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Abstract

This paper is an elementary introduction to the concepts of variational iteration method. First, the main concepts in variational
iteration method, such as general Lagrange multiplier, restricted variation, correction functional, are explained heuristically. Sub-
sequently, the solution procedure is systematically addressed, in particular, for nonlinear oscillators. Particular attention is paid
throughout the paper to give an intuitive grasp for the method. The main motivation is to put things together in a convenient form
for later reference and systematic use.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The variational iteration method [8–11,15] has been extensively worked out over a number of years by numerous
authors. Starting from pioneering ideas going back to Inokuti–Sekine–Mura method [16], the method has matured into
a fully fledged theory thanks to the effects of many researchers, notably, Wazwaz [27], Draganescu [6,7], Abdou and
Soliman [1–4,23,24], Odibat and Momani [19–22], Bildik [5], Marinca [17], Moghimi [18], Dehghan [26], Sweilam
[25] to mention only a few. For a relatively comprehensive survey on the method and its applications, the reader is
referred to present author’s review article [13] and monograph [14].

Recently, some rather extraordinary virtues of the method have been exploited, and wide applications have been
found in various fields [1–7,17–26].

In this paper, we will survey some basic concepts, theory and applications of the variational iteration method.

2. Basic concepts in the variational iteration method

In the course of developing the variational iteration method, we introduced some new nomenclatures, such as
restricted variation, correction functional. Heuristic interpretation of those concepts leads new comers to the field to
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start working immediately without the long search and preparation of advanced calculus and calculus of variations, at
the same time those already familiar with variational iteration method will find the most recent new results.

2.1. General Lagrange multiplier

We know Lagrange multiplier well in optimization and calculus of variations. Inokuti et al. suggested a method of
general Lagrange multiplier [16]. In order to understand the concept of the general Lagrange multiplier, we consider
an algebraic equation

f (x) = 0, x ∈ R. (1)

If xn is an approximate root of the above equation, it follows:

f (xn) �= 0. (2)

To improve its accuracy, we write the following correction equation:

xn+1 = xn + �f (xn), (3)

where � is a general Lagrange multiplier, which can be identified optimally by setting

dxn+1

dxn

= 0, (4)

which leads to the well-known Newton iteration formula

xn+1 = xn − f (xn)

f ′(xn)
. (5)

There are alternative approaches to construction of correction equation. We write another correction for xn as follows:

xn+1 = xn + �g(xn)f (xn), (6)

where g(x) is an auxiliary function. After identification of the multiplier, we have a general iteration formulation:

xn+1 = xn − g(xn)f (xn)

g(xn)f ′(xn) + g′(xn)f (xn)
. (7)

The value of the auxiliary function should not be zero or small value during the all iteration steps, |g(xn)| > 1. If we
choose g(xn) = e−�xn , the iteration formulation, Eq. (7), reduces to

xn+1 = xn − f (xn)

f ′(xn) − �f (xn)
. (8)

This iteration formulation is very effective when f ′(xn) is small. As an example, we consider the equation

sin x = 0. (9)

If we begin with x0 = 1.6, the Newton iteration is not valid for cos 1.6 is a small value. Table 1 shows the iteration
procedure, the nearest solution near x0 = 1.6 is x = �.

Table 1

Iteration x (� = 1) x (� = 2) x (�) = 0.97

0 1.6 1.6 1.6
1 2.57 2.09 2.60
2 2.96 2.48 2.98
3 3.12 2.78 3.12
4 3.14 2.99 3.14
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We also obtained some iteration formulae by general Lagrange multiplier [14]

xn+1 = xn − f (xn)

f ′(xn)
− f ′′(xn)f

2(xn)

2f ′3(xn)
, (10)

xn+1 = xn − f (xn)

f ′(xn)
− f ′′(xn)f

2(xn)

2f ′3(xn)
+ [f ′′′(xn)f

′3(xn) − 3f ′′2(xn)f
′2(xn)]f 3(xn)

2f ′7(xn)
. (11)

If Eq. (1) is replaced by a differential equation, then a correctional functional similar to Eq. (3) can be established.

