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INTRODUCTION 

We say that the flow S, is a Bernoulli flow of finite entropy if, for 
each fixed to , St0 is a Bernoulli shift of finite entropy. We proved the 
existence of Bernoulli flows in [2]. By a trivial normalization (change 
the time scale by multiplying all t by a fixed constant; that is, speeding 
up or slowing down the flow by a fixed constant) we can assume that 
E(S,) = 1. In this paper we will show that any two Bernoulli flows 
with the above normalization are isomorphic. 

We say S1 acting on X is isomorphic to S, acting on X if there is an 
invertible measure-preserving map y of X onto X and, for each fixed - 
to 7 St0 ~44 = dSto 4 h o s Id f or almost all x. (If S, and S, are flows 
built under functions-the theorem of Ambrose and Kakutani implies 
that they are isomorphic to such flows-then there is one set E of 
measure 0 and if x is not in E then S, F(X) = q S,(x) for all t.) 

In [2] we showed that a certain flow is a Bernoulli flow of finite 
entropy (Totoki had already shown that this flow was a K-flow). The 
flow can be described as follows: Let T be the 2-shift and let Y be the 
space T acts on. Let PI and P, be the two atoms of the independent 
generator for T. Let g be the function on Y that is 1 on P, and VZ on P, . 
The flow will act on X when X is the part of Y x R(R being the reals) 
that lies below the graph of g. Each point (y, 7) moves straight up at 
unit speed until it hits (y, g(y)); it then goes to (Ty, 0) and continues to 
move up at unit speed. It is clear from the proof in [2] that we can 
replace g by any function that is constant on P, and P, and such that the 
value on PI divided by the value on P2 is irrational. Our theorem implies 
that after a normalization any two of these flows are isomorphic (or if 
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we fix J, we do not have to normalize). Similarly, we could have replaced 
T by another Bernoulli shift and we would still (after a normalization) 
get the same flow. 

Another application of our theorem is the following: There are some 
deep results of Sinai and Anosov that allow us to apply the criteria of 
“very weak Bernoulli” defined in [2] to geodesic flow on surfaces of 
negative curvature, showing that they are Bernoulli flows. The theorem 
of this paper then shows that geodesic flows on surfaces of negative 
curvature are isomorphic to the simple flow described in the privious 
paragraph. Geodesic flows on surfaces of negative curvature were 
shown to be ergodic, and mixing and even a K-flow by Hedlund, Hopf, 
Sinai, and Anosov. Interest in them derives from the fact that they are 
mathematically simpler versions of mechanical systems such as the 
hard sphere gas. Also there are surfaces in three-space and centers of 
attraction and repulsion near these surfaces that make the motion of a 
particle constrained to move on these surfaces, mathematically equivalent 
to geodesic flow on a surface of negative curvature. (This was pointed 
out by Kolmogorov.) 

In the course of proving the isomorphism theorem we get a “Sinai 
type” theorem (see the corollary to the main lemma) that says that 
if S, is a mixing flow of finite entropy then there is a Bernoulli flow 
embedded in it. (The flow restricted to an invariant a-algebra is a 
Bernoulli flow.) The condition of mixing is not essential. 

Examination of the proof in this paper yields that if S, is a Bernoulli 
shift then S, is a Bernoulli shift for all t. (Because roots of Bernoulli 
shifts are Bernoulli shifts [2] we already knew that S, was a Bernoulli 
shift for rational t.) 

PRELIMINARIES 

We will need the extension to countable partitions of a theorem 
(Theorem 1 below) proved in “A Kolmogorov automorphism that is 
not a Bernoulli shift” [3]. Even though the change is minor we will 
reproduce the proof here. The proof of Theorem 1 depends on Lemma 1 
below which is a minor variation on a lemma in “Bernoulli shifts with 
the same entropy are isomorphic” [I]. 

LEMMA 1. Let I be an abstract partition; then given l , there is a 
6 such that if T is a mixing transformation with E(T) 3 E(I) and P a 
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partition satisfying (1) j d(P) - d(I)1 < 6, (2) I E(P, T) - E(I)1 < 6, then 
there is a partition P such that :( 1) d(p) = d(I), (2) Tip aye independent, 
(3) / lj - P 1 < E (d(P) stands for dist (P) as in the de$nitions in [l]). 

In [l] we proved the following (Lemma 5): 

LEMMA. Let I be an abstract partition. Let T be a mixing transformation 
on X such that E(T) - E(I). G iven E, we can find a 6 such that if P is a 
partition of X satisfying (1) 1 dist P - dist I 1 < 6 (2) 0 < E(T) - 
E(P, T) < 6, then there is a partition p of X such that (1) dist P = 
dist I, (2) Tip are independent, (3) 1 p - P 1 < E. 

Remark. (a) In the above lemma, 6 depends on E and I but not on T. 
(This is not clear from the statement, but since Lemma 5 of [l] is 
a corollary of Lemma 4, all we need show is that in Lemma 4, h(E) 
and g(c) are independent of T. This in turn is clear from the proof of 
Lemma 1.) 

