analytic p

view. The definition of autocorrelation sequence yields an alternative description giv

E(x,φ) = ρex,φ [0]. (3.2)

Using the formula (2.5) and the standard relationρω∗g = ρω ∗ g ∗ g̃ wheneverρω exists
andg ∈ l1, we find that

E(x,φ) =
(
ρum ∗ (∆mφ

) ∗ (̃∆mφ
))[0]. (3.3)

We shall abbreviateρum by ρu.
The computation ofE(x,φ) can also be carried out in the spectral domain. Sinceρu is

positive-definite, it constitutes, by Herglotz’ theorem [19, p. 38], the Fourier coeffic
of a non-negative measureµ on T (thepower spectral measure), i.e.,

ρu[k] =
∫

e−2πikξ dµ(ξ). (3.4)
T
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Combining this result with (3.3) and elementary Fourier analysis yields the spectra
mula

E(x,φ) =
∫
T

∣∣2 sin(πξ)
∣∣2m∣∣Φ(ξ)

∣∣2 dµ(ξ), (3.5)

whereΦ has the absolutely convergent Fourier series representation

Φ(ξ) =
∑
n

φ[n]e2πinξ .

This computational alternative is effective when the measureµ has a simple descrip
tion. On the other hand, it can happen that this measure is too complex to compu
directly. In our case, as we shall demonstrate,µ will generally have a pure point (discret
componentµpp, and an absolutely continuous componentµac. (There will not be any con
tinuous singular component.) We will denote the Radon–Nikodym derivative ofµac by Ψ

(i.e., dµac(ξ) = Ψ (ξ)dξ , whereΨ ∈ L1(T)), and call it the spectral density ofµac. We
shall analyze these two componentsµpp andµac via their Fourier series coefficients. U
der certain conditions, we will be able to describe both of these components explicit
compute the asymptotical behavior ofE(x,φM) asM → ∞.

4. Piecewise affine maps of Σ∆ quantization

In this section, we study the difference equations ofΣ∆ modulation as a dynamica
system arising from the iteration of certain piecewise affine maps onRm. It easily follows
from the equations in (2.1) that

uj [n] =
j∑

i=1

ui[n−1] + (x[n] − q[n]), 1� j � m, (4.1)

or in short,

u[n] = Lu[n−1] + (x[n] − q[n])1, (4.2)

where the matrixL and the vector1 were defined in (1.5). Using the definition ofq[n] in
(2.1), we introduce a one-parameter family of maps{Mx}x∈I on Rm defined by

Mx(v) := Lv + (x − Q(x,v)
)
1. (4.3)

Hence, the evolution of the state vectoru[n] is given by( )

u[n] = Mx[n] u[n−1] . (4.4)
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According to the formulation presented in the introduction, the elements of the pa
Πx are then given byΩx,i = {v ∈ Rm: Q(x,v) = di}, and the expression (4.3) is equivale
to (1.5). For the rest of the paper, we shall assume thatx[n] = x is a constant sequence
that

u[n] = Mn
x

(
u[0]), (4.5)

and

q[n] = Q
(
x,Mn−1

x

(
u[0])). (4.6)

A variety of choices for the quantizerQ have been introduced in the practice ofΣ∆

modulation. Most of these are designed with circuit implementation in mind, and ther
necessitate simple arithmetic operations, such as linear combinations and simple
olding. A canonical example would be

Q0(x,v) = �α0x + α1v1 + · · · + αmvm + β0 + β1, (4.7)

where the coefficientsαi andβi are specific to each scheme. We will call these rules “
ear”, referring to the fact that the setsΩx,i are separated by translated hyperplanes inRm.
There has also been recent research on more general quantization rules and their
[9,15,16].

Typically, an electrical circuit cannot handle arbitrarily large amplitudes, and clip
quantities that are beyond certain values. This is calledoverloading. In this case, the effec
tive mappingQ is given by

Q(x,v) =


Q0(x,v) if Q0(x,v) ∈ {d1, . . . , dK},
d1 if Q0(x,v) < d1,

dK if Q0(x,v) > dK.

(4.8)

For the rest of the paper, we assume that thedi form a subset of an arithmetic progressi
of spacing 1, such as the case for the rule (4.7). Since we can always subtract
constant fromx and thedi , we also assume, without loss of generality, that thedi are simply
integers. We shall be most interested in one-bit quantization rules, i.e., rules for
Ran(Q) = {d1, d2}. Let us mention that one-bitΣ∆ modulators are usually overloaded
their nature.

Let us emphasize once again that the quantization rule is crucial in the stability
system. For a givenx, we call aΣ∆ scheme defined by the quantization ruleQ(x, ·)
orbit stable, or simplystable, if for every initial conditionu[0] in an open set, the forwar
trajectory under the mapMx is bounded inRm, andpositively stable, if there exists a
bounded setΓ0 ⊂ Rm with non-empty interior that is positively invariant underMx , i.e.,
Mx(Γ0) ⊂ Γ0. These two notions are closely related. Clearly, positive stability imp
stability. On the other hand, in a stable scheme, if the forward trajectories of poi
an open set are bounded with a uniform bound, then this would also imply the exis
of a positively invariant bounded set. In practice, it is also desirable that stability

uniformly in x. However, we shall not need this kind of uniformity in this paper.
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Fig. 2. The decreasing family of nested setsΓk = Mk
x(Γ0) indicated by decreasing brightness. The limit setΓ is

invariant (see Theorem 5.1).

In Fig. 2, we depict a positively invariant setΓ0 under the mapMx which is defined
by a one-bit linear rule inR2. The setΓ0 was found by a computer algorithm. In gener
constructing positively invariant sets for these maps is a non-trivial task [24,27]. De
the presence of a vast collection ofΣ∆ schemes that are used in hardware, only a s
set of them are proved to be stable. Most of the engineering practice relies on ex
numerical simulation.

In Fig. 2, we also show in decreasing brightness the forward iterates ofΓ0 given by
Γk = Mk

x(Γ0). (In this picture, each setΓk is the union of the region in which the label “Γk”
is placed and all the other regions that are shaded in darker colors.) These sets con
a limit setΓ , or theattractor, which is shaded in black. These invariant sets are the t
of discussion of next section.

To avoid heavy and awkward notation, we shall drop the real parameterx from our nota-
tion except when we need it for a specific purpose or for emphasis. It must be unde
however, that unless noted otherwise, all objects that are derived from these dyn
systems generally depend onx.

5. Stability implies tiling invariant sets

In this section we prove a crucial property of the dynamics involved in positively s
Σ∆ schemes. This is called thetiling propertyand refers to the fact that there exist trapp
invariant sets that are unions of a finite collection of disjoint tiles inRm. Here a tile, or a

Zm-tile, means any subsetS of Rm with the property that{S + k}k∈Zm is a partition ofRm.
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Later in the paper, this property will lead us to an exact spectral analysis of the mean
error when the multiplicity of tiling is one.

We consider a slightly more general class of piecewise affine mapsM := Mx on Rm,
which are defined by

M(v) = Ax,i (v) := Lv + x1 + di if v ∈ Ωx,i, (5.1)

whereL is the lower triangular matrix of all 1’s, and{Ωx,i}Ki=1 is a finite Lebesgue mea
surable partition ofRm, anddi ∈ Zm for all i = 1, . . . ,K . Whendi = −di1, these maps
are the same as those that arise fromΣ∆ quantization.

Theorem 5.1 [25]. Assume that there exists a bounded setΓ0 ⊂ Rm that is positively in-
variant underM, i.e.,M(Γ0) ⊂ Γ0. Then, the setΓ ⊂ Γ0 defined by

Γ :=
⋂
k�0

Mk(Γ0) (5.2)

satisfies the following properties:

(a) M(Γ ) = Γ ,
(b) if Γ0 contains a tile, then so doesΓ .

Proof. This was previously proved in [25]. For completeness of the discussion, we in
the proof here.