2.2. Stationary conditions

The problem of optimization is ubiquitous in nature. The simplest problem of the calculus of variation [12] is to
determine a function y = f (x) for which the value of a given functional

J =
∫ x2

x1

F(y, y′; x) dx + g1(x)y|x=x1 − g2(x)y|x=x2 (12)

is a maximum or a minimum.
The extremum condition (stationary condition) of the functional (12) requires that

�J = �
∫ x2

x1

F(y, y′; x) dx + g1�y|x=x1 − g2�y|x=x2

=
∫ x2

x1

�F(y, y′; x) dx + g1�y|x=x1 − g2�y|x=x2

=
∫ x2

x1

{
dF

dy
�y + dF

dy′ �y′
}

dx + g1�y|x=x1 − g2�y|x=x2

=
∫ x2

x1

{
dF

dy
�y + dF

dy′
d

dx
(�y)

}
dx + g1�y|x=x1 − g2�y|x=x2

=
∫ x2

x1

{[
dF

dy
− d

dx

(
dF

dy′

)]
�y + d

dx

(
dF

dy′ �y

)}
dx + g1�y|x=x1 − g2�y|x=x2

=
∫ x2

x1

{[
dF

dy
− d

dx

(
dF

dy′

)]
�y

}
dx +

[
dF

dy′ �y

]x2

x1

+ g1�y|x=x1 − g2�y|x=x2

= 0.

For arbitrary �y, from the above relation , we have

dF

dy
− d

dx

(
dF

dy′

)
= 0, (13)

and the boundary conditions

dF

dy′ (x1) − g1(x1) = 0 and
dF

dy′ (x2) − g2(x2) = 0. (14)

Eq. (13) is called Euler–Lagrange’s differential equation, or Euler’s equation, and Eq. (14) is known as the natural
boundary conditions.

2.3. Restricted variation

To illustrate how restricted variation works in variational iteration method, we consider a simple algebraic equation

x2 − 3x + 2 = 0. (15)
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Table 2

Iteration Eq. (18) Newton iteration formulation

0 0.5 0.5
1 0.8 0.875
2 0.909 0.987
3 0.956 0.999
4 0.978 1.000
5 0.989 1.000
6 0.994 1.000
7 0.997 1.000
8 0.998 1.000
9 0.999 1.000

We re-write Eq. (15) in the form

x̃ · x − 3x + 2 = 0, (16)

where x̃ is called restricted variable, the value of x̃ is assumed to be known (initial guess). Solving x from (16) leads
to the result

x = 2

3 − x̃
(17)

or an iteration form

xn+1 = 2

3 − xn

. (18)

This method is often very efficient for good prediction, see Table 2.
In variational iteration method, initial guess is always chosen with a possible unknown parameter, one iteration leads

to highly accurate solutions. We illustrate the effectiveness of free parameter in the above example. Introducing a free
parameter in the initial prediction:

x0 = 0.5 + b, (19)

where b is a small parameter to be further determined, and substituted (19) into (18), we have

x1 = 2

3 − 0.5 − b
= 2

2.5 − b
= 2

2.5
(
1 − 1

2.5b
) = 0.8

(
1 + 1

2.5
b

)
+ O(b2) = 0.8 + 0.32b + O(b2). (20)

To identify the value b we set

x0 = x1 (21)

or

0.8 + 0.32b = 0.5 + b. (22)

From above relation, we can immediately identify

b = 0.4412. (23)

So the updated approximate root is x1 = 0.9412.
Now we consider restricted variation in a variational functional. Consider temperature distribution in convective

straight fins with temperature-dependent thermal conductivity, the dimensionless governing equation is [15]

d

dx

[
(1 + ��)

d�

dx

]
− �2� = 0, �′(0) = 0, �(1) = 1, (24)

where � is dimensionless temperature, � and � are constants.
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Use the concept of restricted variation, an approximate variational functional can be established:

J (�) =
∫ 1

0

{
(1 + ��̃)

(
d�

dx

)2

+ �2�2

}
dx, (25)

where �̃ is a restricted variation, i.e., ��̃ = 0.
We write (24) in an iteration form

J (�n+1) =
∫ 1

0

{
(1 + ��n)