(b) We only need E(T) > E(I) and can replace (2) in the above 
lemma by j E(P, T) - E(I)] < 6. (To see this, note that if E(P, T) < 
E(I), then we could change T by restricting it to an inviariant sub-n- 
algebra containing P so that E(T) = E(I). If E(P, T) > E(I), then we 
could continuously deform P through P, , 0 < t < 1, such that P,, = P, 

W’d = 40 I P, - P I < 6, and / d(P,) - d(I)1 < 6 E(P, , T) <E(I). 
If we have equality, Pl is the p we want. If we have <, then we could 
find P, such that (1) and the replacement for (2) holds, and E(P, T) < 
E(I). We then have first situation.) 

DEFINITION. Let P and P’ be partitions on the same space. e(P, P’) 
will denote the entropy of the partition whose atoms are Pi A Pi’, 
i # j and (Jy=i Pi n Pi’. We will define e(P, P’) (now P and P’ may be 
on different spaces) to be the infp of e(P, P’) where P is a partition with 
the same distribution as P and is defined on the same space as P’. 

THEOREM 1. Let T be a Bernoulli shift and P a countable partition 
such that E(P) < co and E(P, T) = E(T). Thengiven E, there is a 6 andu 
such that ;f T is mixing, E(T) > E(T), p, T satisfies (O)C(~, P) < 6, - - 
(1) 1 E(P, T) - E(P, T)I <,a, (2) 1 d( V: Tip) - d( Vt FP)j < 6. Then 
there is a P such that (1) I P - p j < E, (2) d( Vr Tip) = d( Vt Tip) for 
all n. 

Before giving the proof we will need the following: 
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DEFINITION. Let L be a partition of the set of sequences (ai}FzC=-K, 
1 < ai < k. Let P b e a partition with K atoms. There is a 1 - 1 cor- 
respondence between the atom in V!, T’P and sequences {~i}~C~~, . 
(Each atom in V”, TiP has the form OF, TiPut .) L, is the partition 
(of which f ,  TiP . is a refinement) whose i-th atom consists of the 
atoms in VFK T’P whose corresponding sequences are in the i-th atom of L. 

Proof. Let B be a finite partition such that T’B are independent 
and generate. Pick K so that VT, TiB Y/lo6 P. This implies that there 
is an L as in the above definition such that 1 L, - P 1 < l/l0 E. Pick 6’ 
(using our previous lemma) such that if 1 E(B’,T) - E(B, T)l < 6’ and 
1 d(B’) - dB 1 < a’, then there is a B such that 1 i? - B’ 1 < l /10Ok-, 
d(B) = d(B) and T’B are independent. There exists M depending 
on, P such that if E(P, P) < (1 j2OO)S’ and if we let Prr = (Pi ,..., P,, , 

u M+l Pi>, then I E(PM , T) - E(P, T)l < (I/100)8’. (We can define P,, 
in a similar way and can assume / P,,, - P 1 < ( 1 /~O)E.) Pick 7, 
y < (l/lOO)E, y < (1/100)8’ such that if P’ has M atoms and if 
I P’ - P, I < y, then I E(P’, T) - E(P,,, , T)I < (1 /IO)%. Now pick 
K’ > R so that VF;, TiB 31/1°r P. Pick n so that 

and 

Note that so far our choice of n and y depended only on T, P, and 13. 
We now choose u and 6 so that u - n, 6 < (ya/lOO), where u: is the 
measure of the smallest atom in Vi T’P,, . 

Now apply Rochlin’s theorem to find a set F such that TiF, 
O<i<n-1, are disjoint, and m[X - (-):‘I; T’F] < (l/lOO)r. (X is the 
space on which T acts.) If we replace F by TzF, the above properties 
still hold, and we can assume that d( Vi-’ T-‘(P,, V B)/F) is as close as 
we want to d(V,“-’ T-‘(P V B)). Th ere ore, f by removing an arbitrarily 
small set from TlF (and calling the new set F), we can assume (1) 
d( Vi-’ Tpi(P V B)/F) = d( V;-’ Tp’(P V B)). 

Applying the same reasoning again, we can find a set F such that 
TiF, 0 < i < n - 1, are disjoint m(X - uy1; T’%) < (y/100), and 
(2) d( Vt-’ FP,,,/$) = d( V,“-’ T-‘P,). Now because of hypothesis (2) 
and our choice of u and 8, we could (by removing a small part of F) 
assume that we have instead of (2) the following: 

(3) d (V MM/F) = d (\l FP,). 
0 0 

607/10/r-g 
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If we let $ be the gadget formed by partitioning TiF by P, and $ 
the gadget formed by partitioning the TiF by P,, , then $ and &; are 
isomorphic because of (1) and (3). Let 3’ be the gadget formed by 
partitioning TiF by P, V B. Choose a partition B’ of u&r TiF such 
that if we form the gadget 2’ by partitioning the FF by P, V B’, then 
$’ is isomorphic to 8’. (Now extend B’ to the rest of the space in any 

way.) 
Because 2’ and 8’ are isomorphic and fill up most of the space, 

because (K/n) < (l/lO)r, and because 1 L, - P, 1 < (2/10)~, we get 
that (4) IL,, - Phi 1 < (3/10)~. (Th is can be seen as follows: To each 
x, we associate a sequence {~l~(x)}~=~~ where Tix E PE, . / L, - P, 1 
is the measure of the set of x such that x E Pi and (ai(x)}FK not in 
L,(L) the j-th atom of L). Call such an x a bad x. Then j L, - P, / < 
(1 /lO)c implies that the measure of the bad x in U&-” TiF is < (l/lO).~ 
since 2’ and 8’ are isomorphic. The measure of the bad x in U’~~$“T~~ 
is < (1 /~O)E. Therefore, the measure of the bad x is <( 1 /lO)c + 
(2/1OO)Y + (r/100) < (2/1O)c.) 

