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Abstract

This paper classifies the blocks of the cyclotomic Hecke algebras of type G(r,1, n) over an arbitrary field.
Rather than working with the Hecke algebras directly we work instead with the cyclotomic Schur algebras.
The advantage of these algebras is that the cyclotomic Jantzen sum formula gives an easy combinatorial
characterization of the blocks of the cyclotomic Schur algebras. We obtain an explicit description of the
blocks by analyzing the combinatorics of ‘Jantzen equivalence.’

We remark that a proof of the classification of the blocks of the cyclotomic Hecke algebras was announced
in 1999. Unfortunately, Cox has discovered that this previous proof is incomplete.
Crown Copyright © 2007 Published by Elsevier Inc. All rights reserved.
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1. Introduction

The Ariki–Koike algebras are the cyclotomic Hecke algebras of type G(r,1, n). These al-
gebras first appeared in the work of Cherednik [9] and they were first systematically studied
by Ariki and Koike [3]. Independently, and at about the same time, Broué and Malle [6] gen-
eralized the definition of Iwahori–Hecke algebras to attach a Hecke algebra to each complex
reflection group. The cyclotomic Hecke algebras are central to the conjectures of Broué, Malle
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and Michel [5] which grew out of an attempt to understand Broué’s abelian defect group conjec-
ture for the finite groups of Lie type.

The Ariki–Koike algebras arise most naturally as ‘cyclotomic quotients’ of the (extended)
affine Hecke algebras of type A. To make this explicit, let F be a field and let Haff

n be the affine
Hecke algebra of type An. Using the Bernstein presentation, Haff

n can be written as a twisted ten-
sor product Hq(Sn) ⊗ F[X±

1 , . . . ,X±
n ] of the Iwahori–Hecke algebra Hq(Sn) of the symmetric

group and the Laurent polynomial ring F[X±
1 , . . . ,X±

n ]. The Ariki–Koike algebra is then the quo-
tient algebra Hr,n(q,Q) = Haff

n /〈(X1 − Q1) . . . (X1 − Qr)〉, where Q = (Q1, . . . ,Qr) ∈ (F×)r .
As Hr,n(q,Q) is a quotient of Haff

n , every irreducible Hr,n(q,Q)-module can be considered
as an irreducible Haff

n -module. Conversely, by quotienting out by the characteristic polynomial
of X1, every irreducible Haff

n -module is an irreducible module for some Ariki–Koike algebra.
The deep results of Ariki [2] and Grojnowski [17] show that the module categories of the affine
Hecke algebras and the Ariki–Koike algebras are intimately intertwined. The main result of this
paper shows that, combinatorially, the blocks of these algebras are the same.

If A is an algebra then two simple A-modules D and D′ belong to the same block if there
exist simple A-modules D = D1,D2, . . . ,Dk = D′ such that either Ext1A(Di,Di+1) �= 0 or
Ext1A(Di+1,Di) �= 0, for 1 � i < k. More generally, two A-modules M and N belong to the
same block if all of their composition factors belong to the same block.

The natural surjection Haff
n → Hr,n(q,Q) shows that if D and D′ are in the same block as

Hr,n(q,Q)-modules then they are in the same block as Haff
n -modules. The main result of this

paper shows that the blocks of the Ariki–Koike algebras are determined by the affine Hecke
algebra.

Theorem A. Suppose that F is an algebraically closed field and that q �= 1. Let D and D′ be
irreducible modules for the Ariki–Koike algebra Hr,n(q,Q). Then D and D′ belong to the same
block as Hr,n(q,Q)-modules if and only if they belong to the same block as Haff

n -modules.

We also classify the blocks of the Ariki–Koike algebras when q = 1 and when some of the
parameters Q1, . . . ,Qr are zero.

By a well-known theorem of Bernstein [22, Proposition 3.11], the centre of Haff
n is the set

F[X±
1 , . . . ,X±

n ]Sn of symmetric Laurent polynomials in X1, . . . ,Xn. Consequently, the cen-
tral characters of Haff

n are naturally indexed by Sn-orbits of (F×)n. This observation gives a
natural combinatorial criterion for two Hr,n(q,Q)-modules to belong to the same block (see
Theorem 2.11 for the precise statement), and it is this statement that we actually prove. We prove
Theorem A by first showing that blocks of Hr,n(q,Q) are the ‘same’ as the blocks of the asso-
ciated cyclotomic q-Schur algebra. This allows us to use a new characterization of the blocks in
terms of ‘Jantzen coefficients’ (Proposition 2.9).

Observe that Theorem A is equivalent to the following property of the blocks of Haff
n .

Corollary. Suppose that q �= 1 and let D and D′ be two simple Hr,n(q,Q)-modules. Then D

and D′ belong to the same block as Haff
n -modules if and only if there exist simple Hr,n(q,Q)-

modules D = D1,D2, . . . ,Dk = D′ such that either

Ext1
Haff

n
(Di,Di+1) �= 0 or Ext1

Haff
n

(Di+1,Di) �= 0,

for 1 � i < k.
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In 1999 Grojnowski [18] announced a proof of Theorem A. Using an ingenious argument,
what Grojnowski actually proves is that

Ext1
Haff

n
(D,D′) = Ext1Hr,n(q,Q)(D,D′)

whenever D �= D′ are simple Hr,n(q,Q)-modules. Unfortunately, as Anton Cox [10] has pointed
out, this is not enough to classify the blocks of the Ariki–Koike algebras. For example, it could
happen that there are no Haff

n -module extensions between different Hr,n(q,Q)-modules which
belong to the same block as Haff

n -modules. We note that Grojnowski’s result does not follow
from Theorem A.

Lusztig [22] introduced a graded, or degenerate, Hecke algebra for each affine Hecke algebra.
Brundan [8] has shown that the centre of the degenerate affine Hecke algebra maps onto the
centre of the degenerate cyclotomic Hecke algebras. This gives a classification of the blocks of
the degenerate cyclotomic and affine Hecke algebras analogous to our Theorem A. It should be
possible to use the arguments from this paper to classify the blocks of the degenerate cyclotomic
Hecke algebras of type G(r,1, n) and the associated degenerate cyclotomic Schur algebras. All
of the combinatorics that we use goes through without change, however, it is necessary to check
that arguments of [21] can be adapted to prove a sum formula for the Jantzen filtrations of the
degenerate cyclotomic Schur algebras. This should be routine (cf. [4, §6]), however, we have not
checked the details.

The outline of this paper is as follows. In the next section we introduce the Ariki–Koike
algebras and the cyclotomic q-Schur algebras. Using the representation theory of these two al-
gebras, we reduce the proof of Theorem A to a purely combinatorial problem of showing that
two equivalence relations on the set of multipartitions coincide (Theorem 2.11). The first of
these equivalence relations comes from the cyclotomic Jantzen sum formula [21]. The second
equivalence relation is equivalent to the combinatorial criterion which classifies the central char-
acters the affine Hecke algebras. In Section 3 we develop the combinatorial machinery needed
to show that our two equivalence relations on the set of multipartitions coincide when q �= 1 and
when the parameters Q1, . . . ,Qr are non-zero. Here we are greatly aided by the recent work of
Fayers [14,15] on ‘core blocks’ of Ariki–Koike algebras. Finally, in Section 4 we consider the
blocks of the Ariki–Koike algebras with ‘exceptional’ parameters; that is, those algebras with
q = 1 or with some of the parameters Q1, . . . ,Qr being zero. Quite surprisingly, the algebras
with exceptional parameters have only a single block (unless q = 1 and r = 1).

2. Cyclotomic Hecke algebras and Schur algebras

This section begins by introducing the cyclotomic Hecke algebras and Schur algebras. We
then reduce the proof of Theorem A to a purely combinatorial statement which amounts to show-
ing that two equivalence relations on the set of multipartitions coincide.

2.1. Ariki–Koike algebras

Let F be a field of characteristic p ∈ {2,3, . . .} ∪ {∞} and fix positive integers n and r . Sup-
pose that q,Q1, . . .Qr are elements of F such that q is invertible and let Q = (Q1, . . . ,Qr).
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The Ariki–Koike algebra Hr,n = Hr,n(q,Q) is the unital associative F-algebra with generators
T0, T1, . . . , Tn−1 and relations

(Ti + q)(Ti − 1) = 0, 1 � i � n − 1,

(T0 − Q1) . . . (T0 − Qr) = 0,

TiTj = TjTi, 0 � i < j − 1 � n − 2,

TiTi+1Ti = Ti+1TiTi+1, 1 � i � n − 2,

T0T1T0T1 = T1T0T1T0.

Define e � 2 to be minimal such that 1 + q + · · · + qe−1 = 0 ∈ F. Then e ∈ {2,3, . . .} ∪ {∞}.
Note that e = p if and only if q = 1. If e �= p and p is finite then p does not divide e.

Recall that a partition λ = (λ1, λ2, . . .) of n is a weakly decreasing sequence of non-negative
integers which sum to |λ| = n. An r-multipartition of n, or more simply a multipartition, is an
ordered r-tuple λ = (λ(1), . . . , λ(r)) of partitions with |λ| = |λ(1)| + · · · + |λ(r)| = n. Let Λ+

r,n

be the set of multipartitions of n. We regard a partition as a multipartition with one component,
so any subsequent definition concerning multipartitions specializes to a corresponding definition
for partitions.