(
d�n+1

dx

)2

+ �2�2
n+1

}
dx. (26)

We begin with an initial guess satisfying the boundary condition �′
0(0) = 0 and �0(1) = 1:

�0 = 1 − a + ax2, (27)

where a is free parameter. We apply Ritz method to solving �1, the trial-function for �1 is assumed to be have the form

�1 = 1 − b + bx2, (28)

where the unknown parameter b to be further determined. Substituting (27) into (25) yields

J =
∫ 1

0
{4(1 + �(1 − a + ax2))b2x2 + �2(1 − b + bx2)2} dx

= 4
3 (1 + �(1 − a))b2 + 4

5ab2 + �2(1 − b)2 + 2
3b(1 − b)�2 + 1

5b2�2. (29)

Minimizing the functional, Eq. (25), with respect to � is approximately equivalent to minimizing the above function,
Eq. (28), with respect to b:

dJ

db
= 8

3
(1 + �(1 − a))b + 8

5
ab − 2�2(1 − b) + 2

3
(1 − 2b)�2 + 2

5
b�2 = 0. (30)

We set �0 = �1, then we can identify

a = −(20 + 20� + 8�2) +
√

(20 + 20� + 8�2)2 + 40�2(12 − 20�)

24 − 40�
. (31)

3. Variational iteration method

The variational iteration method [2–4,23] has been shown to solve effectively, easily, and accurately a large class of
nonlinear problems with approximations converging rapidly to accurate solutions.

To illustrate its basic idea of the technique, we consider following general nonlinear system:

L[u(t)] + N [u(t)] = g(t), (32)

where L is a linear operator, N is a nonlinear operator, and g(t) is a given continuous function.
The basic character of the method is to construct a correction function for system (2), which reads

un+1(t) = un(t) +
∫ t

t0

�{Lun(s) + Nũn(s) − g(s)} ds, (33)

where � is a general Lagrange multiplier which can be identified optimally via variational theory, un is the nth approx-
imate solution, and ũn denotes a restricted variation, i.e., �ũn = 0.
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For linear problems, its exact solution can be obtained by only one iteration step due to the fact that the Lagrange
multiplier can be exactly identified. Considering the following example.

The linear differential equation of first order

u′ + a(t)u = b(t), u(0) = c. (34)

Its correction functional can be written in the form

un+1(t) = un(t) +
∫ t

0
�

{
dun

ds
+ a(s)un(s) − b(s)

}
ds. (35)

Making the above correct functional stationary with respect to un, noticing that �un(0) = 0,

�un+1(t) = �un(t) + �
∫ t

0
�

{
dun

ds
+ a(s)un(s) − b(s)

}
ds

= �un(t) + ��un(s)|s=t +
∫ t

0

{
−��

�s
+ a(s)�

}
�un(s) ds = 0. (36)

Thus, we obtain the Euler–Lagrange equation

−��(t, s)

�s
+ a(s)�(t, s) = 0, (37)

and the natural boundary condition

1 + �(t, t) = 0. (38)

We, therefore, identify the Lagrange multiplier in the form

�(t, s) = − exp

{∫ s

0
a(	) d	 −

∫ t

0
a(	) d	

}
. (39)

Substituting the identified Lagrange multiplier into (2) results in the following iteration formulation:

un+1(t) = un(t) −
∫ t

0
exp

{∫ s

0
a(	) d	 −

∫ t

0
a(	) d	

} {
dun

ds
+ a(s)un(s) − b(s)

}
ds. (40)

If we begin with u0 =c exp{− ∫ t

0 a(	) d	}, the solution the homogeneous equation, u′ +a(t)u=0 with initial condition
u(0) = c, then

u1(t) = c exp

{
−

∫ t

0
a(	) d	

}
−

∫ t

0
b(s) exp

{∫ s

0
a(	) d	 −

∫ t

0
a(	) d	

}
ds

= c exp

{
−

∫ t

0
a(	) d	

}
+ exp

{∫ t

0
a(s) ds

} ∫ t

0
b(s) exp

{∫ s

0
a(	) d	

}
ds, (41)

which is the exact explicit solution. From the solution all properties can be quickly and effortlessly deduced.
Now consider the linear oscillator with a forced term:

u′′(t) + 
2u(t) = f (u, u′, u′′). (42)