The same argument shows that Vfk, TiB’ 12/10~ PM, and hence 
by our choice of y, (5) / E(B’, T) - E(P, T)l < (l/lo)%. Furthermore, 
since 8’ and $’ are isomorphic and fill up most of the space, we get 
that (6) I d(B’) - d(B)1 < 8’. (5), (6), and our lemma imply that there is 
a B such that (7) (B - B’ 1 < (,/lOOK), (8) d(B) = d(B), (9) TfB are 
independent. Because of (4) and (7), we get that (10) 1 Lg - P, 1 < 
(2/10)~. Because of (8) and (9), T acting on Vy, TiB is isomorphic to T 
under and isomorphism 9, which takes B onto B. Let p be y(P). Then 
d(V; Tip) = d(V,n Tip) f or all n. Again, because of the isomorphism 
and because ,L was defined so that / L, - P / < (l/lO)~, we get that 
(11) 1 Lg - P / < (l/lO)~. (10) and (11) imply / P,, - P 1 < 4 E, and 
hence I P - p 1 < c. (By our choice of M, I P - P, I < (l/lO)~, and 
because of hypothesis (2) I P - P, 1 < (2/10)~.) 

PART I 

Because of a theorem of Ambrose and Kakutani [6,7] we can assume 
that our flow is a flow built under a function. By this we mean the 
following: We start with a measure space Y and a transformation 
T on Y. Let g be an integrable nonnegative function on Y. The space X 
on which the flow acts is the part of Y x R that lies below the graph 
of g. Each point (y, r) in X moves straight up at unit speed until it hits 
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(y, g(y)). It then goes to (TY, 0) and continues to move up at unit speed. 

(SLY, y> = (y, r + t> if y + t <g(y). SLY, r) = (TYY 7 + t - g(y)) 
if g(y) < Y + t and Y + t - g(y) < g( Ty), etc.) 

We will refer to I7 as the “base” of the flow when represented in this 
way. 

We will always assume that S, is mixing for each t. We will also 
assume that m(X) = I, and that E(S,) < CO. 

DEFINITION. The continuous P-name of x (of length N) will mean 
the interval (0, N) partitioned by the Pi where t will be considered 
in Pi if S,(x) E Pi . 

DEFINITION. d({S,P)i , (S,P}t) or “the distance between the dis- 
tributions of the continuous names of P and P” will be defined as 
follows: Let y be an invertible, measure-preserving map of X onto x. 
Let d(y) = (1 /b - a) Jai tCb Jz 1 S,P - IJI(S,P)I. d will be the inf h(y) 
over all y. (IP, - P, 1 is the measure of the symmetric difference 
between P, and P, .) 

DEFINITION. We will call a countable partition P = {P,),” good if 
(1) E(P) < CO, (2) for each Pi th ere is a /Ii > 0 such that if x E Pi , 
then there is some interval I containing 0 of length pi and S,(x) E Pi 
for all t in I. (If we have a good partition P we will define the number 
LY~ to be the sup of the possible pi .) (3) For each x and finite interval 1, 
S,(x), x E I will intersect only a finite number of the Pi . 

LEMMA 0. Let S, and 8, be jaws acting on Lebesque spaces X and X. 

Let P and P be good partitions for S, and S, , where Pgenerates under S, , 
Let Xfl be X with the measure algebra generated by S,P. We will also 
assume that the continuous P (or P) name of each x will be partitioned into 
intervals that contain their left end points and not their right end points. 
(This could be accomplished by changing P and P on a set of measure 0). 
We then have that d((S,P)r , (S,P}i) = 0 for all n implies that there is a 
l-l invertible, measure preserving q~ mapping X onto X, and a set E of 
measure 0 such that ;f  x $ E then d.!?,(x) = S,d(x) for all t. 

Proof. (1) It is easy to see that dist Vzl S,,P = dist Vzl StzP. 

(2) There is an invertible measure preserving of mapping X onto 
X,, and a set E of measure 0 such that if x 4 E then the continuous 
P-name of x and the continuous P-name of d(x) agree on the rationals. 
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(We get (2) by a standard argument since X and X are Lebesque spaces). 
Our lemma follows immediately from (2). 

We will prove a flow version of Rochlin’s theorem. 

LEMMA 1. Given N and E, we can represent the jaw on a Jlow built 
under a function, f, where f < N and f = N except on a set of measure 
< g fz. 

Proof. Using the Kakutani-Ambrose representation theorem [6, 71 
we can represent the flow S, as a flow built under a function where Y 
is the base space, T a transformation on Y, and g a function on Y. 