(a) Clearly,M(Γ ) ⊂ Γ ⊂ Γ0 sinceΓ0 is positively invariant. We need to show th
Γ ⊂ M(Γ ). Let v ∈ Γ be an arbitrary point. DefineΓk := Mk(Γ0), k � 0. The setsΓk

form a decreasing sequence, and so is the case for the setsFk := M−1(v) ∩ Γk . Note that
M−1(v) is always finite since there are only finitely manyAx,i ’s in the definition ofM,
each of which is 1–1. (Fk would be finite even if there were infinitely many setsΩx,i

because inverse images underM have to differ by points inZm and only finitely many
of them can be present inΓk .) On the other handv ∈ Γk+1 = M(Γk), thereforev has
an inverse image inΓk , i.e., Fk is non-empty. SinceFk form a decreasing sequence
non-empty finite sets, it follows thatM−1(v) ∩ Γ =⋂k�0 Fk �= ∅, i.e.,v ∈ M(Γ ). Hence
Γ ⊂ M(Γ ).

(b) Let Γ0 contain a tileG0, and defineGk = Mk(G0). EachGk is a tile. To see this
note that for any giveni, Ax,i maps tiles to tiles, and for allv ∈ Rm, M(v) − Ax,i (v) ∈ Zm

so thatM maps tiles to tiles as well. For an arbitrary pointw ∈ Rm, define the decreasin
sequence of setsHk = (Zm + w) ∩ Γk . BecauseΓ0 is bounded, eachHk is finite. On
the other hand,Γk ⊃ Gk implies that eachΓk contains a tile, yieldingHk �= ∅. Hence
(Zm + w) ∩ Γ =⋂k�0 Hk �= ∅. Sincew is arbitrary, this means thatΓ contains a tile. �

In what follows, measurable means Lebesgue measurable, andm(S) denotes the
Lebesgue measure of a setS.

Theorem 5.2. Under the condition of Theorem5.1, assume moreover thatx is irrational

and thatΓ0 is measurable andm(Γ0) �= 0. Then, the setΓ defined in(5.2)differs from the
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union of a finite and non-empty collection of disjointZm-tiles at most by a set of measu
zero.

Proof. Clearly,Γ is measurable sinceM is piecewise affine. Let us show that Lebesg
measure onΓ is invariant underM. From now on, we identifyM with its restriction onΓ .
From Theorem 5.1,M(Γ ) = Γ which impliesM−1(Γ ) = Γ as well. Let us defineA to be
the set of points inΓ with more than one pre-image.A is measurable, simply because

A =
⋃
i �=j

M(Γ ∩ Ωi) ∩ M(Γ ∩ Ωj).

We claim thatm(A) = 0. The definition ofM implies thatM preserves the measure of s
on which it is 1–1. SinceM is 1–1 onM−1(Γ \A), we havem(Γ \A) = m(M−1(Γ \A)).
On the other hand, since each point inA has at least 2 pre-images, we have 2m(A) �
m(M−1(A)). This implies

2m(A) � m
(
M−1(A)

)= m
(
M−1(Γ )

)− m
(
M−1(Γ \A)

)= m(Γ ) − m(Γ \A) = m(A).

Thereforem(A) = m(M−1(A)) = 0. Hence, for any measurable subsetB of Γ , the disjoint
unionB = (B ∩ A) ∪ (B\A) yields

m
(
M−1(B)

)= m
(
M−1(B ∩ A)

)+ m
(
M−1(B\A)

)= m(B\A) = m(B),

i.e.,M preserves Lebesgue measure onΓ .
Let π :Γ → Tm be the projection defined byπ(v) = 〈v〉. Here we identify[0,1)m

with Tm. Let ν be the transformation of the measurem|Γ on Tm under the projectionπ ,
which is defined on the Lebesgue measurable subsets ofTm by ν(B) = m(π−1(B)). Let
L = Lx be the generalized skew translation onTm defined by

Lv := Lv + x1 (mod 1). (5.3)

Note thatπM = Lπ . Hence, for any measurableB ⊂ Tm, we have

ν
(
L−1(B)

)= m
(
π−1L−1(B)

)= m
(
M−1π−1(B)

)= m
(
π−1(B)

)= ν(B),

i.e.,ν is invariant underL.
At this point, we note that whenx is irrational,L is uniquely ergodic, i.e., there is

a unique normalized non-trivial measure invariant underL, which, in this case, is th
Lebesgue measure. (See, for example, [7], [23, p. 17] form = 2, and [18, p. 159] for
generalm.3) Hence,ν = cm for somec � 0; this includes the possibility of the trivia
invariant measureν ≡ 0.

3 Here, unique ergodicity is stated for the map(v1, . . . , vm) �→ (v1 + x, v2 + v1, . . . , vm + vm−1), which is

easily shown to be isomorphic toL.
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For eachj = 0,1, . . . , define

Tj = {v ∈ Tm: card
(
π−1(v)

)= j
}
.

{Tj }j�0 is a finite measurable partition ofTm. The finiteness is due to the fact thatΓ is a
bounded set and measurability is simply due to the relation

Tj =
{

v ∈ Rm:
∑

k∈Zm

χ
Γ +k(v) = j

}
.

Note that

cm(Tj ) = ν(Tj ) = m
(
π−1(Tj )

)= jm(Tj ).

This shows that there cannot exist two such setsTi andTj both with non-zero measur
Hence, there exists a (unique)j , namely,j = c, such thatm(Tm\Tj ) = 0. This implies that
Γ is the union ofj copies ofTm, possibly with the exception of a set of zero measure

Let us now show thatj � 1. Considerπ on the wholeRm with the same definition
Note that the relationπM = Lπ continues to hold. LetΣ0 := π(Γ0) ⊂ Tm. SinceΓ0
is positively invariant, we find thatL(Σ0) = πM(Γ0) ⊂ π(Γ0) = Σ0. SinceL is 1–1,
we haveL−1(Σ0) ⊃ Σ0. Hence,L−1(Σ0)�Σ0 = L−1(Σ0)\Σ0 = L−1(Σ0\L(Σ0)). This
implies, sinceL is measure-preserving,

m
(
L−1(Σ0)�Σ0

)= m
(
L−1(Σ0\L(Σ0)

))= m
(
Σ0\L(Σ0)

)
= m(Σ0) − m

(
L(Σ0)

)= 0.

Ergodicity of L implies thatm(Σ0) is 0 or 1. The first case is not possible, since e
point in Σ0 has at most finitely many inverse images underπ−1 and this would violate
m(Γ0) > 0. Thereforem(Σ0) = 1, implying thatm(Γ0) � 1. DefineΣk := π(Γk). We then
haveL(Σk) = Lπ(Γk) = πM(Γk) = π(Γk+1) = Σk+1, which implies thatm(Σk) = 1 and
m(Γk) � 1 for all k � 0. Hencem(Γ ) = limk→∞ m(Γk) � 1. �

Whenx is irrational, Theorem 5.2 improves Theorem 5.1(b) in two respects. Firs
outcome is thatΓ not only contains a tile, but in fact iscomposedof disjoint tiles, up to
a set of measure zero. Second, it suffices to check thatΓ0 has positive measure, inste
of the stronger (though equivalent) requirement thatΓ0 contain a tile. On the other han
Theorem 5.1(b) is still interesting due to its purely algebraic nature. It can be used
if Γ contains an exact tile (i.e.,π(Γ ) = Tm), and it remains valid even whenx is rational.

Let us also note as an application of Theorem 5.2 that whenever a positively inv
setΓ0 of Mx (for irrationalx) can be found with 0< m(Γ0) < 2, the invariant setΓ is a
single tile.

In Fig. 3, we show an illustration of an invariant set which is composed of two tile
this example, theΣ∆ scheme is 1-bit 2nd order and the partition is determined by a c

curve.
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Fig. 3. Represented in black is the invariant setΓ of a 1-bit 2nd order scheme whose partition is determi
by the cubic curve shown in the figure. The copies in gray are the translated versions ofΓ by (1,0) and(1,1),
respectively. In this example, each connected component ofΓ is also invariant.