Its correction functional can be written in the form

un+1(t) = un(t) +
∫ t

0
�{u′′

n(s) + 
2un(s) − f̃ (un, u
′
n, u

′′
n)} ds. (43)



J.-H. He / Journal of Computational and Applied Mathematics 207 (2007) 3–17 9

Calculating variation with respect to un, noticing that �un(0) = 0, yields

�un+1(t) = �un(t) + �
∫ t

0
�

{
u′′

n(s) + 
2un(s) − f (s)
}

ds

= �un(t) + �(s)�u′
n(s)|s=t − ��

�s
�un(s)|s=t +

∫ t

0

{
�2�

�s2 + 
2�(s)

}
�un(s) ds

=
(

1 − ��

�s

)
�un(s)|s=t + �(s)�u′

n(s)|s=t +
∫ t

0

{
�2�

�s2 + 
2�(s)

}
�un(s) ds = 0. (44)

We, therefore, have the following stationary conditions:

�2�(t, s)

�s2 + 
2�(t, s) = 0, (45)

1 − ��(t, s)

�s

∣∣∣∣
t=s

= 0, (46)

�(t, s)|t=s = 0. (47)

The Lagrange multiplier, therefore, can be readily identified

� = 1



sin 
(s − t). (48)

As a result, we obtain the following iteration formula:

un+1(t) = un(t) + 1




∫ t

0
sin 
(s − t)

{
u′′

n(s) + 
2un(s) − f (un, u
′
n, u

′′
n)

}
ds. (49)

If we use its complementary solution u0(t) = C1 cos 
t + C2 sin 
t with suitable constants C1 and C2 as an initial
approximation, by the iteration formula (18), we have

u1(t) = C1 cos 
t + C2 sin 
t − 1




∫ t

0
f (s) sin 
(s − t) ds, (50)

which is the general solution of (11).
For nonlinear equation, the Lagrange multiplier is difficult to be identified. To overcome the difficulty, we apply

restricted variations to nonlinear terms. In order to best illustrate the restricted variations, we consider the following
linear equations:

u′′(t) + 
2u(t) = 0. (51)

We write the correction functional as follows:

un+1(t) = un(t) +
∫ t

0
�

{
u′′

n(s) + 
2ũn(s)
}

ds. (52)

Herein ũn is considered as a restricted variation, i.e., �ũn = 0. Under this condition, its stationary conditions of the
above correction functional (21) can be expressed as follows:

�2�(t, s)

�s2 = 0, (53)

1 − ��(t, s)

�s

∣∣∣∣
t=s

= 0, (54)

�(t, s)|t=s = 0. (55)
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The Lagrange multiplier, therefore, can be easily identified as

� = s − t , (56)

leading to following iteration formula:

un+1(t) = un(t) +
∫ t

0
(s − t){u′′

n(s) + 
2un(s)} ds. (57)

If, for example, the initial conditions are u(0) = 1 and u′(0) = 0, we begin with u0(0) = u(0) = 1, by the above
iteration formula (26) we have following approximate solutions:

u1(t) = 1 − 1

2!

2t2, (58)

u2(t) = 1 − 1

2!

2t2 + 1

4!

4t4, (59)

and

un(t) = 1 − 1

2!

2t2 + · · · + (−1)n

1

(2n)!

2nt2n. (60)

From the above solution procedure, we can see clearly that the approximate solutions converge to its exact solution
cos 
t relatively slowly due to the approximate identification of the multiplier. It should be specially pointed out that
the more accurate the identification of the multiplier, the more fast the approximations converge to its exact solution.