The set of multipartitions is naturally ordered by dominance where λ �μ if

s−1∑
t=1

∣∣λ(t)
∣∣ +

i∑
j=1

λ
(s)
j �

s−1∑
t=1

∣∣μ(t)
∣∣ +

i∑
j=1

μ
(s)
j

for s = 1,2, . . . , r and all i � 1. We write λ � μ if λ� μ and λ �= μ.
The Ariki–Koike algebra Hr,n is a cellular algebra [12,16]. The cell modules of Hr,n are

indexed by the multipartitions of n. The cell module indexed by the multipartition λ is the Specht
module S(λ). By the theory of cellular algebras [16,23], there is an Hr,n-invariant bilinear form
〈,〉λ on the Specht module S(λ), so the radical radS(λ) = {x ∈ S(λ) | 〈x, y〉λ = 0 for all y ∈
S(λ)} is an Hr,n-submodule of S(λ). Set D(λ) = S(λ)/ radS(λ). Then the non-zero D(λ) give
a complete set of pairwise non-isomorphic simple Hr,n-modules.

The theory of cellular algebras gives us the following fact which is vital for this paper because
it allows us work with Specht modules rather than with the simple Hr,n-modules.

2.1. Lemma. (See Graham–Lehrer [16, 3.9.8], [23, Corollary 2.2].) Suppose that λ is a multi-
partition. Then all of the composition factors of S(λ) belong to the same block.

Thus we can talk of the block of Hr,n which contains the Specht module S(λ).

2.2. Cyclotomic q-Schur algebras

Rather than working with Specht modules to classify the blocks we want to work with Weyl
modules. To this end let {La1

1 . . .L
an
n Tw | 0 � ai < r and w ∈ Sn} be the Ariki–Koike basis of

Hr,n [3, Proposition 3.4]. That is, L1 = T0 and Li+1 = q1−iTiLiTi , for 1 � i < n, and if w ∈ Sn
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then Tw = Ti1 . . . Tik whenever w = (i1, i1 +1) . . . (ik, ik +1) with k minimal (so this is a reduced
expression of w). For each multipartition λ define

mλ =
r∏

s=1

|λ(1)|+···+|λ(s−1)|∏
k=1

(Lk − Qs) ·
∑

w∈Sλ

Tw,

where Sλ = Sλ(1) × · · · × Sλ(r) is the Young subgroup of Sn associated to λ. The cyclotomic
q-Schur algebra is the endomorphism algebra

Sr,n = Sr,n(q,Q) = EndHr,n

( ⊕
λ∈Λ+

r,n

mλHr,n

)
.

We remark that this variant of the cyclotomic q-Schur algebra is Morita equivalent to one of the
algebras introduced in [12]. The representation theory of Sr,n is discussed in [24].

The cyclotomic q-Schur algebra Sr,n is a quasi-hereditary cellular algebra. The cell modules
of Sr,n are the Weyl modules Δ(λ), for λ ∈ Λ+

r,n. For each λ ∈ Λ+
r,n, there is a non-zero simple

module L(λ) = Δ(λ)/ radΔ(λ). Just as with Lemma 2.1, the theory of cellular algebras tells us
the following.

2.2. Lemma. (See Graham–Lehrer [16, 3.9.8], [23, Corollary 2.2].) Suppose that λ is a multi-
partition. Then all of the composition factors of Δ(λ) belong to the same block.

The next result shows that in order to classify the blocks of Hr,n it is enough to consider the
blocks of Sr,n. As we will see, this is an easy consequence of the double centralizer theory.

Let A be a finite dimensional algebra over a field. Then A decomposes in a unique way as a
direct sum of indecomposable two-sided ideals H = B1 ⊕ · · · ⊕ Bd . Recall that two simple A-
modules D and D′ are in the same block if there exist simple modules D1 = D,D2, . . . ,Dk = D′
such that Ext1A(Di,Di+1) �= 0 or Ext1A(Di+1,Di) �= 0, for 1 � i < k. As Ext1A classifies non-
trivial extensions, it follows that two simple modules D and D′ belong to the same block if and
only if D and D′ are both composition factors of Bj or, equivalently, that D = DBj and D′ =
D′Bj , for some j . Abusing terminology, we call the indecomposable subalgebras B1, . . . ,Bd the
blocks of A and we say that an A-module M belongs to the block Bj if MBj = M . Using an
idempotent argument (cf. [11, Theorem 56.12]) it is now easy to show that two indecomposable
A-modules P and Q belong to the same block if and only if they are in the same linkage class;
that is, there exist indecomposable modules P1 = P, . . . ,Pl = Q such that Pi and Pi+1 have a
common irreducible composition factor, for i = 1, . . . , l − 1.

By Lemma 2.1 and the last paragraph, two Specht modules S(λ) and S(μ) belong to the same
block if and only if they belong to the same linkage class; that is, there exist multipartitions λ1 =
λ, . . . ,λk = μ such that S(λi ) and S(λi+1) have a common composition factor, for 1 � i < k.
Similarly, two Weyl modules belong to the same block if and only if they are in the same linkage
class. We will use this characterization of the blocks of H and Sr,n below without a mention.

2.3. Proposition. Let λ and μ be multipartitions of n. Then S(λ) and S(μ) are in the same block
as Hr,n-modules if and only if Δ(λ) and Δ(μ) are in the same block as Sr,n-modules.
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Proof. Suppose first that S(λ) and S(μ) are in the same block. By Lemma 2.1 all of the com-
position factors of S(λ) belong to the same block. Therefore, by the remarks above, it is enough
to consider the case when D(μ) �= 0 and D(μ) is a composition factor of S(λ). By a standard
Schur functor argument [21, Proposition 2.17], [Δ(λ) : L(μ)] = [S(λ) : D(μ)] �= 0. Therefore,
Δ(λ) and Δ(μ) are in the same block. Note that this implies that Sr,n cannot have more blocks
(that is, indecomposable subalgebras) than Hr,n.

To prove the converse let M = ⊕
λ∈Λ+

r,n
mλHr,n and suppose that Hr,n = B1 ⊕· · ·⊕Bk is the

unique decomposition of Hr,n into a direct sum of indecomposable subalgebras. Then

M = MHr,n = MB1 + · · · + MBk.

In fact, this sum is direct because, by definition, MBi ∩ MBj = ∅ if i �= j , and MBi �= 0 since
Hr,n is a submodule of M . Therefore,

Sr,n = EndHr,n (M) = EndHr,n (MB1 ⊕ · · · ⊕ MBk)

=
⊕

1�i,j�k

HomHr,n (MBi,MBj ) =
k⊕

i=1

EndHr,n (MBi),

where the last equality follows because Bi and Bj have no common irreducible constituents if
i �= j . Consequently, Sr,n has at least as many blocks as Hr,n.

Combining the last two paragraphs proves the proposition. �
Thus, to prove Theorem A it suffices to determine when two Weyl modules are in the same

block. The advantage of working with Weyl modules is shown in Lemma 2.4 below. Before we
can state this result we need some notation.

If A is an algebra let K0(A) be the Grothendieck group of finite dimensional A-modules and if
M is an A-module let [M] be its image in K0(A). In particular, the Grothendieck group K0(Sr,n)

of Sr,n is the free Z-module with basis {[L(λ)] | λ ∈ Λ+
r,n}. The images {[Δ(λ)] | λ ∈ Λ+

r,n} of the
Weyl modules give a second basis of K0(Sr,n) since [Δ(λ) : L(λ)] = 1 and [Δ(λ) : L(μ)] > 0
only if λ � μ, for all λ,μ ∈ Λ+

r,n (see [16, Cor. 4.17]). Hence, we have the following.

2.4. Lemma. Suppose that aλ ∈ Z. Then
∑

λ aλ[Δ(λ)] = 0 in K0(Sr,n) if and only if aλ = 0 for
all λ ∈ Λ+

r,n.

Note that, in general, there can exist non-zero integers aλ ∈ Z such that
∑

λ aλ[S(λ)] = 0. This
follows because K0(Hr,n) is a free Z-module of rank L = #{λ ∈ Λ+

r,n | D(λ) �= 0} and L = #Λ+
r,n

(if and) only if Hr,n is semisimple.

2.3. The cyclotomic Jantzen sum formula

The next step is to recall (a special case of) the machinery of the cyclotomic Jantzen sum
formula [21]. Let t be an indeterminate over F and let O = F[t, t−1]π be the localization of
F[t, t−1] at the prime ideal π = 〈t − 1〉. Let SO = SO(qt,X) be the cyclotomic Schur algebra
over O with parameters qt and X = (X1, . . . ,Xr) where

Xa =
{

Qat
na, if Qa �= 0,

na
(t − 1)t , if Qa = 0.
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Consider F as an O-module by letting t act on F as multiplication by 1. Then Sr,n
∼= SO ⊗O F,

since SO is free as an O-module by [12, Theorem 6.6]. The algebra SO ⊗O F(t) is split semi-
simple by Schur–Weyl duality [24, Theorem 5.3] and Ariki’s criterion for the semisimplicity
for Hr,n [1]. Thus we are in the general setting considered in [21, §4].

Let νπ be the π -adic evaluation map on O×; thus, νπ (f (t)) = k if k � 0 is maximal such
that (t − 1)k divides f (t) ∈ F[t, t−1]. Let ΔO(λ) be the Weyl module of SO indexed by the
multipartition λ ∈ Λ+

r,n. Recall that ΔO(λ) carries a bilinear form 〈,〉λ by the general theory of
cellular algebras. For each integer i � 0 define

ΔO(λ)i = {
x ∈ ΔO(λ)

∣∣ νπ

(〈x, y〉) � i for all y ∈ ΔO(λ)
}
.

Finally, let Δ(λ)i = (ΔO(λ)i + πΔO(λ))/πΔO(λ). Then

Δ(λ) = Δ(λ)0 ⊃ Δ(λ)1 ⊇ Δ(λ)2 ⊇ · · ·

is a Jantzen filtration of the Sr,n-module Δ(λ). Then Δ(λ)k = 0 for k � 0 since Δ(λ) is finite
dimensional.