6. The single-tile case and its consequence

Since the initial experimental discovery of the tiling property in [12,15], we have
served that the invariant setsΓ resulting from stable second orderΣ∆ schemes that ar
used in practice systematically appear to be single tiles. We show in Fig. 4 experimen
amples ofΓ on some of these second order schemes. In Fig. 5, we show the setΓ in three
cases where an explicit analytical derivation has been possible [15]. (In these par
cases,Γ is actually proven to be an exact tile.) A fundamental question is to charac
mapsMx which yield a single invariant tile. For the rest of this paper, we will simply
sume that this condition is realized. As will be seen, the analysis of the dynamics be
particularly simplified. Furthermore, a whole new set of tools for error analysis bec
available.

A tile Γ intrinsically generates a unique projection〈·〉Γ :Rm → Γ such thatv −〈v〉Γ ∈
Zm for all v ∈ Rm. The restriction of thisZm-periodic projection to the unit cube[0,1)m

(which we identify withTm) is a measure preserving bijection (note that the invers
〈·〉Γ :Tm → Γ is the mapπ that was defined in the proof of Theorem 5.2). WhenΓ is
invariant underM, the map〈·〉Γ :Tm → Γ establishes an isomorphism betweenM on Γ

and the affine transformationL := Lx on Tm defined by (5.3). Indeed, the definition ofL

easily yieldsL(v) − M(〈v〉Γ ) ∈ Zm. Hence,

〈 〉 ( )

L(v)

Γ
= M 〈v〉Γ ,
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mical
It
Fig. 4. Representation in black of several consecutive state pointsu[n] of various second orderΣ∆ modulators
with the irrational inputx ≈ 3/4. The copies in other colors are the translated versions of the state points by(1,0)

and(1,1), respectively.

or in other words, the following diagram commutes:

Tm
L

〈·〉Γ

Tm

〈·〉Γ

Γ
M

Γ

The first important consequence of single invariant tiles is that it reduces the dyna
systemM to the much simplerL whosen-fold composition can be computed explicitly.
follows that if u[0] ∈ Γ , then( ) 〈 ( )〉 〈 〉
u[n] = Mn u[0] = Ln u[0]
Γ

= Lnu[0] + xs[n]
Γ

, (6.1)
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etric
(a) 2-bit “linear” with (d1, d2, d3, d4) = (−1,0,1,2) (x = 0.5).

(b) 1-bit “linear” with (d1, d2) = (0,1) (x ≈ 0.52).

(c) 1-bit “quadratic” with(d1, d2) = (0,1) (x = 0.74).

Fig. 5. Three families of quantization rules for which the tiling property was proven in [15] with param
explicit expressions for the corresponding invariant sets.

wheres[n] := sm[n] := (s1[n], . . . , sm[n])� is defined by(
n−1∑ )
s[n] =
k=0

Lk 1. (6.2)
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It is an easy computation to show thatsj [n] = (j+n−1
j

)
.

The second important consequence is that for irrational values ofx the mapMx on Γ

inherits the ergodicity ofLx via the isomorphism generated by〈·〉Γ . Since〈·〉Γ :Tm → Γ

preserves Lebesgue measure,Mx is then ergodic with respect to the restriction of Lebes
measure onΓ . Hence the Birkhoff Ergodic Theorem yields

Proposition 6.1. Let x be an irrational number andΓ be a Lebesgue measurableZm-tile
(up to a set of measure zero) that is invariant underM. Then for any functionF ∈ L1(Γ ),

lim
N→∞

1

N

N∑
n=1

F
(
u[n])= ∫

Γ

F (v)dv =
∫

Tm

F
(〈v〉Γ

)
dv (6.3)

for almost every initial conditionu[0] ∈ Γ .

This formula will be the fundamental computational tool for the analysis of the
tocorrelation sequenceρu. For the remainder of this paper, we shall assume that we
working with quantization rules for which the invariant sets are composed of single
This will save us from repetition in the assumptions of our results. However, it will
be important to know certain geometric features of these invariant tiles. We will state
explicitly when needed.

7. Analysis of the autocorrelation sequence ρu

Let P(v) = vm be the projection of a vectorv ∈ Rm onto itsmth coordinate. If we define
the function

Fk(v) := P(v)P
(
Mk(v)

)
, (7.1)

then it follows that

um[n]um[n + k] = P
(
u[n])P(Mk

(
u[n]))= Fk

(
u[n]),

and therefore Proposition 6.1 gives an expression for the value ofρu[k]:

ρu[k] =
∫
Γ

Fk(v)dv =
∫

Tm

Fk

(〈v〉Γ
)
dv. (7.2)

A direct evaluation ofρu[k] in either of these forms is not easy, because thek-fold iterated
mapMk as well as the invariant setΓ are implicitly-defined and complex objects. T
problem can be somewhat simplified via the conjugate mapLk . Indeed, one has( )( ) ( )( )
Fk ◦ 〈·〉Γ = P ◦ 〈·〉Γ P ◦ Mk ◦ 〈·〉Γ = P ◦ 〈·〉Γ P ◦ 〈·〉Γ ◦ Lk ,
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so that if we define

GΓ = P ◦ 〈·〉Γ ,

then via (6.1), we obtain the formula

ρu[k] =
∫

Tm

GΓ (v)GΓ

(
Lk(v)

)
dv =

∫
Tm

GΓ (v)GΓ

(
Lkv + xs[k])dv, (7.3)

which now only depends onΓ .
As it is standard in the spectral theory of dynamical systems (see, e.g., [23]), letU := UL

be the unitary operator onL2(Tm) defined by(Uf )(v) = f (L(v)). Then (7.3) reduces to

ρu[k] = (GΓ ,UkGΓ

)
L2(Tm)

. (7.4)

For anyf ∈ L2(Tm), the inner products(f,Ukf )L2(Tm), k ∈ Z, define a positive-definit
sequence so that there exists a unique non-negative measureνf on T with Fourier coeffi-
cients

ν̂f [k] = (f,Ukf
)
L2(Tm)

(7.5)

for all k ∈ Z. Note that whenf = GΓ , it follows from (7.4) that the corresponding measu
νGΓ = µ, whereµ is the spectral measure that was mentioned in Section 3, withµ̂ = ρu.

7.1. Decomposition of the mixed spectrum: general results

We shall separate the autocorrelation sequenceρu into two additive components tha
result from two different types of spectral behavior. Using the spectral theorem for u
operators, we decomposeL2(Tm) into twoU -invariant, orthogonal subspaces asL2(Tm) =
Hpp ⊕ Hc, where

Hpp = {f ∈ L2(Tm
)
: νf is purely atomic

}
,

which is also equal to the closed linear span of the set of all eigenfunctions ofU , and

Hc = H⊥
pp = {f ∈ L2(Tm

)
: νf is non-atomic (continuous)

}
.

In the particular case of the transformationL, it turns out that every spectrum onH⊥
pp

is absolutely continuous (see Appendix A). Therefore we denoteHc by Hac. Any f ∈
L2(Tm) can now be uniquely decomposed as
f = fpp + fac,
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wherefpp ∈ Hpp andfac∈ Hac. ForL, it is known (and as we also show in Appendix A
that

Hpp = {f ∈ L2(Tm
)
: f (v) only depends onv1

}
,

and the orthogonal projection off ontoHpp is given by

fpp(v) =
∫

Tm−1

f
(
v1,v′)dv′. (7.6)

In order to avoid double subscripts (e.g., whenf = GΓ ), we will use the alternative nota
tion f̊ := fpp andf̆ := fac whenever it will be convenient.