It is easy to see that we can assume the measure of Y to be as small 
as we want (by taking a subset of Y of small measure and using that for 
the base instead of Y). Now let Aj be the part of Y where jN <g < 
(j + l)N. Let H = (J3J?z0 UiIi SiNAj . We can now represent our flow 
as a flow built under a function with base Y and function g. Clearly 
g < N and g = N except on a set of measure < m(Y). 

LEMMA 2. Given t, , there exists a good partition P such that P 
generates under St0 . 

Proof. (1) If P is any countable partition of finite entropy, then, 
for any E, we can find a good finite partition P’, such that E(P’) < 2E(P), 
IP-P’p’ <E and there is an R, E(R)<6 and P’VRIP. (This 
follows almost immediately from the Ambrose-Kakutani representation). 

(2) Fix a countable partition P of finite entropy and fix E. Choose E’ 
so that if 1 Q* - P 1 < E’. Then there is an R such that Q* V R 3 P 
and E(R) < E. Choose N so that the Shannon-McMillan-Breiman 
theorem implies that there is an X, 3 X, m(X - X,) < (l/10)& 
and the number of different P-names relative to St0 of length 2N in 
Xl is < 24E(P)N (see footnote 1). Apply Lemma 1 and represent the 
flow as built under a function g defined on Y where g < 2N t, and 
g = 2Nt, on A and where m(Y - A) < (L/SNt, . Let F’ be the set of 
points in X, (x, y) where x E A and N < y < N + to). Let F = S,F’. 
If t is large enough, we can assume that the fraction of F not in X1 is 
less than &/2. Let Q be the partition of F n X, into P-names under St0 
of length 2N (one of the atoms of Q is the complement of F n Xl). 
Then VTN St0 Q 3’ P. Because Q partitions a set of measure < (2N))l 
into < 24N.E(P) sets, we have E(Q) < 2 E(P). By our choice of E’ we can 
find a partition P, , E(P,) < E and V_“, SjO(Q V PJ 3 P. Because of 

1 These names will be taken from -N to N. 
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(1) we can assume that Q is also good and is a partition of F. (Change 
Q by so little that it still picks up P very well and the new PI will still 
have small entropy). 

(3) We will now repeat (2) using P, instead of P (and NI and or’ 
instead of N and E’). We will end up with a set FI and a partition 
of it, Q, . The measure of the points z, in (F u StOF (J S-,@F) n F, 
< 4m(F)m(F,). (Th’ IS is so because the flow is mixing and because F, was 
chosen as S,F,’ for some arbitrarily large t). This implies that the set of z 
in F, such that there is a x1 in F n FI and - ~ Stz, where 1 t 1 < t, has "1 - 

measure < lOm(F)m(F,). m(F,) can be taken to be as small as we want 
by making Nr large. We can thus change Q on a small set so that Q 
and Q, partition disjoint subsets and both are good and we now have 
that E(Q V Qr) < 2E(P) + 2~ and there is a P, , E(P,) < l 1 and 

V”, &o(Q V Ql V Pz> 3 P. 
(4) Continuing this process proves the lemma. 

DEFINITION. We will define a “continuous gadget” as follows: 
Let S, be a flow on X and let X, be a subset of X and P a partition of XI 
with the following properties: S, can be represented as a flow built 
under a function with base Y and function F. f is a constant C on a 
subset I’, of Y, and X, is the part of X that lies above Y, . We will call 
C the height of the continuous gadget. We will say that the continuous 
gadgets S, , P and XI , P are isomophic if they both have the same 
height C and the distribution of continuous P-names in Y, of legnth C 
is equal to the distribution of continuous P-names in u, of length C. 

MAIN LEMMA. We are given S, , p where P is good and generates 
under some St1 and 3, is a Bernoulli pow. Let S, be a frow such that S, 
is mixing for each t, and E(S,) = E(S,). 

Given E, there exists t,(t,, = (l/M)tr , M an integer), N, and 6 > 0 
such that if P is a partition satisfying 

(1) P is good and oli > -k 01~ , for all of the Pi E P except for a 
collection of Pi the measure of whose union is < 6(01~ and 01~ for P and P 
are defined on p. 10); 

(2) if(P, P) < 6; 
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then, given t, , rV, and 8 (assume t-, is such that t, is an integer multiple 
of t,), there is a p such that 

(0) /P-PI <E; 

(i) P is good and Ed > i oLi for all of the Pi except for a collection 
of pi the measure of whose union is < 6; 

(2) e(P, P) < 8; 

(3) d({S, , P>f, {St ) P)f) < 8; 

(3) j E(p, St,) - E(P, &,,)I < 8. 

Proof. Choice of t, , N, and 6. 

(1) Choose K such that m(lJz Pi) < (l/lOO)e. (If 6 is small enough, 
m(U,” Pi) < (2/1OO)E). 

(2) Choose t, such that if the continuous S, , P-name of x and 
the continuous S, , P-name of x (assuming the names have the same 
length and that P satisfies hypothesis (1)) have the property that the 
percentage of U,” Pi and (J,” Pi is less than (3/100)~ in each of the above 
names, and if the names restricted to multiples of t, disagree in less 
than (l/300)6 p ercent, then the continuous names disagree in less than 
(l/lO)~ percent. 