To describe the Jantzen filtration of Δ(λ) we need some combinatorics. The diagram of a
multipartition λ is the set [λ] = {(i, j, a) | 1 � j � λ

(a)
i and 1 � a � r}. A node is any ordered

triple (i, j, a) in N × N × {1, . . . , r}. For example, all of the elements of [λ] are nodes.
Each node x = (i, j, a) ∈ [λ] determines a rim hook

rλ
x = {

(k, l, a) ∈ [λ] ∣∣ k � i, l � j and (k + 1, l + 1, a) /∈ [λ]}.
We say that rλ

x is an h-rim hook if h = |rλ
x |. Let i′ be maximal such that (i′, j, a) ∈ [λ]; so i′

is the length of column j of λ(a). Then f λ
x = (i′, j, a) ∈ [λ] is the foot of rλ

x and rλ
x has leg

length ��(rλ
x ) = i′ − i. Similarly, the node (i, λ

(a)
j , a) is the hand of rλ

x . If x ∈ [λ] let λ \ rλ
x be

the multipartition with diagram [λ] \ rλ
x . We say that λ \ rλ

x is the multipartition obtained by
unwrapping the rim hook rλ

x from λ, and that λ is the multipartition obtained from λ \ rλ
x by

wrapping on the rim hook rλ
x .

Define the O-residue of the node x = (i, j, a) to be resO(x) = (qt)j−iXa .

2.5. Definition. Suppose that λ = (λ(1), . . . , λ(r)) and μ = (μ(1), . . . ,μ(r)) are multipartitions
of n. The Jantzen coefficient Jλμ is the integer

Jλμ =
⎧⎨
⎩

∑
x∈[λ]

∑
y∈[μ], [μ]\rμ

y =[λ]\rλ
x

(−1)��(r
λ
x )+��(r

μ
y )νπ

(
resO

(
f λ

x

) − resO
(
f μ

y

))
, if λ � μ,

0, otherwise.

The Jantzen coefficient Jλμ depends on the choices of F, q and Q = (Q1, . . . ,Qr). In fact, we
will see that Jλμ depends only on p, e and Q. By definition Jλμ is an integer which is determined
by the combinatorics of multipartitions. The definition of Jλμ is reasonably involved, however,
it turns out that these integers are computable. In Sections 3 and 4 we give simpler formulae for
the Jantzen coefficients.
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2.6. Theorem. (See James and Mathas [21, Theorem 4.3].) Suppose that λ is a multipartition
of n. Then ∑

i>0

[
Δ(λ)i

] =
∑

μ∈Λ+
r,n

Jλμ

[
Δ(μ)

]

in K0(Sr,n).

For multipartitions λ and μ in Λ+
r,n let dλμ = [Δ(λ) : L(μ)] be the number of composition

factors of Δ(λ) which are isomorphic to L(μ). Define

J ′
λμ =

∑
ν∈Λ+

r,n

λ�ν�μ

Jλνdνμ.

By Theorem 2.6, J ′
λμ is the composition multiplicity of the simple module L(μ) in

⊕
i>0 Δ(λ)i .

Therefore, J ′
λμ � 0, for all λ,μ ∈ Λ+

r,n. As Δ(λ)1 = radΔ(λ) we obtain the following.

2.7. Corollary. Suppose that λ �= μ are multipartitions of n. Then dλμ � J ′
λμ and, moreover,

dλμ �= 0 if and only if J ′
λμ �= 0.

We now use Theorem 2.6 to classify the blocks of Sr,n.

2.8. Definition. Suppose that λ,μ ∈ Λ+
r,n. Then λ and μ are Jantzen equivalent, and we write

λ ∼J μ, if there exists a sequence of multipartitions λ0 = λ,λ1, . . . ,λk = μ such that either

Jλiλi+1 �= 0 or Jλi+1λi
�= 0,

for 0 � i < k.

Jantzen equivalence gives us our first combinatorial characterization of the blocks of Sr,n.

2.9. Proposition. Suppose that λ,μ ∈ Λ+
r,n. Then Δ(λ) and Δ(μ) belong to the same block as

Sr,n-modules if and only if λ ∼J μ.

Proof. We first show that Δ(λ) and Δ(μ) belong to the same block whenever λ ∼J μ. By
definition Δ(λ)i is a submodule of Δ(λ) for all i, so all of the composition factors of

∑
i>0 Δ(λ)i

belong to the same block as Δ(λ) by Lemma 2.2. Consequently, all of the composition factors of
the virtual module

∑
ν Jλν[Δ(ν)] belong to the same block. Let Λ′ be the set of multipartitions

ν such that Δ(ν) is not in the same block as Δ(λ). Then we have
∑

ν∈Λ′ Jλν[Δ(ν)] = 0. Hence,
Jλν = 0 whenever ν ∈ Λ′ by Lemma 2.4. It follows that Δ(λ) and Δ(μ) belong to the same block
whenever λ ∼J μ.

To prove the converse it is sufficient to show that λ ∼J μ whenever dλμ �= 0. Hence, by
Corollary 2.7 we must show that λ ∼J μ whenever J ′

λμ �= 0. However, if J ′
λμ �= 0 then we can

find a multipartition ν1 such that Jλν1 �= 0, dν1μ �= 0 and λ � ν1 � μ. Consequently, λ ∼J ν1. If
ν1 �= μ then J ′

ν1μ
�= 0 by Corollary 2.7 since dν1μ �= 0. Therefore, we can find a multipartition ν2

such that Jν1ν2 �= 0, dν2μ �= 0 and ν1 �ν2 � μ. Continuing in this way we can find multipartitions
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ν0 = λ,ν1, . . . ,νk = μ such that Jνi−1νi
�= 0, dνiμ �= 0, for 0 < i < k, and λ � ν1 � · · · � νk = μ.

Note that we must have νk = μ for some k since Λ+
r,n is finite. Therefore, λ ∼J ν1 ∼J · · · ∼J

νk = μ as required. �
Remark. Under some very mild technical assumptions (see, for example, [25, §4.1]), Jantzen
filtrations can be defined for the standard modules of an arbitrary quasi-hereditary algebra. The
argument of Proposition 2.9 is completely generic: it shows that the blocks of a quasi-hereditary
algebra are determined by the ‘Jantzen coefficients.’

Remark. Without using the cyclotomic q-Schur algebras it is not clear that the Jantzen equiva-
lence determines the blocks of Hr,n. Applying the Schur functor to Theorem 2.6 gives an analo-
gous description of the Jantzen filtration of the Specht modules:

∑
i>0[S(λ)i] = ∑

μ Jλμ[S(μ)].
The problem is that, a priori, the composition factors of

⊕
μ JλμS(μ) could belong to different

blocks because the analogue of Lemma 2.4 fails for Specht modules.

2.4. A second combinatorial characterization of the blocks

Proposition 2.9 completely determines the blocks of Sr,n, and hence the blocks of Hr,n. Un-
fortunately, it is not obvious when two multipartitions are Jantzen equivalent.

The residue of the node x = (i, j, a) is

res(x) =
⎧⎨
⎩

qj−iQa, if q �= 1 and Qa �= 0,

(j − i,Qa), if q = 1 and Qa �= Qb for b �= a,

Qa, otherwise,

where z = z (mod p) for z ∈ Z (if p = ∞ we set z = z). Let

Res
(
Λ+

r,n

) = {
res(x)

∣∣ x ∈ [λ] for some λ ∈ Λ+
r,n

}
be the set of all possible residues. For any multipartition λ ∈ Λ+

r,n and f ∈ Res(Λ+
r,n) define

Cf (λ) = #
{
x ∈ [λ] ∣∣ res(x) = f

}
.

We can now define our second combinatorial equivalence relation on Λ+
r,n.

2.10. Definition. Suppose that λ and μ are multipartitions. Then λ and μ are residue equivalent,
and we write λ ∼C μ, if Cf (λ) = Cf (μ) for all f ∈ Res(Λ+

r,n).

It is easy to determine if two multipartitions are residue equivalent, so the next result gives an
effective characterization of the blocks of the algebras Hr,n and Sr,n.

2.11. Theorem. Suppose that λ and μ are multipartitions of n. Then the following are equivalent.

(a) S(λ) and S(μ) belong to the same block as Hn(Q)-modules.
(b) Δ(λ) and Δ(μ) belong to the same block as Sr,n(Q)-modules.
(c) λ ∼J μ.
(d) λ ∼C μ.
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By Propositions 2.3 and 2.9, (a), (b) and (c) are equivalent. Therefore, to prove the theorem it
is enough to prove that λ ∼J μ if and only if λ ∼C μ. The proof of this fact is given in Sections 3
and 4. It turns out that, combinatorially, these equivalence relations depend very much on whether
or not q = 1 and whether or not some of the parameters Q1, . . . ,Qr are zero. The following result
allows us to treat these cases separately.

2.12. Theorem. (See Dipper and Mathas [13, Theorem 1.5 and Corollary 5.7].) Suppose that
Q = Q1 � Q2 � · · · � Qκ is a partition of Q such that qcQa ∈ Qα only if Qa ∈ Qα , for c ∈ Z,
1 � a � r and 1 � α � κ . Set rα = |Qα|, for 1 � α � κ . Then Sr,n(Q) is Morita equivalent to the
algebra

⊕
n1,...,nκ�0

n1+···+nκ=n

Sr1,n1(Q1) � Sr2,n2(Q2) � · · · � Srκ ,nκ (Qκ).