We now consider the decomposition

GΓ = G̊Γ + ĞΓ . (7.7)

Because of orthogonality andU -invariance ofHpp andHac, (7.4) implies that

ρu[k] = (G̊Γ ,UkG̊Γ

)
L2(Tm)

+ (ĞΓ ,UkĞΓ

)
L2(Tm)

, (7.8)

providing the decomposition

ρu = ρ̊u + ρ̆u.

Here, using formula (6.1) and the fact that functions in the subspaceHpp depend only on
the first variable, we obtain

ρ̊u[k] = (G̊Γ ,UkG̊Γ

)
L2(Tm)

=
∫
T

G̊Γ (v1)G̊Γ (v1 + kx)dv1 (7.9)

and

ρ̆u[k] = (ĞΓ , UkĞΓ

)
L2(Tm)

=
∫

Tm

ĞΓ (v)ĞΓ

(
Lkv + xs[k])dv. (7.10)

This decomposition provides the Fourier coefficients of the pure-pointµpp and the ab-
solutely continuousµac components of the spectral measure, respectively. It also yiel
explicit simple formula forµpp in terms of the Fourier coefficients of̊GΓ . We have

Theorem 7.1.

µpp =
∑
n∈Z

∣∣∣̂̊GΓ [n]
∣∣∣2δnx, (7.11)
whereδa denotes the unit Dirac mass ata ∈ T.



542 C.S. Güntürk, N.T. Thao / Advances in Applied Mathematics 34 (2005) 523–560

verify

of
e
f
ically

e

Proof. Let ν denote the measure given on the right-hand side of (7.11). It suffices to
that ν̂[k] = ρ̊u[k] for all k ∈ Z. We find by direct evaluation that

ν̂[k] =
∑
n∈Z

∣∣∣̂̊GΓ [n]
∣∣∣2e−2πiknx =

∫
T

G̊Γ (v)G̊Γ (v + kx)dv = ρ̊u[k];

hence the result follows.�
Note. It is easy to see that this result holds for any functionf ∈ L2(Tm) in the sense that

(νf )pp =
∑
n∈Z

∣∣∣̂̊f [n]
∣∣∣2δnx. (7.12)

On the other hand, the computation ofµac is not easy. Since absolute continuity
µac results in an integrable densityΨ , where dµac(ξ) = Ψ (ξ)dξ , the Riemann–Lebesgu
lemma implies that the Fourier coefficientsρ̆u[k] → 0 as|k| → ∞. However, the rate o
decay is determined by further properties of this measure, which turn out to be intrins
related to the geometry ofΓ .

7.2. Properties of̆ρu for the class ofvm-connected invariant tiles

In this section, we derive explicit formulae for̆ρu[k] when the invariant tileΓ has a
certain type of geometric regularity. For a given tileΓ for Rm, let us define

ΛΓ :=
⋃

k′∈Zm−1

Γ + (k′,0
)
, (7.13)

and for anyv′ ∈ Rm−1,

ΛΓ

(
v′) := P

(
ΛΓ ∩ {v′}×R

)= {vm ∈ R:
(
v′, vm

) ∈ ΛΓ

}
. (7.14)

Proposition 7.2. For each v′ ∈ Rm−1, the setΛΓ (v′) is a tile in R with respect to
Z-translations, and

GΓ

(
v′, vm

)= 〈vm〉ΛΓ (v′). (7.15)

Proof. SinceΓ is a tile, the collection of sets{ΛΓ +(0, k): k ∈ Z} forms a partition ofRm.
Therefore for anyv′ ∈ Rm−1, the vm-section of this collection given by{ΛΓ (v′) + k:
k ∈ Z}, is a partition ofR. This shows thatΛΓ (v′) is a tile. For the second part of th
claim, letv = (v′, vm). The definition ofP immediately yields(

v′,GΓ (v)
)= (v′,P

(〈v〉Γ
))= 〈v〉Γ + (k′,0

)
for somek′ ∈ Zm−1. This says that(v′,GΓ (v)) ∈ ΛΓ and thereforeGΓ (v) ∈ ΛΓ (v′). The

result follows sinceGΓ (v′, vm) − vm ∈ Z. �
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Definition 7.3. We say that a tileΓ ⊂ Rm is vm-connected if for eachv′ ∈ Rm−1, the
one-dimensional tileΛΓ (v′) is a connected set, i.e., a unit-length interval. In this case
denote byλΓ (v′) the midpoint ofΛΓ (v′) and callλΓ the midpoint function.

In Fig. 6, we display examples of the functionΛΓ for various schemes. The tiles in (a
(c) and (d) arev2-connected whereas the tile in (b) is not. Note thatvm-connectedness of
tile is different from itsvm-sections being connected.

Let us use the shorthand notation〈α〉0 := 〈α〉[− 1
2 , 1

2 )
= 〈α + 1

2〉 − 1
2. For avm-connected

tile, we have the following simple observation:

Corollary 7.4. If the tileΓ is vm-connected, then for anyv′ ∈ Rm−1

GΓ

(
v′, vm

)= 〈vm − λΓ

(
v′)〉

0 + λΓ

(
v′) (7.16)

and

G̊Γ = λ̊Γ . (7.17)

Proof. If Γ isvm-connected, thenΛΓ (v′) = [λΓ (v′)− 1
2, λΓ (v′)+ 1

2). Now, (7.16) follows
from Proposition 7.2 and the identity

〈β〉[α− 1
2 ,α+ 1

2 )
= 〈β − α〉0 + α

which holds for anyα andβ. Next, (7.17) is a simple consequence of the fact that the
term in (7.16) integrates to zero overvm. �

Before we state the following proposition, letJ := Jm be the “backward identity” per
mutation matrix defined by(Jm)ij = δi,m+1−j , for 1 � i, j � m. Note that the matrix
Lk := Lk

m can now be decomposed as

Lk
m =

 Lk
m−1 0

s�
m−1[k]Jm−1 1

 , (7.18)

which easily follows from (6.2); note thats[k] = L s[k−1] + 1 with s[0] = 0.

Proposition 7.5. Let the invariant tileΓ be vm-connected. Define for eachk ∈ Z, and
v′ ∈ Rm−1,

gk

(
v′)= s�

m−1[k]Jm−1v′ + xsm[k] − λΓ

(
Lk

m−1v′ + xsm−1[k])+ λΓ

(
v′).

Then

ρ̆u[k] =
∫

Tm−1

A〈·〉0

(
gk

(
v′))dv′ + (λ̆Γ ,Ukλ̆Γ

)
L2(Tm−1)

. (7.19)
In particular, if m = 2 or if P(Γ ) is an interval of unit length, then the second term drops.
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Fig. 6. Invariant tiles of various second order modulators: (i) invariant tileΓx , (ii) corresponding setΛΓ .
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Proof. We employ Corollary 7.4 for the evaluation ofGΓ (v) andGΓ (Lkv + xs[k]). Let
us again writev = (v′, vm). Note first that from (7.18) we obtain

Lkv + xs[k] = (Lk
m−1v′ + xsm−1[k], vm + s�

m−1[k]Jm−1v′ + xsm[k]).
It follows that

∫
T

GΓ (v)GΓ

(
Lkv + xs[k])dvm

=
∫
T

〈
vm−λΓ

(
v′)〉

0

〈
vm+s�

m−1[k]Jm−1v′+xsm[k]−λΓ

(
Lk

m−1v′+xsm−1[k])〉0 dvm

+ λΓ

(
v′)λΓ

(
Lk

m−1v′ + xsm−1[k]),
where the cross terms have dropped because

∫
T
〈vm + ϕ(v′)〉0 dvm = 0 for any functionϕ.

The first term above is equal toA〈·〉0(gk(v′)), whereas if the second term is integrated o
Tm−1 we find(λΓ ,UkλΓ )L2(Tm−1). The result follows since̊λΓ = G̊Γ .