Now consider the following nonlinear equation:

u′ + a(t)u = b(t) + N(u), u(0) = c. (61)

Here N is a nonlinear function of u. Following the above notation, we may set

un+1(t) = un(t) +
∫ t

0
�

{
dun

ds
+ a(s)un(s) − b(s) − N(ũn)

}
ds, (62)

where ũn is a restricted variation, i.e., �ũn = 0.
Proceeding along the lines indicated above, we obtain the following iteration formulation:

un+1(t) = un(t) −
∫ t

0
exp

{∫ s

0
a(	) d	 −

∫ t

0
a(	) d	

} {
dun

ds
+ a(s)un(s) − b(s) − N(un)

}
ds. (63)

Consider the following second-order nonlinear equation

u′′ + a(t)u′ + b(t)u + N(u) = 0, u(0) = c1, u′(0) = c2. (64)

Its correction functional can be written in the form

un+1(t) = un(t) +
∫ t

0
�

{
u′′

n(s) + a(s)u′
n(s) + b(s)un(s) + N(ũn(s))

}
ds. (65)

Making the above correct functional stationary with respect to un, noticing that �un(0) = 0,

�un+1(t) = �un(t) + �
∫ t

0
�

{
u′′

n(s) + au′
n(s) + bun(s) + N(ũn(s))

}
ds

= �un(t) + ��u′
n(s)|s=t − ��

�s
�un(s)|s=t + a�(s)�un(s)|s=t

+
∫ t

0

{
�2�

�s2 − �

�s
(a�) + b(s)�(s)

}
�un(s) ds = 0, (66)
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we have the following stationary conditions:

�2�

�s2 − �

�s
(a�) + b(s)�(t, s) = 0, (67)

1 − ��

�s
(t, t) + a(t)�(t, t) = 0, (68)

�(t, t) = 0. (69)

From the above relations, Eqs. (40)–(42), we can identify the Lagrange multiplier as follows:

� = exp

{∫ s

0
a(	) d	

}
[u1(s)u2(t) − u2(s)u1(t)]. (70)

If w1 and w2 are chosen to be a fundamental set of solutions specified by the initial conditions

w1(0) = 1, w′
1(0) = 0,

w2(0) = 0, w′
2(0) = 1. (71)

To first approximation, we have

u1(t) = c1w1 + c2w2 +
∫ t

0
N(u0(s))�(t, s) ds. (72)

Consider the following inhomogeneous equation:

u′′ + a(t)u′ + b(t)u = f (u), (73)

where the solution is specified by values at two points, say

u(0) = c1, u(1) = c2. (74)

We shall let u(1) and u(2) to the two principal solutions; that is

u(1)(0) = 1, u′
(1)(0) = 0, (75)

u(2)(0) = 0, u′
(2)(0) = 1, (76)

and write

u = c1u(1) + c2u(2). (77)

Its correction functional can be written in the form

un+1(t) = un(t) +
∫ t

0
�{u′′

n(s) + au′
n(s) + bun(s) − f̃n} ds. (78)

Making the above correct functional stationary with respect to un, noticing that �un(0) = 0,

�un+1(t) = �un(t) + �
∫ t

0
�{u′′

n(s) + au′
n(s) + bun(s) − f̃n} ds

= �un(t) + �(s)�u′
n(s)|s=t − �′(s)�un(s)|s=t + a�(s)�un(s)|s=t

+
∫ t

0

{
d2�

ds2 − d

ds
(a�) + b(s)�(s)

}
�un(s) ds = 0,
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we have the following stationary conditions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�un(s):
d2�

ds2 − d

ds
(a�) + b(s)�(t, s) = 0,

�un(t): 1 − d�

ds
+ a(s)�(s, s) = 0,

�u′
n(t): �(s, s) = 0.

(79)

The Lagrange multiplier can be identified in the form

� = − exp

{∫ s

0
a(	) d	

}
[u(1)(s)u(2)(t) − u(2)(s)u(1)(t)]. (80)

So we obtain the following iteration formulation:

un+1(t) = un(t) −
∫ t

0
exp

{∫ s

0
a(	) d	

}
[u(1)(s)u(2)(t) − u(2)(s)u(1)(t)]

{u′′
n(s) + au′

n(s) + bun(s) − fn} ds. (81)

Example 1 (Mathematical pendulum). When friction is neglected, the differential equation governing the free oscil-
lation of the mathematical pendulum is given by

u′′ + 
2 sin u = 0, (82)

with initial conditions u(0) = A and u′(0) = 0.
Herein u designates the deviation angle from the vertical equilibrium position, 
2 =g/l, where g is the gravitational

acceleration, l the length of the pendulum.
System (82) seems to be very simple, but what appears to be a simple problem is really not that simple unless the

approximation sin u ≈ u is used, thus the nonlinear differential equation (82) can be replaced by following linear one:

u′′ + 
2u = 0. (83)