Moreover, if Qα = {Qiα1
, . . . ,Qiαrα

}, for 1 � α � κ , then the Morita equivalence is induced by the

map Δ(λ) �→ Δ(λ1) � · · · � Δ(λκ), where λα = (λ(iα1 ), . . . , λ(iαrα )), for 1 � α � κ and λ ∈ Λ+
r,n.

There is an analogous result for the Ariki–Koike algebra Hr,n; see [13, Theorem 1.1].
Theorem 2.12 says that the blocks of Hr,n(Q) and Sr,n(Q) depend only on the orbits of the

parameters under multiplication by q . Further, by Theorem 2.12 it is enough to consider the
case where Q is contained in a single q-orbit to prove Theorem 2.11. Hence, by rescaling T0, if
necessary, we can assume that the parameters Q1, . . . ,Qr are all zero or that they are all powers
of q . More explicitly, we can assume that either Qa = 0, or that there exist integers c1, . . . , cr

such that Qa = qca , for 1 � a � r . Consequently, to prove Theorem 2.11 we are reduced to
considering the following mutually exclusive cases:

2.13. Case 1. q �= 1 and Qa = qca , for 1 � a � r .
Case 2. r = 1 and q = 1 (and Q1 arbitrary).
Case 3. r > 1, q = 1 and Q1 = · · · = Qr = 1.
Case 4. r > 1, q = 1 and Q1 = · · · = Qr = 0.
Case 5. r > 1, q �= 1 and Q1 = · · · = Qr = 0.

Note that H = H1,n is independent of Q1 when r = 1.
The proof of Theorem 2.11 for Case 1 is given in Section 3. Cases 2–5 are considered in

Section 4 using similar, but easier, arguments. Given a node x = (i, j, a) note that res(x) =
qj−iQa in Case 1, res(x) = (j − i,Q1) in Case 2 and res(x) = Qa in the other three cases.

The basic strategy for proving Theorem 2.11 for each of these five cases is the same, however,
the proof breaks up into three cases because the combinatorics of residue equivalence is different
for Case 1, Case 2 and Cases 3–5. Fayers has pointed out that the Ariki–Koike algebras in Cases 3
and 4 are isomorphic via the algebra homomorphism determined by T0 �→ (T0 − 1) and Ti �→ Ti ,
for 1 � i < n, so we do not actually need to consider Case 4.

2.5. The blocks of the affine Hecke algebra

Assuming Theorem 2.11 we now prove Theorem A from the introduction.
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As the centre Z(Haff
n ) of Haff

n is the set of symmetric Laurent polynomials in X1, . . . ,Xn, the
central characters of Haff

n are indexed by Sn-orbits of (F×)n. More precisely, if γ ∈ (F×)n/Sn

then the central character χγ is given by evaluation at γ .
By Lemma 2.1, all of the composition factors of the Specht module S(λ) belong to the same

block as Hr,n-modules. Therefore, all of the composition factors of S(λ) belong to the same
block as Haff

n -modules. We need to know the central characters of the Specht modules.

2.14. Lemma. Suppose that q �= 1 and that D(λ) �= 0, for some multipartition λ ∈ Λ+
r,n. Then

f (X) ∈ Z(Haff
n ) acts on D(λ) as multiplication by f (γ ), where γ = (res(x1), res(x2), . . . ,

res(xn)) and [λ] = {x1, . . . , xn} (in any order).

Proof. As all of the composition factors of S(λ) belong to the same block as D(λ), f (X) acts
on S(λ) and on D(λ) as multiplication by the same scalar. By [21, Proposition 3.7] this scalar is
given by evaluating the polynomial f (X) at (res(x1), res(x2), . . . , res(xn)). �
2.15. Theorem. Suppose that q �= 1 and that F is algebraically closed. Then two simple Haff

n -
modules D and D′ belong to the same block if and only if they have the same central character.

Proof. Any two simple modules in the same block have the same central character. Conversely,
suppose that D and D′ are simple Haff

n -modules which have the same central character. Let
(X1 − Q1) . . . (X1 − Qs) and (X1 − Qs+1) . . . (X1 − Qr), respectively, be the minimal poly-
nomials for X1 acting on D and D′. (Note that Q1, . . . ,Qr are non-zero since X1, . . . ,Xn

are invertible.) Then D and D′ are both simple modules for the Ariki–Koike algebra Hr,n

with parameters Q1, . . . ,Qr . Therefore, D ∼= D(λ) and D′ ∼= D(μ) for some multipartitions
λ,μ ∈ Λ+

r,n. By assumption, D and D′ have the same central characters. The central character
of D(λ) is uniquely determined by the multiset of residues {res(x) | x ∈ [λ]} by Lemma 2.14.
Similarly, the central character of D(μ) is determined by the multiset {res(x) | x ∈ [μ]}. Hence,
Cf (λ) = Cf (μ), for all f ∈ Res(Λ+

r,n). Therefore, λ ∼C μ, so D ∼= D(λ) and D′ = D(μ) are in
the same block as Hr,n-modules by Theorem 2.11. Hence, D and D′ are in the same block as
Haff

n -modules. �
Theorem 2.15 is not new. We are grateful to Iain Gordon for pointing out that the classifica-

tion of the blocks of Haff
n by central characters is an immediate corollary of a general result of

Müller [26, Theorem 7] since Haff
n is finite dimensional over its centre. See also [7, III.9].

Combining Theorems 2.11 and 2.15 we obtain a more descriptive version of Theorem A.

2.16. Corollary (Theorem A). Suppose that F is an algebraically closed field, q �= 1 and that
the parameters Q1, . . . ,Qr are non-zero. Let λ and μ be multipartitions in Λ+

r,n with D(λ) �= 0
and D(μ) �= 0. Then the following are equivalent:

(a) D(λ) and D(μ) belong to the same block as Hr,n-modules.
(b) D(λ) and D(μ) belong to the same block as Haff

n -modules.
(c) D(λ) and D(μ) have the same central character as Haff

n -modules.
(d) λ ∼C μ.

3. Combinatorics

In this section, we prove λ ∼J μ if and only if λ ∼C μ, for λ,μ ∈ Λ+
r,n in the cases when

q �= 1 and all of the parameters Q1, . . . ,Qr are powers of q . This is Case 1 of 2.13. The basic
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idea is to reduce the comparison of the Jantzen and residue equivalence relations to the case
where the multipartitions λ and μ are both ‘cores.’ The complication is that, unlike for partitions
(the case r = 1), we do not have a good notion of ‘core’ for multipartitions when r > 1. We
circumvent this difficulty using ideas of Fayers [14,15].

As we assume that the parameters Q1, . . . ,Qr are all powers of q , there exist integers
c1, . . . , cr such that Qa = qca , for 1 � a � r . The sequence c = (c1, . . . , cr ) is called the multi-
charge of Q.

Now that Q is contained in a single q-orbit, we redefine the residue of a node x = (i, j, a) to
be

res(x) = (j − i + ca) (mod e).

Therefore, {res(x) | x ∈ [λ] for some λ ∈ Λ+
r,n} ⊆ Z/eZ.

For λ ∈ Λ+
r,n and f ∈ Z/eZ put Cf (λ) = #{x ∈ [λ] | res(x) = f }. It is straightforward to

check that with these new conventions λ ∼C μ if and only if Cf (λ) = Cf (μ), for all f ∈ Z/eZ.

3.1. Abacuses

Abacuses first appeared in the work of Gordon James [19] and have since been used exten-
sively in the modular representation theory of the symmetric groups and related algebras. An
e-abacus is an abacus with e vertical runners, which are infinite in both directions. If e is finite
then we label the runners 0,1, . . . , e − 1 from left to right and position z ∈ Z on the abacus is the
bead position in row x on runner y, where z = xe + y and 0 � y < e. If e = ∞ then we label the
runners . . . ,−1,0,1, . . . and position z on the abacus is the bead position in row 0 on runner z.

Let λ ∈ Λ+
r,n be a multipartition and recall that we have fixed a sequence of integers c =

(c1, . . . , cr ). Fix a with 1 � a � r and, for i � 0, define

βa
i = λ

(a)
i − i + ca.

Then the β-numbers (with charge ca) for the partition λ(a) are the integers βa
1 , βa

2 , . . . and we
define Ba = {βa

1 , βa
2 , . . .}. The e-abacus display of λ(a) (with multi-charge (c1, . . . , cr )) is the

e-abacus with a bead at position βa
i , for i � 1. The e-abacus display of the multipartition λ is the

ordered r-tuple of abacuses for the partitions λ(1), . . . , λ(r).
It is easy to check that a multipartition is uniquely determined by its abacus display and that

every abacus display corresponds to some multipartition.

3.1. Example. Suppose that e = 3, r = 3 and c = (0,1,2). Let

λ = (
(4,1,1), (2), (3,2,1)

)
.

Then

B1 = {3,−1,−2,−4,−5, . . .}, B2 = {2,−1,−2, . . .},
B3 = {4,2,0,−2,−3, . . .}
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and the abacus display for λ is given by

Let λ be a partition and suppose that B = {β1, β2, . . .} is the set of β-numbers for λ. Then
the e-abacus for λ has beads at positions βi , for i � 0. If βi + h /∈ B then moving the bead
at position βi to the right h positions gives a new abacus display with beads at positions
{β1, β2, . . . , βi−1, βi +h,βi+1, . . .}. Similarly, if βi −h /∈ B then moving this bead h positions to
the left creates a new abacus display with beads at positions {β1, β2, . . . , βi−1, βi −h,βi+1, . . .}.
The conditions βi ± h /∈ B are needed to ensure that the abacus display for λ does not already
have a bead at the new position. Note that with these conventions moving a bead on runner 0 one
position to the left moves the bead to a position on runner e − 1 in the preceding row. Similarly,
moving a bead on runner e − 1 to the right moves a bead to a position on runner 0 in the next
row. We also talk of moving beads in the abacus displays of multipartitions.