If m = 2, then moreoverλΓ = G̊Γ , so that we havĕλΓ = 0. If P(Γ ) is an interval of
unit length, then it is necessarily the case thatΛΓ = Rm−1 × P(Γ ). In this case,λΓ is a
constant function so thatλ̊Γ = λΓ and hencĕλΓ = 0. Hence the second term drops in bo
cases. �
7.3. Special case whenP(Γ ) = [−1

2, 1
2)

There is a class of quantization rules [8,11,17], for whichum[n] ∈ [−1
2, 1

2) for all n (for
all x), so that the invariant tileΓ satisfiesP(Γ ) = [−1

2, 1
2). These are the “ideal” rules th

were mentioned in Section 1, and represent essentially the simplest possible situa
turns out that the spectral measureµ is quite different in its nature form = 1 andm � 2.

For m = 1, by definition we have̊GΓ = GΓ = 〈·〉0. Henceµ is pure-point, and Theo
rem 7.1 yields

µ =
∑
n�=0

1

4π2n2
δnx.

For m � 2, we simply note thatλΓ ≡ 0, so thatGΓ (v) = 〈vm〉0 by (7.16). The fact
that

∫
T
〈vm〉0 dvm = 0 impliesG̊Γ ≡ 0. Henceµpp = 0, i.e.,µ is absolutely continuous. I

addition, Proposition 7.5 yields

ρu[k] =
∫

A〈·〉0

(
s�
m−1[k]Jm−1v′ + xsm[k])dv′.
Tm−1
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For k = 0, the argument of the integrand is identically zero, so we obtainρu[0] =
A〈·〉0(0) = 1

12. On the other hand, for allk �= 0, we find thatρu[k] = 0 since the integran
is of the formA〈·〉0(kvm−1 +α) which integrates to zero over the variablevm−1. Therefore,

ρu[k] =
{ 1

12 if k = 0,

0 if k �= 0,

and consequentlyµ is flat, and equal to1
12 times Lebesgue measure onT, and the spectra

densityΨ is the constant functionΨ (ξ) ≡ 1
12.

These two results were previously obtained, in the casem = 1 in [11], and in the cas
m � 2 in [8,17].

8. Analysis of the mean square error

We are interested in the asymptotical behavior ofE(x,φ) for a givenΣ∆ modulation
scheme of orderm as the support ofφ increases and its Fourier transformΦ localizes
around zero frequency. There will be two standard choices forΦ:

(1) The ideal low-pass filter given by

Φ id
M(ξ) := χ[− 1

M
, 1
M

](ξ).

(2) The “sinc” family4 given by

Φsinc
M,p(ξ) :=

(
1

M

M−1∑
n=0

e2πinξ

)p

=
(

sin(πMξ)

M sin(πξ)
eiπ(M−1)ξ

)p

.

Note thatΦsinc
M,p has Fourier coefficients given by

φsinc
M,p[n] := r

(p)
M [n] := (rM ∗ rM ∗ · · · ∗ rM︸ ︷︷ ︸

p times

)[n],

whererM denotes the rectangular sequence

rM [n] =
{

1/M, 0� n < M,

0, otherwise.

It is a standard fact thatφsinc
M,p is a discrete B-spline of degreep − 1.
4 The terminology for this filter is derived from its continuous analog which is related to sinc(x) := sin(x)/x.
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For any filterφ, we decompose the mean square errorE(x,φ) as

E(x,φ) = Epp(x,φ) + Eac(x,φ)

which correspond to the additive contributions ofµpp andµac, respectively, in the formula
(3.5). Note that both terms are non-negative. Note also that for the above two filter c
we have ∣∣Φ id

M(ξ)
∣∣�p

∣∣Φsinc
M/2,p(ξ)

∣∣, ∀ξ ∈ T; (8.1)

hence it suffices to prove lower bounds for the ideal low-pass filter and upper boun
sinc filters.

8.1. The pure-point contributionEpp(x,φ)

Our first formula follows directly from plugging the expression forµpp given by Theo-
rem 7.1 in (3.5):

Epp(x,φ) =
∑
n∈Z

∣∣2 sin(πnx)
∣∣2m∣∣Φ(nx)

∣∣2∣∣∣̂̊GΓ [n]
∣∣∣2. (8.2)

Before we carry out our analysis of this expression, let us recall some elementar
about Diophantine approximation. Forα ∈ R, let ‖α‖ denote the distance ofα to the near-
est integer, that is‖α‖ := min(〈α〉, 〈−α〉). We say thatα is (Diophantine) of typeη if η is
the infimum of all numbersσ for which

‖nα‖ �σ,α |n|−σ , ∀n ∈ Z\{0}.

Almost every real number (in the sense of Lebesgue measure) is of type 1, the s
attainable type.

The following theorem shows that for almost everyx, if the functionGΓ has a suf-
ficiently regular projectionG̊Γ , then the pure-point part of the mean square error a
filtering with φsinc

M,m+1 decays faster thanM−2m−1.

Theorem 8.1. Letx be Diophantine of typeη. If for someβ > η/2 the invariant tileΓ = Γx

of anmth orderΣ∆ modulator with inputx satisfies∣∣∣̂̊GΓ [n]
∣∣∣� |n|−β

for all n ∈ Z\{0}, then

Epp
(
x,φsinc

M,m+1

)
�x,m,α,β M−2m−1−α (8.3)
for all M , whereα is any number satisfying0� α < min(1,
2β
η

− 1).
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Proof. Formula (8.2) reads

Epp
(
x,φsinc

M,m+1

)= 22m

M2m+2

∑
n∈Z\{0}

sin2m+2(πMnx)

sin2(πnx)

∣∣∣̂̊GΓ [n]
∣∣∣2. (8.4)

Since|sin(πθ)| 
 ‖θ‖, 1− α � 2m + 2, and‖Mnx‖ � min(1,M‖nx‖), we have

sin2m+2(πMnx)

sin2(πnx)
�m

‖Mnx‖2m+2

‖nx‖2
� ‖Mnx‖1−α

‖nx‖2
� M1−α

‖nx‖1+α
.

Given the decay of|̂̊GΓ [n]|, we then obtain

Epp
(
x,φsinc

M,m+1

)
�m

1

M2m+1+α

∞∑
n=1

1

n2β‖nx‖1+α
. (8.5)

Since 1+ α � 1, it suffices to show the convergence of the sum

∞∑
n=1

1

n2β/(1+α)‖nx‖ .

Let λ := 2β/(1+α). Since 1+α < 2β/η, we haveλ > η. Now, summation by parts show
that

∞∑
n=1

1

nλ‖nx‖ �λ

∞∑
n=1

1

nλ+1

(
n∑

k=1

1

‖kx‖

)
, (8.6)

and furthermore it is well known [21, Ex. 3.11] that

n∑
k=1

1

‖kx‖ �x,σ nσ

for anyσ > η. Choosingσ such thatλ > σ > η, we obtain the convergence of (8.6) with
sum depending onx andλ. Combining this result with (8.5) the result follows.�
Note. The Diophantine condition onx can be removed if̊GΓ is a trigonometric polyno
mial. In this case, (8.4) reduces to a finite sum, and therefore it is always convergen

On the other hand, our next result shows that ifG̊Γ does not have enough regularity
a certain sense as specified in the following theorem, then the result of Theorem 8.1
best one can get in the following sense: there is a dense set of exceptional valuesx for
which the exponent of the error decay rate is never better than 2m, even for the ideal low

pass filter.
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Theorem 8.2. Given aΣ∆ modulator of orderm, let φM , M = 1,2, . . . , be a sequenc
of averaging filters such that|ΦM(ξ)| � c1 on the interval|ξ | � c2/M , wherec1 and c2
are positive constants that do not depend onM . There exists a dense setE of irrational
numbers with the following property: for anyx ∈ E, if we can find positive constantsβx

andCx such that the invariant tileΓ = Γx satisfies∣∣∣̂̊GΓ [n]
∣∣∣� Cx |n|−βx

for all but finitely manyn ∈ Z, then for allδ > 0,

lim sup
M→∞

Epp(x,φM)M2m+δ = ∞. (8.7)

Proof. It suffices to find, for any open intervalJ , a pointx ∈ J with the property (8.7)
for all δ > 0. Given an open intervalJ , let x0 ∈ J be a dyadic rational. Letl = max(b, d)

for the minimumb andd such thatb! − 1 is an upper bound for the length of the bina
expansion ofx0 and 2−d!+1 is a lower bound for the distance ofx0 to the boundary ofJ .
Set

x = x0 +
∑
k�l

2−k!.