For small u this should lead to good results. To obtain a more accurate approximate solution, we expand
sin u ≈ u − u3/6, as a result, we get

u′′ + 
2u − 1
6
2u3 = 0. (84)

In order to give a somewhat more general treatment, in Ref. [22] the investigation is based on the Duffing equation

u′′ + 
2u + �u3 = 0, (85)

where � = −
2/6.
If the angular frequency of system (82) is �, system (82) can be equivalently written in the form

u′′ + �2u + F(u) = 0, (86)

where F(u) = 
2 sin u − �2u.
Its correction functional can be constructed as follows:

un+1(t) = un(t) +
∫ t

0
�{u′′

n(s) + �2un(s) + F̃n} ds. (87)

By the same manipulation, the multiplier can be identified and the following iteration formula can be obtained as

un+1(t) = un(t) + 1

�

∫ t

0
sin �(s − t){u′′

n(s) + 
2 sin un(s)} ds. (88)
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If we begin with u0(t) = A cos �t , we have

u1(t) = A cos �t + 1

�

∫ t

0
sin �(s − t){−A�2 cos �s + 
2 sin(A cos �s)} ds. (89)

Generally speaking, the second term of the right-hand side of Eq. (89) is not equal to zero, it would vanish if u0(t)

were to be a solution of (82) . We may, however, at least assure∫ T

0
sin �(s − t)

{
−A�2 cos �s + 
2 sin(A cos �s)

}
ds = 0, (90)

with T = 2�/�. Thus, we have

�2 = 
2
∫ T

0 sin �s sin(A cos �s) ds∫ T

0 A sin �s cos �s ds
= 2
2J1(A)

A
, (91)

where J1(A) is the first-order Bessel function of the first kind:

J1(A) = 1
2A − 1

16A3 + 1
384A5 + · · · . (92)

The period then can be calculated as follows:

T = 2�



√

2J1(A)/A
= 2�



√

1 − 1
8A2 + 1

192A4 + · · ·
. (93)

The mathematical pendulum, system (82), can be approximated by

u′′ + 
2u − 1

3!

2u3 + 1

5!

2u5 = 0. (94)

The iteration formula can be written in the form

un+1(t) = un(t) + 1

�

∫ t

0
sin �(s − t)

[
u′′

n(s) + 
2un(s) − 1

3!

2u3

n(s) + 1

5!

2u5

n(s)

]
ds. (95)

We begin with u0(t) = A cos �t , by formula (14) and requirement of no secular terms, we obtain

u1(t) = A cos �t + (−16A3 + A5)
2

1792�2 (cos 3�t − cos �t) + A5
2

15 360�2 (cos 5�t − cos �t), (96)

where the angular frequency is determined as

� = 

√

1 − 1
8A2 + 1

192A4. (97)

Example 2 (A ball-bearing oscillator). In this example we consider the motion of a ball-bearing oscillating in a smooth
tube that is bent into a curve such that the restoring force depends upon the cube of the displacement. The governing
equation, which can be readily obtained, is

u′′ + �u3 = 0, (98)

with initial conditions u(0) = A, u′(0) = 0.
The iteration formula for the system can be constructed as follows:

un+1(t) = un(t) + 1




∫ t

0
sin 
(s − t){u′′

n(s) + �u3
n(s)} ds, (99)

where 
 is the angular frequency of the system.
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We begin with u0(t) = A cos 
t , by formula (99), we have

u1(t) = A cos 
t − 1
32A3(cos 3
t − cos 
t), (100)

where the angular frequency 
 is identified with the physical understanding that no secular terms should be appeared
in u1(t), which leads to


 =
√

3
2 �1/2A. (101)

The approximate period can be expressed in the form

T = 4
√

3�

3�1/2A
, (102)

while the exact period can be readily obtained, which reads

Tex = 2
√

2
∫ A

0

dx√∫ A

x
g(u) du

, (103)

where g(u) = �u3. For any A >0 and � > 0, Eq. (103) can be approximated as

Tapp = �3/2A1/2√∫ �/2
0 g(A cos x) cos x dx

= �3/2A1/2√∫ �/2
0 �A3cos4x dx

= 4�√
3�1/2A

. (104)

So the results obtained by the present theory are valid for A > 0 and � > 0.