To see this let 01 be the minimum of the q, &, i < K. If the 
continuous names disagreed in more than E percent, then at least 8~ 
of the disagreement would be due to Pi intervals intersecting pj intervals, 
i # j, i < K, j < K, and the length of the intersection is greater than 
(1 /100)~~. Now choose t, < (I / 1000)~01. 

(3) Applying Theorem I of Preliminaries we can choose N and 6, 
6 < (l/100)6 such that [2, 41 in the statement of this lemma imply that 
there is a P such that 1 p - P 1 < (1/100)~)~ and dist( Vr Sjop) = 
dist( Vr SiOP) for all n. (Note that if [3] holds for large enough N, then 

We now assume we have a P satisfying the hypothesis of the lemma. 
Choose P satisfying (3). 

(4) Choose Q to be a good finite partition and 

I -WA St,) - -W QI < (l/lOO)~. 
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(5) Form P’ by lumping all but a finite number of atoms in P 
together and so that e(P, P’) < (l/100)8 and 1 P’ - P, <I (l/100)8. 
Define P’ and P’ by lumping together corresponding sets. Do not lump 
Pi, i < K. We can assume that the measure of the lumped atoms of 
P and P is c: (1/100)x. 

(6) Pick y < 8 such that if we change any partition with the same 
number of sets as Q, by less than y then we change its entropy relative 
to S1, by less than ( 1 / 100)s. 

Pick [ < (l/100)8, E < y, such that if R, and R, have the same 
number of atoms as P’ and dist R, - dist R, 1 < f, then e(R, , R,) < 
(l/100)8. 

(7) Pick L so that (a) if ~ t , < to/L, and if 12 is large enough then 
the P’ names of x and s,(x) under SI,,L (of length n.L) agree to within 
(l/lOO)f; (b) if I t I < t,,/L, and if n is large enough then the, Q-, names 
of x and S,(x) under St,ir. (of length nL) differ by < (l/lOO)c; (c) r,jL 
less than (l/100) of the minimum of the ni appearing in P’. (d) if t 1 
< to/L (and if n is large enough) then the continuous P’ name of x and 
S,x (of length nt,) differ by less than (1/100)~. 

(8) We will now form a continuous gadget of height nt, . Choice of n. 
n will be chosen so that after remozing a set of measure < (1 /lOO)f from 
X(cal1 what remains XI) we have: 

(a) suppose x is in -I1 and i is an integer s-c: L and suppose we 
know the P’-name under s,u (length n) of silo(x). Then there are less 
than 2(1!100)8n possible P-names under 3,~~ (of length (n A- 1)L”) that x 
can have. We can see this as follows: The size of most of the atoms 
in Vyzo 3.i” P’ will approach 

E(P’, S,,)I 

(as n 4 ~0) 4. 
The size of most of the atoms of Vri S,,ir. will approach 

Because of (5) the above implies that if n is large enough, then, except 
for a set of measures < (1 /L)( 1 /lOO)[, we have that (a’) if we know the 
P’-name of x is under St0 (of length n) then there are less than 2(l/loo)S’~ 
possible P’-names under StOiL (of length (n + 1)L) that x can have. 
The above implies (a). 

” Take the name from -L to d. 
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(b) If x C X1 , then its continuous P’-name (of length nt,) has 
the property that the distribution of continuous P-names of length m 
contained in it is within (l/lOO~ of the distribution of continuous 
P/-names (of length w) in X. Furthermore, the distribution of P’ in it 
is within (l/100)( of the distribution of P’ m X. Also the parts not 
belonging to lJF Pi are less than (l/100) E of its length. 

After removing a set of measure < (l/100)( from X (call what remains 
Xl) we have 

(c) The P-names of points in x1 correspond to the P-names of 
points in Xi (under St0 and St0 and of length n). 

(d) If A is an atom in V: StOP’ then 

if A is an atom in Vi SfslL(Q V P’) then m(A n Xi) = 0, or 

m(A n Xl) > z lrE(s,uig+(llr).(l/l~)~l~~ = p(s,o)+(1/100!61n 

(e) If x is in Xi, then the distribution of P in the continuous 
P-name of x (of length nt,) satisfies (2). That is, the part of the name 
not belonging to lJf Pi is less than (l/lOO)e (recall assumption [3] in the 
statement of the lemma and the choice of 6). 

After removing an additional set of measure < (1/100)~ from X (call 
what remains X, , X, C XI) we have 

(f) The P’-and P’- names (of length n) under St0 agree to 
within (1 / 100)~. 

(g) (d) still holds on X, . 