Then clearlyx ∈ J . It is also a standard fact thatx is irrational, in factx is a Liouville
number.

Note that forq � l, we have

〈
2q!x

〉= ∞∑
k=q+1

2−k!+q! = 2−q·q! +
∞∑

k=q+2

2−k!+q!.

For q = 1,2, . . . , let nq = 2q! and Mq = 2q·q!−r where r is a fixed integer such tha
2−r+1 � c2. Note thatMq = 2−rn

q
q is integer valued for all sufficiently large values ofq.

We also have

2−r

Mq

= 2−q·q! < ‖nqx‖ < 2−q·q!+1 � c2

Mq

. (8.8)

The right side of this chain of inequalities implies|ΦMq (nqx)| � c1 by our assumption
on {φM }. On the other hand, the left side implies|2 sin(πnqx)| � 4‖nqx‖ > 2−r+2/Mq .
Therefore

Epp(x,φMq ) �
∣∣2 sin(πnqx)

∣∣2m∣∣ΦMq (nqx)
∣∣2∣∣∣̂̊GΓ [nq ]

∣∣∣2
� C2

xc2
122m(−r+2)2−2rβx/qM−2m

q M
−2βx/q
q . (8.9)

The result of the theorem follows by lettingq → ∞ and therefore exhibiting the subs

quenceMq → ∞ for which (8.7) holds for anyδ > 0. �
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8.2. The absolutely continuous contributionEac(x,φ)

Let us denote byΨ the Radon–Nikodym derivative of the absolutely continuous s
tral measureµac, i.e., dµac = Ψ (ξ)dξ . A priori, we only know thatΨ ∈ L1(T), which is
somewhat weak for what we would like to achieve in terms of understanding the de
Eac(x,φ). Our first theorem concerns the decay rate of

Eac
(
x,φsinc

M,m+1

)= ∫
T

∣∣2 sin(πξ)
∣∣2m∣∣Φsinc

M,m+1(ξ)
∣∣2Ψ (ξ)dξ

when it is known thatΨ belongs to a smallerLp space.

Theorem 8.3. If the measureµac has densityΨ ∈ Lp(T) for some1� p � ∞, then

Eac
(
x,φsinc

M,m+1

)
�m,p ‖Ψ ‖Lp(T)M

−2m−1+1/p. (8.10)

Proof. Let p′ be the dual index ofp, i.e., 1/p + 1/p′ = 1. Note that∣∣2 sin(πξ)
∣∣2m∣∣Φsinc

M,m+1(ξ)
∣∣2 = ∣∣2 sin(πMξ)

∣∣2m∣∣Φsinc
M,2(ξ)

∣∣M−2m (8.11)

�m

∣∣Φsinc
M,2(ξ)

∣∣M−2m, (8.12)

so that Hölder’s inequality yields

Eac
(
x,φsinc

M,m+1

)
�m ‖Ψ ‖Lp(T)

∥∥Φsinc
M,2

∥∥
Lp′

(T)
M−2m.

Furthermore, the simple bound|Φsinc
M,1(ξ)| � min(1, (2M|ξ |)−1) implies

∥∥Φsinc
M,2

∥∥
Lp′

(T)
�p′ M−1/p′

, (8.13)

hence the theorem follows.�
On the other hand, it turns out that ifΨ is continuous at 0, then one can calculate

exact asymptotics ofEac(x,φsinc
M,m+1) without additional assumptions.

Theorem 8.4. If the spectral densityΨ is continuous at0, then

Eac
(
x,φsinc

M,m+1

)= (2m

m

)
Ψ (0)M−2m−1 + o

(
M−2m−1). (8.14)

Proof. The proof has two parts. First part is the easy calculation∫ ∣∣2 sin(πξ)
∣∣2m∣∣Φsinc

M,m+1(ξ)
∣∣2 dξ =

(
2m
)

M−2m−1. (8.15)
T

m



C.S. Güntürk, N.T. Thao / Advances in Applied Mathematics 34 (2005) 523–560 551

mial
n-
is
ich is

-

To see this, note that (8.11) and the definition ofΦsinc
M,m+1 imply

∣∣2 sin(πξ)
∣∣2m∣∣Φsinc

M,m+1(ξ)
∣∣2 =

(
eiπMξ − e−iπMξ

i

)2m M−1∑
k=0

M−1∑
j=0

e2πi(k−j)ξM−2m−2.

The right-hand side is the product of two trigonometric polynomials; the first polyno
has frequencies only at integer multiples of 2πM and the second polynomial has freque
cies between−2π(M − 1) and 2π(M − 1). The zero frequency term of the product
therefore given only by the product of the zero frequency terms of each factor, wh
equal to (

2m

m

)
(−1)mi−2m

(
M−1∑
k=0

1

)
M−2m−2 =

(
2m

m

)
M−2m−1,

hence the result.
The second part of the proof concerns the residual term∣∣∣∣∫

T

∣∣2 sin(πξ)
∣∣2m∣∣Φsinc

M,m+1(ξ)
∣∣2(Ψ (ξ) − Ψ (0)

)
dξ

∣∣∣∣,
which is bounded, using (8.11), by

22mM−2m

∫
T

Φsinc
M,2(ξ)

∣∣Ψ (ξ) − Ψ (0)
∣∣dξ = 22mM−2m−1

∫
T

KM−1(ξ)
∣∣Ψ (ξ) − Ψ (0)

∣∣dξ,

where

KM−1(ξ) = 1

M

(
sin(πMξ)

sin(πξ)

)2

is the Fejér kernel. The limit

lim
M→∞

∫
T

KM−1(ξ)
∣∣Ψ (ξ) − Ψ (0)

∣∣dξ

is the Cesàro sum of the Fourier series of the functionf (t) = |Ψ (−t) − Ψ (0)| evaluated
at t = 0. Sincef is continuous at 0, the Cesàro sum converges tof (0) = 0, and therefore
the limit is 0. This concludes the proof.�
Notes. (1) A similar calculation shows that for the ideal filterφid

M , the error has the asymp
totics given by

( id ) (2π)2m+1 −2m−1 ( −2m−3)
Eac x,φM =
m + 1/2

Ψ (0)M + O M (8.16)
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again assuming thatΨ is continuous at 0.
(2) The value ofΨ (0) is equal to the sum of its Fourier coefficientsρ̆u[k].

9. Estimates for second order schemes with v2-connected invariant tiles

Second orderΣ∆ modulators withv2-connected invariant tiles are interesting beca
the value ofx and the midpoint functionλΓ = G̊Γ completely describe the MSE behavi
via the theorems we have stated in the previous sections. In particular, Propositi
provides us with the formula

ρ̆u[k] =
∫
T

A〈·〉0

(
kv1 + k(k + 1)

2
x − λΓ (v1 + kx) + λΓ (v1)

)
dv1

=
∫
T

A〈·〉0

(
kv − λΓ

(
v − x

2
+ k

x

2

)
+ λΓ

(
v − x

2
− k

x

2

))
dv, (9.1)

where we have used the change of variablev = v1 + (k + 1)x/2 to obtain the secon
representation.