Recasting the above discussion in terms of the abacus we have the following well-known
result which goes back to Littlewood and James. (Recall that we defined rim hooks in Section 2.)

3.2. Lemma. Suppose that λ is a partition. Then moving a bead to the right h positions from
runner f to runner f ′ corresponds to wrapping an h-rim hook with foot residue f + 1, and
hand residue f ′, onto λ. Similarly, moving a bead h positions to the left, from runner f to
runner f ′ corresponds to unwrapping an h-rim hook from λ with foot residue f ′ + 1 and hand
residue f .

That increasing a β-number by h corresponds to wrapping on an h-rim hook is proved in [23,
Lemma 5.26]. The remaining claim about residues follows easily from our definitions. As a
consequence we obtain the following.

3.3. Corollary. Suppose that λ is a partition and f ∈ Z/eZ, where e < ∞. Then

(a) Moving a bead down one row on a runner corresponds to wrapping an e-rim hook onto [λ].
If this bead is on runner f then the rim hook has foot residue f + 1.

(b) Moving a bead up one row on a runner corresponds to unwrapping an e-rim hook from [λ].
If this bead is on runner f the rim hook has foot residue f + 1.

(c) Moving the lowest bead on runner f − 1 down one row corresponds to wrapping on an
e-hook with foot residue f . Consequently, we can add an e-hook with foot residue f to any
partition.

Suppose that λ is a partition. The e-core of λ is the partition λ whose e-abacus display is
obtained from the e-abacus display for λ by moving all beads as high as possible on their runners,
that is, successively removing all e-hooks from the diagram of λ. If e = ∞ then the e-core of λ is
λ itself. Define the e-weight of the partition, we(λ), to be the number of e-hooks that we remove
in order to construct λ.
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3.2. Jantzen equivalence

In order to prove Theorem 2.11 we first simplify the formula for Jλμ. Let λ be a multipartition
and recall that if x ∈ [λ] then rλ

x ⊆ [λ] is the associated rim hook. To ease notation we let hλ
x =

|rλ
x | be the hook length of rλ

x .
Recall that F is a field of characteristic p. Define ν′

p : Z× → N to be the map

ν′
p(h) =

{
pk, if p is finite,

1, if p = ∞,

where k � 0 is maximal such that pk divides h. We caution the reader that ν′
p is not the standard

p-adic valuation map.
If σ = (σ1, σ2, . . .) is a partition let σ ′ = (σ ′

1, σ
′
2, . . .) be its conjugate. Then σ ′

i = c if c is
maximal such that (c, i) ∈ [σ ]. (So σ ′

i is the length of column i of [σ ].) For any integer h ∈ Z let
[h]t = (th − 1)/(t − 1) ∈ F[t, t−1].
3.4. Lemma. Suppose that λ and μ are multipartitions of n and that [λ] \ rλ

x = [μ] \ r
μ
y , for some

nodes x = (i, j, a) ∈ [λ] and y = (k, l, b) ∈ [μ]. Then νπ (resO(f λ
x )− resO(f

μ
y )) �= 0 if and only

if res(f λ
x ) = res(f μ

y ), in which case

νπ

(
resO

(
f λ

x

) − resO
(
f μ

y

)) = ν′
p

(
n(a − b) + j − λ

(a)′
i − l + μ

(b)′
k

)
.

Proof. Let i′ = λ
(a)′
i and k′ = μ

(b)′
k so that f λ

x = (i′, j, a) and f
μ
y = (k′, l, b). Then

resO
(
f λ

x

) − resO
(
f μ

y

) = qj−i′+ca tna+j−i′ − ql−k′+cb tnb+l−k′

= ql−k′+cb tnb+l−k′(
qj−i′−l+k′+ca−cb tn(a−b)+j−i′−l+k′ − 1

)
.

Therefore, νπ (resO(x) − resO(y)) �= 0 if and only if qj−i′−l+k′+ca−cb = 1, which is if and only
if res(f λ

x ) = qj−i′+ca = ql−k′+cb = res(f μ
y ).

Now suppose that res(f λ
x ) = res(f μ

y ) and let h = n(a − b) + j − i′ − l + k′. Note that h is
non-zero because if a = b then h is the axial distance from x to y. Then

νπ

(
resO

(
f λ

x

) − resO
(
f μ

y

)) = νπ

(
tn(a−b)+j−i′−l+k′ − 1

) = 1 + νπ

([h]t
)
.

If p = ∞ then (t − 1) does not divide [h]t , so that νπ (resO(x) − resO(y)) = 1 = ν′
p(h). If p is

finite then write h = pkh′, where p � h′. Then

[h]t = [
pkh′]

t
= [

pk
]
t
[h′]

tp
k = (t − 1)p

k−1[h′]pk

t .

Now, t − 1 does not divide [h′]t since p � h′. Therefore, νπ ([h]t ) = ν′
p(h) − 1 and the result

follows. �
We can now prove that (c) ⇒ (d) in Theorem 2.11.

3.5. Corollary. Suppose that λ ∼J μ, where λ,μ ∈ Λ+
r,n. Then λ ∼C μ.

Proof. Without loss of generality we may assume that Jλμ �= 0. By Lemma 3.4 and Defini-
tion 2.5, Jλμ is non-zero only if there exist nodes x ∈ [λ] and y ∈ [μ] such that [λ]\ rλ

x = [μ]\ r
μ
y
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and res(f λ
x ) = res(f μ

y ). These two conditions imply that Cf (λ) = Cf (μ), for all f ∈ Z/eZ, so
that λ ∼C μ. �

Establishing the reverse implication in Theorem 2.11 takes considerably more effort. We start
by explicitly describing the Jantzen coefficients.

3.6. Proposition. Let λ = (λ(1), . . . , λ(r)) and μ = (μ(1), . . . ,μ(r)) be multipartitions in Λ+
r,n.

(a) Suppose that there exist integers a < b such that λ(c) = μ(c), for c �= a, b, and that λ(a) �=
μ(a) and λ(b) �= μ(b). Then Jλμ �= 0 only if there exist nodes x = (i, j, a) ∈ [λ] and y =
(k, l, b) ∈ [μ] such that res(f λ

x ) = res(f μ
y ) and [λ] \ rλ

x = [μ] \ r
μ
y . In this case

Jλμ = (−1)��(r
λ
x )+��(r

μ
y )ν′

p

(
n(a − b) + j − λ

(a)′
i − l + μ

(b)′
k

)
.

(b) Suppose that e is finite and for some integer a we have λ(c) = μ(c), for c �= a. Then Jλμ �= 0
only if there exist nodes x = (i, j, a), (i,m,a) ∈ [λ] such that m < j , e | hλ

(i,m,a) and μ is
obtained by wrapping a rim hook of length hλ

x onto λ \ rλ
x with its hand node in column m.

In this case

Jλμ =
⎧⎨
⎩ (−1)��(r

λ
x )+��(r

μ
y )ν′

p(hλ
(i,m,a)), if e � hλ

(i,j,a),

(−1)��(r
λ
x )+��(r

μ
y )(ν′

p(hλ
(i,m,a)) − ν′

p(hλ
(i,j,a))), if e | hλ

(i,j,a),

where the node y ∈ [μ] is determined by [μ] \ r
μ
y = [λ] \ rλ

x .
(c) In all other cases, Jλμ = 0.

Proof. Suppose that Jλμ �= 0. Then λ � μ by Definition 2.5 and res(f λ
x ) = res(f μ

y ) by
Lemma 3.4. Furthermore, there exist nodes x = (i, j, a) ∈ [λ] and y = (k, l, b) ∈ [μ] such that
[λ] \ rλ

x = [μ] \ r
μ
y . Consequently, λ(c) �= μ(c) for at most two values of c. Therefore, since λ�μ,

we may assume that we have integers 1 � a � b � r such that λ(c) = μ(c), for c �= a, b.
If a �= b then the nodes x and y are uniquely determined because rλ

x = [λ(a)] \ [μ(a)] and
r
μ
y = [μ(b)] \ [λ(b)]. Therefore, λ(a) �= μ(a), λ(b) �= μ(b) and we are in the situation considered in

part (a). The formula for Jλμ now follows directly from Definition 2.5 and Lemma 3.4.
Now assume that a = b. If e = ∞ then res(f λ

x ) = res(f μ
y ) if and only if x = y since hλ

x = h
μ
y .

This forces λ = μ, which is not possible since λ � μ. Hence, e must be finite. By Lemma 3.2
the abacus display for μ(a) is obtained from the abacus display for λ(a) by moving one bead hλ

x

positions to the left from runner r , and the other bead hλ
x positions to the right to runner r , where

r = f λ
x + hλ

x − 1.