(h) n is large enough to satisfy (7). Also L * 2(2/100)“n < 2(3/100)an 

(9) We will next apply the marriage lemma as in [8]. We first 
^, . 

divide each atom in Vr SiOP mto 2(1/100)“n equal pieces. Each of these 
will have smaller measure than the part of any atom of Vf Sj iL(Q V P’) 
lying in Xl or X2 [see (5), (8d) and (8g)J. We can now ass&n to each 
atom in Vf Si lL(Q V P’) that intersects X2 one of the above pieces of 
an atom of Vf”S~o~r that intersects it. (We can do this because of the 
marriage lemma.) Because of (8d) we can extend the above assignment 
and assign to each atom in VP S~o~,(Q V P’) that intersects Xi one 
of the pieces of the atoms of V,” SIP that intersects X1 . (8d) implies 
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that there are more pieces of atoms of Vi Si,P’ intersecting S, than 
there are atoms of Vi” Si,,,(Q V P’) intersecting A’,). 

We will now rephrase the above, in terms of the names of points. 
First note that because of (Sf), if an atom of V: SfOP’ intersects an 
atom of Vt” Sf,,JQ V P’) on X, , then the P-name (under S,(, of 
length z) of any point in the first atom agrees to within (1/100)~ with the 
PI-name under S,” of length n of the second atom. We get the following: 
We can assign to each to each atom A, in Vf;” sf,~~(Q V P’) that intersects 
X, a P/-name under S,O of length n and if A intersects _7i,, then the 
above PI-name will disagree with the P’-name (under S,O of length n) of 
all the points in A (they all have the same name) in less than (1 jlO0)~ 12 
places. Furthermore, each P’-name (under S,O of length n) is used at 
most 2(1/100)*n times. 

(10) Form a “continuous gadget” of height nt, . I,et F be the part 
of the gadget of height < t, and FL the part of the gadget of height 
< to/L (if Y is the base, F = ~,,:~,cl, S,E). Let ,F, be F, n S, and 
,F, = FL n X, . Because S,” is mixing, we can assume m(F, - lFL) <: 
(l/l OO)f m(FL) and m(F, - zF,) < (l/ 100)~ m(F,). We can also assume 
that the measure of the part of X not in the continuous gadget is 
< (l/100)5. 

(1 1) We will now change Vi” S~J~(Q V P’) on F, . We will call 
this new partition of F, , R. R will have the following properties: 

(a) There is a 1-I correspondence between atoms of R and atoms 
of vk” S&(Q v P’). 

(b) If x’ E I’, then u$“” S,x lies entirely in one atom of, f and 
the corresponding atom in VF SiO,L(Q V P’) interesected Uo’ S,x. 

(c) The atoms of R that cover 2FL correspond to atoms in 
Vin S~J~(Q V P’) which covered 2FL . 

(d) Because of (b) and (7b), 
that 1 Q - Q ! c (l/100)6 

we have: There is a partition Q such 
and all points in one atom of R have the 

same Q-name under Sl,ir. of length nL. 

(12) To each atom of R corresponds a P-name (under St0 , of 
length n) of some point x in 9, (because of (9) and (1 la). The P/-name 
of x is equal (because of (8~) to the P-name of some x in X, . We can 
now assign to each atom R the PI-name of x under S,,ir. of length nL. 

We can now define P so that the P-name (under S,O,L of length nL) 
of a point, X, in F, is the same as the P-name (under sI,lL of length nL) 
which was assigned to the atom of R containing X. 
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(13) We will now check that 

(a) I E(P, Sto) - E(E StJ < 8. 

We first note that 

This follows from (6) (which says Q has good entropy), (1 Id) (which 
implies that FL V (Vz” Si iI. R) 1 Q), and (6) (which says that if we 
change Q by less than y, it” still has good entropy). 

(c) There is a partition H of FL with < 2(1/100)“n atoms such 
that V,” Sii I’ V H 1 R on FL . This follows from (9), (which says that in 
assigning the atoms in Vz” S$,(Q V P’) P’-names, we used each 
P’-name more than 2(1/100)8” t’ imes (11) and (12) imply, therefore, that 
in assigning the R atoms PI-names, under St, of length n, we used 
each P’-name no more than 2(ljlooJBn times). 

(d) If i is an integer <L, then there is a partition Hi of Sio,LFL 
such that H. has <2(2/100)8n atoms and V,” Stof3 V Hi 3 Sio,, R on 
S~J, FL. We get (d) as follows: Because of (c) we can find Ri such that 
(i) V:” S$LP V ITi 3 s&L R and Hi has <2(1/100)8n atoms. Because 
of (8a) (and because the P-name under S1,jL is the same as the P’-name 
under St,iL of some x in Xi), we have an ei having <2(l/looJ8” atoms, 
and such that (ii) V,” S$ P V I?$3 V”i S<;, P on S~J~ F, (i) and (ii) 
give (d). 

(e) There is a partition H’ of F having <2(3/100)8n atoms such 
that Vr SI P V H’ 3 Vt S~J, R. This follows immediately from (d) 
and (8h). Because 

(a) follows immediately from (e) and (b). 

(f) Because of (a), we get conclusion [is] of our lemma which 
says that 1 E(p, SzO) - E(P, St,) < 8. We can see this as follows: 
Because P generates under S, , we have E(p, A’$) = toit, E(p, sto). 
We also have E(a, Sio) > toit, 
get [4]. 