By Riemann–Lebesgue lemma, we already know thatρ̆u[k] must converge to zero a
|k| → ∞ sinceρ̆u[k] = Ψ̂ [k], whereΨ ∈ L1(T) is the spectral density. However, we wou
like to quantify the rate of decay in|k| as this would then allow us to draw conclusio
aboutΨ . Intuitively speaking, it is not hard to see from this formula that the smootheλΓ

is, the faster̆ρu[k] must decay in|k| as|k| → ∞, sinceA〈·〉0 is a zero mean function onT.
Our objective in this section is to study this relation rigorously.

Let BV(T) denote the space of functions onT that have bounded variation, whe
‖ · ‖TV denotes the total variation semi-norm, and let A(T) denote the space of function
on T with absolutely convergent Fourier series with the norm‖f ‖A(T) given by

∑ |f̂ [n]|.
We have the following lemma, whose proof is given in the appendix.

Lemma 9.1. Let f ∈ A(T) and ϕ be two real valued functions onT, wheref has zero
mean. Consider the integrals

c[k] =
∫
T

f
(
kv + ϕ(v)

)
dv. (9.2)

The following bounds hold:

(1) If ϕ ∈ BV(T), then for allk ∈ Z\{0},
∣∣c[k]∣∣� 1 ‖f ‖A(T)‖ϕ‖TV . (9.3)
|k|
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(2) If ϕ is differentiable almost everywhere andϕ′ ∈ BV(T), then for allk ∈ Z\{0},
∣∣c[k]∣∣� 1

k2

(
1√
12

‖f ‖L2(T)

∥∥ϕ′∥∥
TV + ‖f ‖L∞(T)

∥∥ϕ′∥∥2
L2(T)

)
. (9.4)

Theorem 9.2. Let x be given andΓ be the invariant tile corresponding to a second ord
Σ∆ modulator. Then we have the following:

(1) If the midpoint functionλΓ has bounded variation onT, then

∣∣ρ̆u[k]∣∣� 1

6|k| ‖λΓ ‖TV . (9.5)

Consequently, one has

Eac
(
x,φsinc

M,3

)
�x,ε M−5+ε (9.6)

for anyε > 0. If the typeη of x is strictly less than2, then

Epp
(
x,φsinc

M,3

)
�x,δ M−5−δ (9.7)

for any0� δ < (2− η)/η.
(2) If the midpoint functionλΓ has a derivative that has bounded variation onT, then

∣∣ρ̆u[k]∣∣� 1

k2

(
1

12
√

15

∥∥λ′
Γ

∥∥
TV + 1

3

∥∥λ′
Γ

∥∥2
L2(T)

)
. (9.8)

In particular, the spectral densityΨ is continuous. Consequently, one has

Eac
(
x,φsinc

M,3

)= 6Ψ (0)M−5 + o
(
M−5), (9.9)

where

Ψ (0) � 1

12
+ π2

3

(
1

12
√

15

∥∥λ′
Γ

∥∥
TV + 1

3

∥∥λ′
Γ

∥∥2
L2(T)

)
. (9.10)

If the typeη of x is strictly less than4, then

Epp
(
x,φsinc

M,3

)
�x,δ M−5−δ (9.11)

for any0� δ < min(1, (4− η)/η).

Proof. Let

f (v) := A〈·〉0(v) =
∑ 1

e2πinv.
n�=0
4π2n2
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For eachk, define

ϕk(v) := −λΓ

(
v − x

2
+ k

x

2

)
+ λΓ

(
v − x

2
− k

x

2

)
.

For these functions, we have the following exact formulas and bounds:

‖f ‖A(T) = 1

12
, (9.12)

‖f ‖L∞(T) = 1

12
, (9.13)

‖f ‖L2(T) = 1

12
√

5
, (9.14)

‖ϕk‖TV � 2‖λΓ ‖TV, (9.15)∥∥ϕ′
k

∥∥
TV � 2

∥∥λ′
Γ

∥∥
TV, (9.16)∥∥ϕ′

k

∥∥2
L2(T)

� 4
∥∥λ′

Γ

∥∥2
L2(T)

. (9.17)

(1) In this case we only know thatλΓ is of bounded variation.
The decay estimate (9.5) simply follows from the bound (9.3) coupled with (9.12

(9.15).
Given that the Fourier coefficients̆ρu[k] = Ψ̂ [k] decay like 1/k, it follows from Riesz–

Thorin interpolation theorem that the spectral densityΨ ∈ Lp(T) for anyp < ∞. There-
fore Theorem 8.3 implies, withm = 2 andε = 1/p, the bound (9.6).

For the pure-point estimate, we use Theorem 8.1 withβ = 1 andm = 2. If we define
δ = α, whereα is as defined in Theorem 8.1, then the result follows as stated.

(2) In this case we know thatλΓ has a derivative that is of bounded variation.
The decay estimate (9.8) follows from the bound (9.4) coupled with (9.13), (9

(9.16) and (9.17).
Sinceρ̆u is summable, it follows thatΨ is continuous. We therefore apply Theorem

to compute the exact asymptotics ofEac(x,φsinc
M,3). In this case, the non-negative numb

Ψ (0) will be bounded by
∑ |ρ̆u[k]|. We simply, add up the bounds given by (9.8), inclu

ing the trivial case|ρ̆u[0]| � ‖f ‖L∞(T). This computation yields the bound (9.10).
For the pure-point estimate, we again use Theorem 8.1, but now withβ = 2. We define

δ = α, whereα is as defined in Theorem 8.1, and note that the conditionα � 1 must be im-
posed, which was automatically satisfied in case (1). Then the result follows as state�

10. Further remarks

In this paper, we have covered only a portion of the mathematical problems tha
cernΣ∆ quantization. We believe that the following currently unresolved problems

interesting both from the dynamical systems standpoint and the engineering perspective.
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1. Which mapsM are stable?Satisfactory answers of this question would include n
trivial sufficient conditions in terms of the quantization ruleQ, or in terms of the partition
Πx and the quantization levels{di}.

2. Which stable mapsM yield single invariant tiles?One can include in this the cas
whenΓ is composed of tiles each of which is invariant underM. In principle, each of thes
invariant tiles would represent a different “mode of operation”.

3. What is an appropriate generalization of our spectral analysis of mean square
whenΓ is composed of more than one tile?

4. Given the quantization rule, what can be said about the geometric regularity oΓ ?
We used two types of geometric information aboutΓ in deriving our analytical result
on the mean square error asymptotics. The first type concerned “shape” (suchvm-
connectedness), and the second concerned “regularity” (such as the decay of
coefficients ofG̊Γ ). At this stage, the relation between the quantization rule and t
two issues is highly unclear, although we have partial understanding in some case
for “linear” rules, there seems to be a wide range of possibilities.

5. What are the universal principles behind tiling?Tiling invariant sets are found eve
whenx is rational. In addition, trajectories seem to remain within exact tiles, and no
tiles “up to sets of measure zero”.
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Appendix A. On the spectral theory of the map L

In this section, we will review some basic facts about the spectral theory of the
L = Lx on Tm, whereLxv = Lv + x1, andx is an irrational number. Most of what fo
lows below can be derived or generalized from Anzai’s work on ergodic skew pro
transformation [3].

The eigenfunctions ofUL

We start by showing that the set of all eigenfunctions ofU = UL, whereULf := f ◦UL,
is precisely given by the collection of complex exponentialsfn, where

fn(v) = e2πinv1, n ∈ Z.

To see this, letf ∈ L2(Tm) be an eigenfunction ofU with eigenvalueλ. SinceU is unitary,
|λ| = 1. Consider the Fourier series expansion off given by

f (v) =
∑

c[n]e2πin·v.

n∈Zm
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Sincef = 1
λ
(Uf ), we have the relation

∑
n∈Zm

c[n]e2πin·v = 1

λ

∑
n∈Zm

c[n]e2πixn·1e2πin·(Lv)

= 1

λ

∑
n∈Zm

c[Kn]e2πix(Kn)·1e2πin·v,

whereK = (L−1)�. Comparing the coefficients, we obtain the equality∣∣c[n]∣∣= ∣∣c[Kn]∣∣, ∀n ∈ Zm.