Case 1: e � hλ
(i,j,a). By Lemma 3.2 and the remarks above, the beads on the abacus displays

of λ(a) and μ(a) are being moved between different runners. Therefore, the nodes x = (i, j, a) ∈
[λ] and y = (k, l, a) ∈ [μ] are uniquely determined by the conditions res(f λ

x ) = res(f μ
y ) and

[λ] \ rλ
x = [μ] \ r

μ
y . Let m = μ

(a)
k . Then hλ

(i,m,a)
= (j − λ

(a)′
i ) − (l − μ

(a)′
k ) is the ‘axial distance’

from f λ
x to f

μ
y , so that e | hλ

(i,m,a). (In fact, hλ
(i,m,a) is the axial distance between the correspond-

ing hand nodes, but this distance is, of course, the same. Note also that, since res(f λ
x ) = res(f μ

y ),

we have that e | hλ
(i,m,a).) Hence, Jλμ = (−1)��(r

λ
x )+��(r

μ
y )ν′

p(hλ
(i,m,a)) by Definition 2.5 and

Lemma 3.4.
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Case 2: e | hλ
(i,j,a). Since hλ

x ≡ 0 (mod e) unwrapping rλ
x from λ and wrapping r

μ
y back onto

λ \ rλ
x correspond to moving one bead on runner res(f λ

x ) − 1 up 1
e
hλ

x rows and another bead on
runner res(f λ

x ) − 1 down 1
e
hλ

x rows. If in the abacus display for λ these beads were moved from
rows r1 > r2 to rows r ′

1 and r ′
2, respectively, then the abacus display for μ can also be obtained

from abacus display for λ by moving the bead in row r1 to row r ′
2 and moving the bead in row r2

to row r ′
1. That is, there exist nodes x′ �= x and y′ �= y such that we can obtain μ by unwrapping

rλ
x′ from λ and wrapping r

μ
y′ back onto λ\ rλ

x′ . By Lemma 3.2 there are no other ways of obtaining
μ by unwrapping a rim hook from λ and wrapping it back on again. Since λ � μ we can choose
the nodes x = (i, j, a) and y = (k, l, a) above so that r1 > r ′

1 > r ′
2 > r2. Then x′ = (i,m,a),

where m = μ
(a)
k , and y′ = (λ

(a)′
j , l, a). Further,

��(rλ
x ) + ��

(
rμ
y

) = λ
(a)′
j − i + μ

(a)′
l − k and ��

(
rλ
x′

) + ��
(
r
μ
y′

) = λ(a)′
m − i + μ

(a)′
l − λ

(a)′
j .

By construction, k = λ
(a)′
m + 1, so ��(rλ

x ) + ��(r
μ
y ) and ��(rλ

x′) + ��(r
μ
y′) have opposite parities.

The axial distance from f λ
x to f

μ
y is hλ

(i,m,a) (where e | hλ
(i,m,a) since res(f λ

x ) = res(f μ
y )) and the

axial distance from f λ
x′ to f

μ
y′ is hλ

(i,j,a). Therefore,

Jλμ = (−1)��(r
λ
x )+��(r

μ
y )

(
ν′
p

(
hλ

(i,m,a)

) − ν′
p

(
hλ

(i,j,a)

))
as required.

We have now exhausted all of the cases where Jλμ is non-zero, so the proposition is
proved. �
3.3. Residue equivalence

We are now ready to start proving that λ ∼J μ whenever λ ∼C μ.
A rim hook of λ is vertical if it is contained within a single column of [λ].
A partition λ is an (e,p)-Carter partition if it has the property that

ν′
p

(
hλ

(i,m,1)

) = ν′
p

(
hλ

(i,j,1)

)
, for all (i,m,1), (i, j,1) ∈ [λ].

These partitions arise because Δ(λ) is irreducible if and only if λ is (e,p)-irreducible. The
(e,p)-Carter partitions are described explicitly in [23, Theorem 5.45]. For us the most important
properties of these partitions are that if λ is an (e,p)-Carter partition then:

• all of the e-hooks which can be unwrapped from λ when constructing its e-core λ are vertical;
• ν′

p is constant on the rows of [λ]; and

• λ′
i ≡ λ′

i−1 − 1 (mod e) whenever λ′
i �= λ′

i .

3.7. Proposition. Suppose that λ ∈ Λ+
r,n and 1 � a � r . Define

Λa(λ) = {
μ ∈ Λ+

r,n

∣∣ μ(a) = λ(a) and μ(c) = λ(c) when c �= a
}
.

Then λ ∼J μ for all μ ∈ Λa(λ).
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Proof. Suppose that μ ∈ Λa(λ). If e = ∞ then λ(a) = μ(a) if and only if λ(a) = μ(a) so there is
nothing to prove. Assume then that e is finite and let wa = we(λ

(a)). If wa = 0 then λ(a) = λ(a)

so that λ = μ and there is nothing to prove. So we can assume that wa > 0.
Let ρ be the multipartition in Λa(λ) where ρ(a) is the partition obtained by wrapping wa

vertical e-hooks onto the first column of the e-core of λ(a). Then μ � ρ for all μ ∈ Λa(λ). To
prove the lemma it is enough to show that μ ∼J ρ, for all μ ∈ Λa(λ). By induction on dominance
we may assume that ν ∼J ρ whenever ν ∈ Λa(λ) and μ � ν. If Jμν �= 0 for some ν ∈ Λa(λ) then
μ ∼J ν. As μ � ν, we have that ν ∼J ρ by induction, so that μ ∼J ν ∼J ρ.

It remains to consider the case when μ � ρ and Jμν = 0 for all ν ∈ Λa(λ). By Lemma 3.6(b),

ν′
p

(
h

μ
(i,m,a)

) = ν′
p

(
h

μ
(i,j,a)

)
, for all (i,m,a), (i, j, a) ∈ [μ],

so that μ(a) is an (e,p)-Carter partition. Since wa > 0 we can find a (unique) node (i, j, a) ∈ [μ]
such that

h
μ

(i,j,a) ≡ 0 (mod e) and h
μ

(i′,j ′,a)
�≡ 0 (mod e),

for all (i′, j ′, a) ∈ [μ] with (i′, j ′) �= (i, j), i′ � i and j ′ � j . Let ν be the multipartition ob-
tained by unwrapping r

μ
(i,j,a) from [μ] and wrapping it back on to the end of the first row of

[μ] \ r
μ
(i,j,a). Similarly, let η be the multipartition obtained by unwrapping this same hook from

μ and wrapping it back on to the end of the first column of [μ] \ r
μ
(i,j,a)

. Therefore, Jνμ �= 0 and
Jνη �= 0, by Lemma 3.6(b), so that μ ∼J ν ∼J η. Note that μ�ρ implies that j > 1, so that μ�η.
Consequently, μ ∼J ρ by induction. �

Recall that the e-cores of the partitions of n completely determine the blocks when r = 1. We
have the following imperfect generalization when r > 1.

3.8. Definition. Suppose that λ = (λ(1), . . . , λ(r)) is a multipartition. Then the e-multicore of λ is
the multipartition λ = (λ(1), . . . , λ(r)). We abuse notation and say that λ is a multicore if λ = λ.

By Corollary 3.3(a), the e-multicore λ of λ is obtained from λ by sequentially unwrapping all
e-rim hooks from the diagram of λ, in any order. Note that if e = ∞ then every multipartition is
an e-multicore.

Mimicking the representation theory of the symmetric groups, we extend the definition of we

to multipartitions by defining we(λ) to be the number of e-hooks that have to be unwrapped from
λ to construct λ. If e is finite then we(λ) = 1

e
(|λ| − |λ|), whereas w∞(λ) = 0. Now define

We(λ) = max
{
we(μ)

∣∣ μ ∼C λ
}
.

Note that while We(λ) is well defined, it is not immediately clear how to compute it.

3.9. Lemma. Suppose that λ,μ ∈ Λ+
r,n and that λ = μ. Then λ ∼J μ.

Proof. We argue by induction on d(λ,μ), where

d(λ,μ) = 1

e2

r∑(∣∣λ(a)
∣∣ − ∣∣μ(a)

∣∣)2
.

a=1
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Note that d(λ,μ) is a non-negative integer because our assumption λ = μ implies that |λ(a)| ≡
|μ(a)| (mod e), for 1 � a � r .

Suppose first that d(λ,μ) = 0. Then |λ(a)| = |μ(a)|, for 1 � a � r . Define a sequence of
multipartitions ν0 = λ,ν1, . . . ,νr = μ by setting

ν
(j)
i =

{
λ(j), i < j,

μ(j), i � j.

Then νi ∼J νi+1 for 0 � i < r , by Proposition 3.7, so that λ ∼J μ by transitivity.
Now suppose that d(λ,μ) > 0. Since λ = μ and |λ| = |μ|, there exist integers b and c such

that |λ(b)| < |μ(b)| and |λ(c)| > |μ(c)|. By Corollary 3.3 it is possible to construct a new multipar-
tition ν by unwrapping an e-hook from λ(c) and wrapping it back on to λ(b) without changing the
residue of the foot node. Then λ ∼J ν by Proposition 3.6 (and Lemma 3.2). Moreover, ν = λ = μ

and d(ν,μ) < d(λ,μ). Therefore, ν ∼J μ by induction, so that λ ∼J μ as required. �
We now need several results and definitions of Fayers from the papers [14,15]. It should be

noted that there is a certain symbiosis between these two papers and the present paper because
Fayers wrote his papers believing that the classification of the blocks of the Ariki–Koike algebras
had already been established. Fortunately, Fayers’ results do not depend on the block classifica-
tion so when he discovered that there was a gap in the previous proof of the classification he
changed his papers so that they now refer to ‘combinatorial blocks,’ or residue classes of multi-
partitions. Thanks to the main result of this paper, the ‘combinatorial blocks’ studied by Fayers
are indeed blocks.

3.10. Definition.

(a) (Fayers [15]) Suppose that λ is a multicore and, if e = ∞, suppose further that the abacus
display for λ(a) contains a bead in position i but not in position j , while the abacus display
for λ(b) contains a bead in position j but not in position i. Define sab

ij (λ) to be the multicore
whose abacus display is obtained by moving a bead from runner i to runner j on the abacus
for λ(a) and moving a bead from runner j to runner i on the abacus for λ(b).

(b) Suppose that e is finite and let λ be a multipartition. Define taiw(λ) to be the multipartition
whose abacus display is obtained by moving the lowest bead on runner i of the abacus for
λ(a) down w rows.