Example 3. We consider an oscillator, which is governed by

u′′ + 
2u + 4�u2u′′ + 4�uu′2 = 0, u(0) = A, u′(0) = 0. (105)

Supposing system (105) has the angular frequency �, we obtain the following iteration formula:

un+1(t) = un(t) + 1

�

∫ t

0
sin �(s − t)

{
u′′

n(s) + 
2un(s)
}

ds

+ 1

�

∫ t

0
sin �(s − t){4�u2

n(s)u
′′(s) + 4�un(s)u

′
n

2
(s)} ds. (106)

We begin with the initial approximation u0(t) = A cos �t , by the above iteration formula, we have

u1(t) = A cos �t − �A3

4
(cos 3�t − cos �t), (107)

where the angular frequency is identified with the understanding that no secular terms occur, which leads to

� = 
√
1 + 2�A2

. (108)

The period is

T = T0

√
1 + 2�A2, T0 = 2�/
, (109)

while the exact period reads

Tex = 2

�
T0

√
1 + 4�A2

∫ �/2

0

√
1 − k sin2 t dt , (110)

where k = 4�A2/(1 + 4�A2).
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It is obvious the obtained result (109) is valid for all � > 0. Even in case � → ∞, we have

lim
�→∞

Tex

T
= 0.9003.

Example 4 (Schrödinger equation). The Schrödinger equation can be written in the form

Lf = −f ′′ + q(x)f = k2f . (111)

In case q(x) = 0, we have two general solutions: eikx and e−ikx . We assume that q(x) → 0 when |x| → ∞.
In case x → +∞, the correction functional can be constructed as follows:

fn+1(x) = fn(x) +
∫ +∞

x

�{f ′′
n (	) − q(	)f̃n(	) + k2fn(	)} d	. (112)

where f̃n is considered as a restricted variation.
Making (112) stationary, we obtain the following stationary conditions⎧⎪⎨

⎪⎩
�′′(	) + k2f (	) = 0,

�(	)|	=x = 0,

1 + �′(	)|	=x = 0.

(113)

The Lagrange multiplier can be identified as

� = 1

k
sin k(x − 	). (114)

We obtain the following iteration formulation:

fn+1(x) = fn(x) +
∫ +∞

x

sin k(x − 	)

k
{f ′′

n (	) − q(	)fn(	) + k2fn(	)} d	. (115)

We begin with

f0(x) = f+(x) = eikx . (116)

By (11), we have

f1(x) = eikx −
∫ +∞

x

sin k(x − 	)

k
q(	)f+(	) d	. (117)

Now we consider another case when x → −∞. Under such a case, we construct a correction functional in the form

fn+1(x) = fn(x) +
∫ x

−∞
�{f ′′

n (	) − q(	)f̃n(	) + k2fn(	)} d	. (118)

Its stationary conditions are⎧⎪⎨
⎪⎩

�′′(	) + k2f (	) = 0,

�(	)|	=x = 0,

1 − �′(	)|	=x = 0.

(119)

The multiplier can be identified as

� = −1

k
sin k(x − 	). (120)
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So we obtain the following iteration formulation:

fn+1(x) = fn(x) −
∫ +∞

x

sin k(x − 	)

k
{f ′′

n (	) − q(	)fn(	) + k2fn(	)} d	. (121)

We begin with

f0(x) = f−(x) = e−ikx . (122)

By (121), we have

f1(x) = eikx +
∫ +∞

x

sin k(x − 	)

k
q(	)f−(	) d	. (123)

Eqs. (117) and (121) are actually Jost solutions.

4. Conclusions

The variational iteration method can be easily comprehended with only a basic knowledge of Advanced Calculus,
even the reader has no knowledge of calculus of variations in pure mathematics.
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