Sincef ∈ L2(Tm), we can conclude thatc[n] = 0 for anyn that is not preserved underKj

for some positive integerj , for otherwise we would have the infinite sequence of coe
cientsc[n], c[Kn], c[K2n], . . . of equal and strictly positive magnitude.

On the other hand, it is a simple exercise to show that the only vectors that s
n = Kj n for some powerj � 1 are those of the formn = (n1,0, . . . ,0). Hence, any
eigenfunction ofU depends only on the first variablev1. On the first coordinatev1 of v,
L reduces to the irrational rotation byx, and hence as it is well known, these eigenfu
tions are nothing but the given complex exponentials{fn}n∈Z. These eigenfunctions spa
the subspaceHpp of L2(Tm).

The absolutely continuous spectrum

We shall next show that continuous part of the spectrum is in fact absolutely
tinuous. This is in fact a consequence of the fact that there exists an orthonorma
{ψj,k: j ∈ Z, k ∈ N} of H⊥

pp with the property thatUψj,k = ψj+1,k for all j andk. (I.e.,
L hascountable Lebesgue spectrumonH⊥

pp.) First we will construct such a basis, and th
we shall prove the statement on the absolute continuity.

From the discussion above on the eigenfunctions ofU , we know that the complex ex
ponentials

fn(v) = e2πin·v, n ∈ Zm\(Z × {0}m−1),
form an orthonormal complete set inH⊥

pp. Note also that

Ufn = e2πixn·1fL�n.

Therefore we consider the orbit of eachn ∈ Zm underL�, given by

O(n) = {(L�)j n
}
j∈Z

.

It is easy to see that eachn ∈ Z × {0}m−1 is a fixed point ofL� and every othern is such

that the orbit is an infinite sequence of distinct points inZm\(Z × {0}m−1). SinceL� is
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f

t

g

ely con-
invertible, orbits do not intersect. Hence we can divideZm\(Z × {0}m−1) into equivalence
classes of orbitsO(nk), k ∈ N, and define

ψ0,k = fnk
, ψj,k = U jψ0,k, j ∈ Z, k ∈ N.

Eachψj,k is equal to some complex exponentialfn multiplied by a complex number o
unit magnitude. The collection ofψj,k is distinct, and all frequenciesn ∈ Zm\(Z×{0}m−1)

appear, hence{ψj,k}j∈Z,k∈N form an orthonormal basis ofH⊥
pp with the property tha

Uψj,k = ψj+1,k .
Let us show that every spectral measure is absolutely continuous onH⊥

pp. Let g andh

be arbitrary functions inL2(Tm) with representationsg =∑aj,kψj,k andh =∑bj,kψj,k .
Let the functionsAk andBk be defined onT for eachk with Fourier coefficients(aj,k)j∈Z

and(bj,k)j∈Z, respectively. From orthogonality, we have

‖g‖2 =
∑

k

∫
T

∣∣Ak(ξ)
∣∣2 dξ < ∞,

and similarly forh andBk .
Now, we haveUnh =∑bj,kψj+n,k , so that

(
g,Unh

)
L2(Tm)

=
∑

k

∑
j

aj+n,kbj,k =
∑

k

∫
T

∑
j

aj+n,ke
2πijξBk(ξ)dξ

=
∫
T

e−2πinξ

(∑
k

Ak(ξ)Bk(ξ)

)
dξ,

the nth Fourier coefficient of the function
∑

k Ak(ξ)Bk(ξ). On the other hand, applyin
Cauchy–Schwarz inequality twice, we have

∫
T

∣∣∣∣∑
k

Ak(ξ)Bk(ξ)

∣∣∣∣dξ �
∫
T

(∑
k

∣∣Ak(ξ)
∣∣2)1/2(∑

k

∣∣Bk(ξ)
∣∣2)1/2

dξ

�
(∫

T

∑
k

∣∣Ak(ξ)
∣∣2 dξ

)1/2(∫
T

∑
k

∣∣Bk(ξ)
∣∣2 dξ

)1/2

= ‖g‖L2‖h‖L2 < ∞.

Hence the inner products(g,Unh)L2(Tm) are in fact the Fourier coefficients of anL1

function. This shows that the measure associated to these inner products is absolut

tinuous.
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Appendix B. Proof of Lemma 9.1

Let us start by writingf (t) =∑n�=0 f̂ [n]e2πint so that we have

c[k] =
∑
n�=0

f̂ [n]
∫
T

e2πin(kv+ϕ(v)) dv, (B.1)

where we have changed the order of summation and integration. Applying integrat
parts we obtain∫

T

e2πinϕ(v)e2πinkv dv = − 1

2πink

∫
T

e2πinkv d
[
e2πinϕ(v)

]
= −1

k

∫
T

e2πinkve2πinϕ(v) dϕ(v). (B.2)

Part (1). For the integral in (B.2), we use the bound∣∣∣∣−1

k

∫
T

e2πinkve2πinϕ(v) dϕ(v)

∣∣∣∣� 1

|k|
∫
T

∣∣dϕ(v)
∣∣= 1

|k| ‖ϕ‖TV,

and we simply get

∣∣c[k]∣∣�∑
n�=0

1

|k| ‖ϕ‖TV
∣∣f̂ [n]∣∣� 1

|k| ‖ϕ‖TV‖f ‖A(T).

Part (2). Letϕ be differentiable andϕ′ ∈ BV(T). Substitute dϕ(v) = ϕ′(v)dv and apply
another integration by parts to (B.2) obtain

−1

k

∫
T

ϕ′(v)e2πinϕ(v)e2πinkv dv = 1

k(2πink)

∫
T

e2πinkv d
[
ϕ′(v)e2πinϕ(v)

]
.

Now,

d
[
ϕ′(v)e2πinϕ(v)

]= e2πinϕ(v) dϕ′(v) + (ϕ′(v)
)2

(2πin)e2πinϕ(v) dv,

so that substituting the above two formulas together with (B.2) in (B.1), we get

c[k] = 1

k2

(∑
n�=0

f̂ [n]
2πin

∫
T

e2πin(kv+ϕ(v)) dϕ′(v) +
∑
n�=0

f̂ [n]
∫
T

(
ϕ′(v)

)2
e2πin(kv+ϕ(v)) dv

)
.

(B.3)
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1989)

ics,

(2002)

Simula-
For the first part of this sum we use∣∣∣∣ ∫
T

e2πin(kv+ϕ(v)) dϕ′(v)

∣∣∣∣� ∫
T

∣∣dϕ′(v)
∣∣= ∥∥ϕ′∥∥

TV,

and

∑
n�=0

|f̂ [n]|
2π |n| �

(∑
n�=0

1

(2πn)2

)1/2(∑
n

∣∣f̂ [n]∣∣2)1/2

= 1√
12

‖f ‖L2(T),

so that ∣∣∣∣∑
n�=0

f̂ [n]
2πin

∫
T

e2πin(kv+ϕ(v)) dϕ′(v)

∣∣∣∣� 1√
12

‖f ‖L2(T)

∥∥ϕ′∥∥
TV .

On the other hand, the second term reduces to∑
n�=0

f̂ [n]
∫
T

(
ϕ′(v)

)2
e2πin(kv+ϕ(v)) dv =

∫
T

(
ϕ′(v)

)2∑
n�=0

f̂ [n]e2πin(kv+ϕ(v)) dv

=
∫
T

(
ϕ′(v)

)2
f
(
kv + ϕ(v)

)
dv.

We bound this integral by‖f ‖L∞(T)‖ϕ′‖2
L2(T)

. Combining these, the expression of (B
can now be bounded from above in absolute value as∣∣c[k]∣∣� 1

k2

(
1√
12

‖f ‖L2(T)

∥∥ϕ′∥∥
TV + ‖f ‖L∞(T)

∥∥ϕ′∥∥2
L2(T)

)
,

concluding the proof.
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