3.11. Lemma. Suppose that λ ∼C μ and that μ = sab
ij (λ). Then λ ∼J μ.

Proof. Let ν = taiwe(λ)(λ) and ρ = tajwe(μ)(μ). Then λ ∼J ν and ρ ∼J μ by Lemma 3.9. Fur-
thermore, the multipartitions ν and ρ satisfy the conditions of Proposition 3.6(a), so λ ∼J ν ∼J

ρ ∼J μ as required. �
3.12. Definition. (See Fayers [14, §2.1].) Suppose that λ is a multipartition. Then the e-weight
of λ is the integer

wt(λ) =
r∑

j=1

Ccj
(λ) − 1

2

∑
f ∈Z/eZ

(
Cf (λ) − Cf +1(λ)

)2
.
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Fayers [14] shows that wt(λ) � 0 for all multipartitions λ, and that wt(λ) = we(λ) when
r = 1; that is, Fayers’ definition of weight coincides with the usual definition of weight on the
set of partitions. Further, if λ ∼C μ then wt(λ) = wt(μ), so the function wt(·) is constant on
the residue classes of Λ+

r,n. The results of [14, Proposition 3.8] show how to use the abacus
display of λ to calculate wt(λ). Combining this method with Lemma 3.16 below gives a way of
computing We(λ) using the abacus display of λ. We leave the details to the reader.

Recall that a node (i, j, a) ∈ [λ] is removable if [λ] \ {(i, j, a)} is the diagram of some mul-
tipartition in Λ+

r,n−1. Similarly, a node (i, j, a) /∈ [λ] is addable if [λ] ∪ {(i, j, a)} is the diagram
of some multipartition in Λ+

r,n+1. The node x = (i, j, a) is an f -node if res(x) = f .
Let λ be a multipartition. For f ∈ Z/eZ and a ∈ {1, . . . , r}, define

δa
f (λ) = #

{
removable f -nodes of

[
λ(a)

]} − #
{
addable f -nodes of

[
λ(a)

]}
and set

δf (λ) =
r∑

j=1

δ
j
f (λ).

The sequence (δf (λ) | f ∈ Z/eZ) is the hub of λ. The hub of λ can be read off the abacus display
of λ using Lemma 3.2.

Observe that Corollary 3.3 implies that if e is finite then the hub is unchanged by wrapping
he-hooks onto [λ], for h � 1. Furthermore, λ and μ have the same hub if μ = sab

ij (λ), for some
a, b, i, j .

3.13. Proposition. (See Fayers [14, Proposition 3.2 and Lemma 3.3].) Suppose that λ is a mul-
tipartition of n and μ is a multipartition of m. Then

(a) If e < ∞ and λ and μ have the same hub then m ≡ n mod e and

wt(λ) − wt(μ) = r(n − m)

e
;

(b) If n = m then λ ∼C μ if and only if they have the same hub.

Consequently, if μ is obtained from λ by wrapping on an e-hook, then wt(μ) = wt(λ) + r .

The next result will let us determine when We(λ) = we(λ).

3.14. Proposition. (See Fayers [15, Theorem 3.1].) Suppose that λ ∈ Λ+
r,n is a multipartition.

Then the following are equivalent.

(a) μ is a multicore whenever μ ∼C λ.
(b) wt(μ) � wt(λ) whenever μ and λ have the same hub.

3.15. Definition. A multipartition λ is a reduced multicore if it satisfies the conditions of Propo-
sition 3.14.
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Not every multicore is reduced. If λ is a reduced multicore then the block which contains
Δ(λ) is, in general, not simple. In contrast, when r = 1 every core is a reduced multicore and the
block containing a core is always simple. If λ is an reduced multicore then Fayers [15] calls the
set of multipartitions {μ | μ ∼C λ} a ‘core block.’

3.16. Lemma. Suppose that λ ∈ Λ+
n,r . Then λ is a reduced multicore if and only if we(λ) =

We(λ).

Proof. Suppose we(λ) �= We(λ). By definition, there exists a multipartition μ such that μ ∼C λ

and we(μ) > we(λ). Now μ and λ have the same hub, and by Proposition 3.13, wt(μ) < wt(λ),
contradicting condition (b) of Proposition 3.14. Therefore, λ is not a reduced multicore.

Now suppose that λ is not a reduced multicore. Then there exists a multipartition μ, which is
not a multicore, such that μ ∼C λ. Let ν = t1

0we(λ)(μ). Then ν ∼C λ and we(ν) > we(λ). Hence,
We(λ) > we(λ). �
3.17. Lemma. (See Fayers [15, Proof of Proposition 3.7(1)].) Suppose that λ is a multicore
which is not reduced. Then there exists a sequence of multicores λ0 = λ,λ1, . . . ,λk = μ such
that wt(μ) < wt(λ), and λm+1 = s

ambm

imjm
(λm) and wt(λm) � wt(λ), for 0 � m < k.

3.18. Lemma. (See Fayers [15, Proof of Proposition 3.7(2)].) Suppose that λ and μ are reduced
multicores and that λ ∼C μ. Then there exists a sequence of multicores λ0 = λ,λ1, . . . ,λk = μ

such that λm+1 = s
ambm

imjm
(λm) and λm+1 ∼C λm, for 0 � m < k.

We can now complete the proof of Theorem 2.11 when q �= 1 and the parameters Q1, . . . ,Qr

are non-zero. Consequently, this completes the proofs of Theorem A from the introduction.

3.19. Theorem. Suppose that q �= 1 and that the parameters Q1, . . . ,Qr are non-zero. Let λ and
μ be multipartitions in Λ+

n,r . Then λ ∼C μ if and only if λ ∼J μ.

Proof. By Corollary 3.5 if λ ∼J μ then λ ∼C μ. Suppose then that λ ∼C μ. To show that λ ∼J μ

it is sufficient to prove the following two statements. Let ν ∈ Λ+
r,n.

(a) Suppose that we(ν) < We(ν). Then there exists η ∈ Λ+
r,n such that η ∼J ν and we(η) >

we(ν).
(b) Suppose that ν ∼C η and that we(ν) = We(ν) = we(η). Then η ∼J ν.

Suppose, as in (a), that we(ν) < We(ν). Then e is finite and by Lemma 3.16, ν is not a reduced
multicore. By Lemma 3.17, there exists a sequence of multicores ν0 = ν,ν1, . . . ,νk such that
wt(νk) < wt(ν) and for 0 � m < k we have

νm+1 = s
ambm

imjm
(νm) and wt(νm) � wt(ν).

For all m with 0 � m � k, we have that νm and ν have the same hub, so Proposition 3.13 says
that |νm| � |ν|, that |ν| ≡ |νm| (mod e) and that |νk| < |ν|. Define

wm = we(ν) + 1(|ν| − |νm|)

e
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and set

ηm = t1
0wm

(νm) and η = ηk.

Then ηm ∼J ηm+1, for 0 � m < k, by Lemma 3.11, so that by Lemma 3.7 and transitivity,
ν ∼J η0 ∼J ηm = η. Moreover, we(η) = we(ν) + 1

e
(|ν| − |νk|) > we(ν) as required.

Now consider (b), that is, suppose that ν ∼C η and we(ν) = We(ν) = we(η). By Lemma 3.16,
ν and η are reduced multicores. Then, by Lemma 3.18, there exist multicores ν0 = ν,ν1, . . . ,νk =
η such that

νm+1 = s
ambm

imjm
(νm) and νm+1 ∼C νm for 0 � m < k.

For 0 � m � k, define ξm = t1
0we(ν)(νm). Then by Lemma 3.11, ξm ∼J ξm+1 and by Lemma 3.7

and transitivity, ν ∼J ξ0 ∼J ξ k ∼J η as required. �
4. The blocks for algebras with exceptional parameters

In this section we classify the blocks of the Ariki–Koike algebras for the remaining cases
from 2.13. That is, we assume that the parameters satisfy one of the following four cases:

Case 2. r = 1 and q = 1 (and Q1 arbitrary).
Case 3. r > 1, q = 1 and Q1 = · · · = Qr = 1.
Case 4. r > 1, q = 1 and Q1 = · · · = Qr = 0.
Case 5. r > 1, q �= 1 and Q1 = · · · = Qr = 0.

As in the previous section the basic strategy is to use the Jantzen sum formula to analyze the
combinatorics of the Jantzen coefficients.

We distinguish between Cases 2 and 3 because the blocks differ dramatically in these two
cases. In fact, the blocks in Case 2 behave like the blocks when q �= 1 and the parameters
Q1, . . . ,Qr are non-zero. Quite surprisingly, the algebras Hr,n and Sr,n have only one block
in Cases 3–5.

In all cases the blocks of the algebras Hr,n and Sr,n are determined by the Jantzen equivalence
by Proposition 2.9. This section gives an explicit description of when two multipartitions are
Jantzen equivalent in Cases 2–5 above.

4.1. The blocks when r = 1 and q = 1

Assume that we are in Case 2 above and let Hn = H1,n and Sn = S1,n. In this case the Specht
modules and Weyl modules are indexed by partitions, rather than multipartitions, so we write λ

in place of λ, and so on. The nodes in the diagrams of partitions are all of the form (i, j,1), for
i, j � 1, so we drop the trailing 1 from this notation and consider a node to be an ordered pair
(i, j), so that [λ] = {(i, j) | 1 � j � λi}.