EiP sto). Since E(p, SF,) < E(H, s,), we 

(14) We will now check conclusion [3]. Because of (5), it is enough -- - 
to show that (a) d({S,P)$, {StP’}f) < (l/10)8. Because of (11) and (12), 
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the P-name under St,iL of length nL of all the points S,(x) where 
0 < t < tOIL and x E Y is the P’-name under sl,,L of length nL of some 
point X in X, . Because of (7a), the continuous P-name of length nt, of 
x differs from the continuous P’-name of length nt,, of x by less than 
(l/100)5 which . 1 is ess than (I/100)& Because of (8b), the distribution 
of continuous P-names of length N in the continuous P-name of 3 
(of length nt,) is within (l/lOO)~ of the distribution of continuous 
P-names of length N m -1’. We therefore have that the distribution of 
continuous P-name of length N, in the P-name of x of length nt, , is 
within (I/ 10)s of the distribution of continuous P/-name of length 
m in X. This gives (a). 

(15) We will now check [2]. Because of (5), it is enough to check 
that (a) c(P, P’) < (l/10)% A s in (14) we get that the continuous P-name 
(of length nt,) of a point x in Y differs by less than (l/100)5 from the 
continuous P-name (of length nt,) of some point x in X, . Because of 
(8b), we get that the distribution P in the continuous P of x differs by 
less than E from the distribution of P’ in X. Because of our choice of f 
in (6), we get (a). 

(16) We will now check that 1 P - P j < E. (This is [o]). (a) In (9) 
we assigned to each atom A of Vf L$,,(Q V P’) which intersects X2 
a P/-name, {&‘}y under S,” that disagrees with the P/-name, {ai’):, 
(under S,“) of the points, in A in less than (1 /lOO+ places. Let A, be 
the atom of R corresponding to A (see (I la). Let x be a point in X1 
whose P’-name under St0 of length n is (a,‘};“. Then (b) the continuous 
P-name of any point in A, will disagree with the continuous P-name 
ofZbylessthan(l/lO)Eb ecause of (7a). But (c), the continuous P-name 
of x will differ from the continuous P’-name of any point in A by 
<( l/lO)~ because {a,‘}; and (dz,‘}: differ in <( 1 /loo) ~n places [see (a)]; 
and because we can apply (2), since any point in A satisfies (8e) and .F 
satisfies (8b). Because of (11 b) and (7d), we have (d) the continuous 
P’-name (of length nt,) of any point in A, differs by <( 1 /lOO)c from 
the continuous P’-name of some point in A. Because of (6), (c), and (d), 
and because the atom of R corresponding to the A, covers 2FL (see 
(1 lc)), we get that P - P’ 1 < (1/5)~. Because of (5) we get that 
that 1 P - P 1 < E. 

(17) We will now check [ 11. Because of (7c), all of the Pi except 
the one (call it P,,,) that correspond to the atoms of P’ that were lumped 
together satisfy [I]. B ecause of (5) and 8b m(P,,!) < S. We must also 



138 ORNSTEIN 

check that p,,, is good. We could assume that the part of X not in the 
continuous gadget defined in (10) is in p,,, . We could also change p 
slightly by putting a small part around the top and bottom of the 
continuous gadget in p,,L . This will insure that p?,, is good, and will not 
disturb any of the other conclusions of the lemma. 

COROLLARY. Under the same hypothesis on the main lemma we can 
conclude that there is a P such that 

IP-PI <E and 2E(bvxY, w%3 = 0 for all N. 

Furthermore, P will be good. 

LEMMA. Let S, be a Bernoulli $0~. Let P and Q be good partitions 
such that P generates under S, and that if we let Xo be the a-algebra 
generated by Q under St, then Q generates Xo under S, (S, acting on 
Xo is automatically a Bernoulli $0~ by [4]). We also assume E(P, S,) = 

E(Q, sd. 
Given E, there is a Q1 such that 

(1) (Q1 , St> - (Q, St) i.e., ${&QX {&QX) = 0 

(2) v S,iQ, 3 P; 
-m 

for all N; 

(3) I 81 - Q I < E. 

Proof. (I) Since P generates under S, , we can choose KI so that 

(a) 7 S,,PETCJ. 
-4 

Apply the corollary to the main lemma to S, acting on X, to get t, , 
N, and 6 such that t, = (l/M), M an integer, and if P’ is a partition 
in X, satisfying 

(b) dist P’ = dist P; 

(4 ww)~, WY3 < 6; 

(4 I EP, St,) - W”, &,)I < 6; 
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then there exists a P, in X0 such that 

(e) 1 P, - P 1 < 6/301i, , and 

(9 Pl , St) - (P, S,h3 

Choose G such that if 2 < 6, E < E, and if Q’ is in X, and 1 Q’ - Q 1 < i, 
then [ E(Q’, S,O) - E(Q, S,O)I < (S/100). Choose K, > K, so that 

(8) 7 St,,Pi!Y_o. 
-5 

Choose n so that t,K, < (E/IOO)~ and N < (~/100)N. 