As q = 1 we have that e = p. Following Section 3 define the residue of a node x = (i, j) to
be

res(x) = (j − i) (mod p).
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Once again, {res(x) | x ∈ [λ] for some λ ∈ Λ+
r,n} ⊆ Z/pZ. For a partition λ and f ∈ Z/pZ put

Cf (λ) = #{x ∈ [λ] | res(x) = f } and define λ ∼C μ if Cf (λ) = Cf (μ), for all f ∈ Z/pZ. Then
it is well known (and easy to prove using Corollary 3.3(a)) that λ ∼C μ if and only if λ and μ

have the same p-core.
We can now prove Theorem 2.11 when q = 1 and r = 1. To prove this result we need to show

that the Jantzen and residue equivalence relations on the set of partitions coincide. We follow the
argument of the previous section.

The analogue of Lemma 3.4 in Case 2 is as follows.

4.1. Lemma. Suppose that λ and μ are partitions of n and that [λ] \ rλ
x = [μ] \ r

μ
y , for some

nodes x = (i, j) ∈ [λ] and y = (k, l) ∈ [μ]. Then

νπ

(
resO

(
f λ

x

) − resO
(
f μ

y

)) = ν′
p

(
j − λ′

j − l + μ′
l

)
.

Proof. Let i′ = λ′
i and k′ = μ′

k so that f λ
x = (i′, j) and f

μ
y = (k′, l). Then

resO
(
f λ

x

) − resO
(
f μ

y

) = tna+j−i′ − tna+l−k′ = tna+l−k′(
tj−i′−l+k′ − 1

)
.

Mimicking the proof of Lemma 3.4, let h = j − i′ − l + k′. Then

νπ

(
resO

(
f λ

x

) − resO
(
f μ

y

)) = νπ

(
tj−i′−l+k′ − 1

) = 1 + νπ

([h]t
)
.

Repeating the second half of the proof of Lemma 3.4 completes the proof. �
The only difference between Lemmas 3.4 and 4.1 is that now νπ (resO(f λ

x ) − resO(f
μ
y )) is

non-zero whenever [λ] \ rλ
x = [μ] \ r

μ
y ; that is, we no longer require that res(f λ

x ) = res(f μ
y ).

4.2. Proposition. Let λ and μ are partitions of n. Then Jλμ is non-zero only if p is finite and there
exist nodes x = (i, j), (i,m) ∈ [λ] such that m < j , p | hλ

(i,m) and μ is obtained by wrapping a

rim hook of length hλ
x onto λ \ rλ

x with its highest node in column m. In this case

Jλμ =
⎧⎨
⎩ (−1)��(r

λ
x )+��(r

μ
y )ν′

p(hλ
(i,m)), if p � hλ

(i,j),

(−1)��(r
λ
x )+��(r

μ
y )(ν′

p(hλ
(i,m)) − ν′

p(hλ
(i,j))), if p | hλ

(i,j),

where the node y ∈ [μ] is determined by [μ] \ r
μ
y = [λ] \ rλ

x .

Proof. Suppose that Jλμ �= 0. Then λ�μ by Definition 2.5 and there exist nodes x = (i, j) ∈ [λ]
and y = (k, l, b) ∈ [μ] such that [λ] \ rλ

x = [μ] \ r
μ
y .

Case 1: res(f λ
x ) �= res(f μ

y ). Unwrapping the rim hook rλ
x from λ moves a bead on the abacus

for λ from runner r1, say, to runner res(f λ
x ) − 1, and wrapping the rim hook r

μ
y back on to λ \ rλ

x

moves a bead from runner res(f μ
y ) − 1 to runner r2, say. Since res(f λ

x ) �= res(f μ
y ) we can also

construct the partition μ from λ by moving a bead from runner r1 to runner r2 and then moving
a bead from runner res(f λ

x ) − 1 to runner res(f μ
y ) − 1. Comparing the abacus displays of λ and

μ, there are no other ways of obtaining μ from λ by moving a single rim hook. As in the proof
of Proposition 3.6, the sums of the leg lengths for the two different ways of changing λ into μ
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by moving a rim hook have different parities, so their contributions to Jλμ cancel out. Hence,
Jλμ = 0 when res(f λ

x ) �= res(f μ
y ).

Case 2: res(f λ
x ) = res(f μ

y ). The proof of Proposition 3.6 in the case when a = b can now be
repeated without a change to complete the proof of the proposition. �
4.3. Corollary. Suppose that λ and μ are partitions of n. Then λ ∼J μ if and only if λ ∼C μ.

Proof. By Proposition 4.2, λ ∼C μ whenever λ ∼J μ. The reverse implication follows by the
argument of Proposition 3.7 since this proof only uses part (b) of Proposition 3.6, which is the
same as the statement of Proposition 4.2. �
Remark. Corollary 4.3 completes the classification of the blocks of the q-Schur algebras and the
Hecke algebras of type A; that is when r = 1. Unfortunately, the classification of the blocks of the
q-Schur algebras given in [20, Theorem 4.24] (and reproduced in [23, Theorem 5.47]), contains
a small error. Fortunately, the classification of the blocks of the Hecke algebras of type A given
in [20, Theorem 4.29] is correct—indeed, when r = 1 our proof is a streamlined version of this
argument.

4.2. The blocks when r > 1 and q = 1 or Q1 = · · · = Qr = 0

We now consider the blocks in the remaining cases, that is, when r > 1 and either q = 1 or
Q1 = · · · = Qr = 0. In this case all simple modules belong to the same block. We use the same
strategy to prove Theorem 2.11 in these cases as in the previous sections.

Note that, in Cases 3–5, res(x) = Qa = Q1 for any node x = (i, j, a). Therefore, in these
cases, Λ+

r,n forms a single residue class. Hence, in order to prove Theorem 2.11, we need to
show that any two multipartitions in Λ+

r,n are Jantzen equivalent. Consequently, in Cases 3–5,
Theorem 2.11 asserts that the algebras Hr,n and Sr,n have only one block. That is, in Cases 3–5,
Hr,n and Sr,n are indecomposable algebras.

We adopt the same strategy that we used to prove Theorem 3.19. To state the analogue of
Lemma 3.4 set

ε =
{

1, if Q1 = · · · = Qr = 0 (Cases 4 and 5),

0, otherwise.

4.4. Lemma. Suppose that λ and μ are multipartitions of n and that [λ] \ rλ
x = [μ] \ r

μ
y , for some

nodes x = (i, j, a) ∈ [λ] and y = (k, l, b) ∈ [μ]. Then

νπ

(
resO

(
f λ

x

) − resO
(
f μ

y

)) = ν′
p

(
n(a − b) + j − λ

(a)′
i − l + μ

(b)′
k

) + ε.

The proof of Lemma 4.4 is similar to proofs of Lemmas 3.4 and 4.1, so we leave the details to
the reader. Note, in particular, that if a �= b then νπ (resO(f λ

x ) − resO(f
μ
y )) is always non-zero

since ν′
p(h) � 0, for all h ∈ Z\ {0}. This crucial difference leads to Jλμ being non-zero whenever

there exist nodes x = (i, j, a) ∈ [λ] and y = (k, l, b) ∈ [μ] with a < b and [λ] \ rλ
x = [μ] \ r

μ
y .

More explicitly, we have the following analogue of Propositions 3.6 and 4.2. Again, we leave
details to the reader.
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4.5. Proposition. Let λ = (λ(1), . . . ,λ(r)) and μ = (μ(1), . . . ,μ(r)) be multipartitions in Λ+
r,n.

(a) Suppose that there exist integers a �= b such that λ(c) = μ(c), for c �= a, b. Then Jλμ �= 0 only
if a < b and there exist nodes x = (i, j, a) ∈ [λ] and y = (k, l, b) ∈ [μ] such that [λ] \ rλ

x =
[μ] \ r

μ
y . In this case

Jλμ = (−1)��(r
λ
x )+��(r

μ
y )

(
ν′
p

(
n(a − b) + j − λ

(a)′
i − l + μ

(b)′
k

) + ε
)
.

(b) Suppose that e is finite and for some integer a we have λ(c) = μ(c), for c �= a. Then Jλμ �= 0
only if there exist nodes x = (i, j, a), (i,m,a) ∈ [λ] such that m < j , e | hλ

(i,m,a) and μ is
obtained by wrapping a rim hook of length hλ

x onto λ \ rλ
x with its highest node in column m.

In this case

Jλμ =
⎧⎨
⎩ (−1)��(r

λ
x )+��(r

μ
y )(ν′

p(hλ
(i,m,a)) + ε), if e � hλ

(i,j,a),

(−1)��(r
λ
x )+��(r

μ
y )(ν′

p(hλ
(i,m,a)) − ν′

p(hλ
(i,j,a))), if e | hλ

(i,j,a),

where y ∈ [μ] is determined by [μ] \ r
μ
y = [λ] \ rλ

x .
(c) In all other cases, Jλμ = 0.

We can now complete the proof of Theorem 2.11.

Proof of Theorem 2.11 for Cases 3–5. Let λ = (λ(1), . . . , λ(r)) be a multipartition of n and
fix integers a �= b with λ(a) �= (0) and 1 � a, b � r . Let μ be any multipartition that can be
obtained by unwrapping a rim hook from [λ(a)] and wrapping it back on to component b of λ.
Then λ ∼J μ by Proposition 4.5(a). In particular, note that λ ∼J μ if μ is obtained from λ

by moving a removable node from λ(a) to λ(b). Consequently, by moving the nodes in [λ] to
the right, one by one, we see that λ is Jantzen equivalent to a multipartition μ, where μ =
((0), . . . , (0),μ(r)) for some partition μ(r). Similarly, moving nodes in μ to the left, one-by-one,
now shows that λ ∼J μ ∼J ((n), (0), . . . , (0)). Hence, every multipartition in Λ+

r,n is Jantzen
equivalent to ((n), (0), . . . , (0)). This shows that there is only one block in Cases 3, 4 and 5, so
the theorem follows. �
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