(2) Apply Lemma 1 to form a continuous gadget on X, of height N 
where m(X - -XI) < c/100. Let Y, be its base. Change Q to & in X, 
so that points in Y, have only a finite number of continuous Q-names of 
length N. Do this so that 

(a) I Q - & 1 < (6 . g/10) and I E(Q, S,J - E(&, St,,) < (l/100)8 
(note that E(Q, S,J = E(P, S,“) = to). Let y1 be the continuous 
gadget obtained by partitioning XI by & and P. Choose P’ in X, so that 
if fS is the gadget obtained by partitioning XI by & and P’, then 

(b) x1 and 2, are isomorphic 

Extend the definition of P’ to X - XI so that dist P = dist P’. 

(3) (la) implies that there is an operator L (see the definition on 
p. 0) such that 

(a) IL, - Q I < c/IO. 

Therefore, (b) / L, - & 1 < (26/10). Because f1 and y2 are isomorphic, 

(c) 1 L,, - & i < (36/10). (I) (g) implies 

3 We can apply the lemma to Xg because we never used that the o-algebra of X 

separated points. We only need that Ll holds (to get F and FL measurable), and this 
follows from the existence of a good partition in X, _ 
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Because #r and j2 are isomorphic we have (d) 

7 s,op’ a? Q 

-x2 

Because of (d) and our choice of E we get that P’ satisfies (I) (d). Because 
$r - j2 and N was large compared to N, we see that P’ satisfies 
(1~). Therefore, we can find PI such that 

(e) PI is in X, ; 

PI (Pl 7 St> - (P> St>; 

(g) I Pl - P -c d30K, ; 

(h) I LPI - Q I < 5 c. 

(4) Now choose K, > K, so that 

(a) -jj S,“Q ‘y PI . 
4 

Apply the corollary to the main lemma to get t, , IV1 , and 6, where 

t1 = (l/W), Ml an integer, and if Q* satisfies 

(b) dist Q* = dist Q, 

Cc> d({StQ*}& {StQP> -=L 6, , and 

(d) I E(Q*, S,l> - E(Q, S,l>I < 6,) then there is a Qr such that 

(e) (Q1 St) - (Q, St), I Q1 - Q* / < l /30K, . Now choose E, 
E < 6,) Z < E such that if IIP - P I< Al, then j E(,P, S,J - E(P, Stl) / < 6,. 
Now choose K4 > K, so that 

Choose E, so that tr& < (~/lOo)Nr and Nr < (~/lOO)~r . 

(5) We will now apply Lemma 1 and get a continuous gadget of 
height RI consisting of X2 partitioned by P. We can assume that 

(a) m(X - X2) < E/100. W e can assume that the distribution 
of continuous P-names of length RI in the base Yz of the gadget is as 
close as we want to the distribution of continuous F-names of length 
Nr in X. (To see this, let 4 Yz = u Itl <a S, , Yz . Now by the mixing 
we can assume the distribution of names in gY2 is very good. If ,!3 is 
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small enough, this is close to the distribution of P-names in I’, since 
P is good). 

We also have that the distribution of PI-names of length N, in k’, 
is as close as we want to the distribution of PI-names in ,Y. We can 
then find partitions, r’ and P, , of X2 so that the points in T’, have only 
a finite number of different P - (or PI -) names of length RI and 

(b) 1 P ~ P 1 < (i/100) . (l/k;) and 1 ITI - PI 1 < (E/100) . (i/k;) 

and the gadgets formed by partitioning X, by P and r’, are isomorphic. 
Now pick Q* so that the gadget $ formed by partitioning X, by P 
and Q* is isomorphic to the gadget 8, formed by partitioning X, by P, 
and Q. Define Q* on X ~ E’, so that dist Q* = dist Q. 

(6) (4f) and (5b) imply (a) 7 S$ “?O I’, 
-Kg 

Because g - ,$, we get 

(b) 7 S&O* 3?o I’ 
-K, 

and hence 

Because of (c) and our choice of E, Q* satisfies (4d). Because of our 
choice of nI and the measure of II - X, , Q* satisfies (4~). Therefore, 
we can find Qr , such that 

(4 (Q)17 8,) - (07 St> 

and (e) I Q1 - Q* ~ < l /30K, . Because of (4a) and (5b) we get 

(f) 7 SliQ ‘Y PI . Since 22 N 9r we get 
-KS 

K3 
(g) p SliQ* ‘%? P and h ence (h) V SIiCJ* 5 P, and by (e) we get 

3 -K, 

(i) Yj S,io, 5 P. 
--Cl 
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Because of (3h) and (5b,j) 1 Lg, - Q 1 < (5~/10). Because d N fI , 

04 I LB - Q* I < (6410) and, by (6) (e), 0) I LB - Q1 I < 
(7~/10). Thus 

(m) I L, - Q1 1 < (S~jl0). But (3a) says / L, - Q 1 < (e/10). There- 
fore, by (4, 

(4 I Q - Ql I < E. 

Our lemma follows from (n), (i), and (d). 
Repeated application of this lemma (see the argument at the end of 

[l]) yields: 

THEOREM. Let S, and S, be Bernoulli jaws and E(S,) = E(S,). 
Let P and R be good partitions such that P generates under S, and R 
generates under S, . Then we can jind a Q such that Q generates under 

S, and (Q, St) - (K St). 

The above theorem easily implies that S, and s, are isomorphic by 
Lemma 0. 
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