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Abstract

Let μ be an invariant measure for the transition semigroup (Pt ) of the Markov family defined by
the Ornstein–Uhlenbeck type equation

dX = AX dt + dL

on a Hilbert space E, driven by a Lévy process L. It is shown that for any t � 0, Pt considered on L2(μ)

is a second quantized operator on a Poisson Fock space of eAt. From this representation it follows that
the transition semigroup corresponding to the equation on E = R, driven by an α-stable noise L, α ∈ (0,2),
is neither compact nor symmetric.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Let μ be an invariant measure for a Markov family X = (Xx) on a measurable space (E, B),
with the transition semigroup

Ptψ(x) = Eψ
(
Xx(t)

)
, t � 0, x ∈ E.
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Then (Pt ) is a semigroup of contractions on any Lp(μ) := Lp(E, B(E),μ)-space, p ∈ [1,+∞].
From a probabilistic and an analytic point of view, there is motivation to analyze (Pt ) and μ as μ

can be treated as a reference measure (especially in infinite-dimensional case) and the generator
of (Pt ) as a reference operator.

In the present paper X is defined by the Ornstein–Uhlenbeck type equation

dX = AX dt + dL, X(0) = x ∈ E, (1)

where (A,D(A)) generates a C0-semigroup eAt , t � 0, on a Hilbert space (E, 〈·,·〉E). The main
result covers the general case of the so-called cylindrical process; that is the case where L is a
Lévy process taking values in a Hilbert space Ẽ ←↩ E, for more details see Section 5.

Analytic properties of the transition semigroup (Pt ) corresponding to the equation on a finite
or infinite-dimensional state space, driven by a Wiener process have been studied for many years
and now they are rather well understood. For example, there are if and only if conditions for its
compactness, self-adjointness, analyticity, and hypercontractivity (see e.g. [7–11,14,13,23–26]).
In particular, in the case of E = R, (Pt ) is symmetric, compact (even nuclear) and hypercontrac-
tiv. It will be shown in Theorem 7.3 of the present paper, that in the case of an α-stable noise,
α �= 2, (Pt ) in neither symmetric nor compact. The fact that the transition semigroup (Pt ) is
not symmetric has been shown using different methods, by Albeverio, Rüdiger, and Wu [1] for
α-stable processes, and by Applebaum and Goldys [3] for general noise, whereas the fact that
(Pt ) is not hyperbounded; that is ‖Pt‖L(Lp(μ),Lq(μ)) = ∞ for any t > 0 and 1 < p < q < ∞, was
shown by Röckner and Wang [30].

Ornstein–Uhlenbeck equations with Lévy noise have been studied for over twenty years (see
e.g. [2,5,4,6,15,20,21,28–30]) and now they are a subject of intensive studies (see e.g. [5,4,28]).
However, even in the case of E = R, our knowledge on properties of their transition semigroups
is rather limited. Namely, apart of the Albeverio, Rüdiger, and Wu, and the Applebaum and
Goldys results on the lack of symmetry of (Pt ), Lescot and Röckner [20,21] identified the gen-
erator of (Pt ) as a pseudo-differential operator with an explicit symbol, and obtained an explicit
formula for the square field operator of (Pt ), next Röckner and Wang [30] established Poincaré
and Harnack type inequalities and showed that generally (Pt ) is not hyperbounded (for related
results see [16]).

In the case of a Wiener noise; Chojnowska-Michalik and Goldys [8] following Simon [32]
and Feyel and de La Pradelle [12] showed that for each t � 0, Pt is equal to the second quantized
operator Γ (S∗

0 (t)) of the adjoint semigroup S∗
0 (t), t � 0, where S0(t) is the original semigroup

eAt , t � 0, “regarded” on the Reproducing Hilbert Kernel Space of μ. This representation is very
useful for study properties of the transition semigroup (see Section 2 where the Chojnowska-
Michalik and Goldys results will be sketched). The goal of the present paper is to formulate an
analogous result for the Markov family defined by equation with Lévy noise (see Section 5).

We will use the fact that μ is the distribution of

Y∞ =
∞∫

0

eAt dL(t), (2)

and that the transition semigroup (Pt ) is given by the generalized Mehler formula (see e.g. [2,15])
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Ptf (x) =
∫
E

f
(
eAtx + y

)
μt(dy), x ∈ E, t � 0, (3)

where μt is the distribution of

Yt :=
t∫

0

eA(t−s) dL(s) (4)

or equivalently of
∫ t

0 eAs dL(s).

2. Gaussian case

In this section we are dealing with (1) driven by a Wiener process. Namely, we assume that
L(t) = BW(t), where W is a cylindrical Wiener process on E, see e.g. [8,11,28], B is a bounded
linear operator on E, and eAt , t � 0, is an exponentially stable semigroup on E satisfying

∞∫
0

∥∥eAtB
∥∥2

L(HS)(E,E)
dt < ∞.

Note that this estimate is in fact if and only if condition for the existence of an invariant mea-
sure μ. Moreover, due to the stability of the semigroup eAt , t � 0, μ is unique. Finally μ is the
distribution of Y∞ given by (2), and μ is mean-zero, Gaussian with the covariance operator

Q∞ :=
∞∫

0

eAsBB∗eA∗s ds.

To simplify the exposition we assume that KerQ∞ = {0}.
Let us recall that the Reproducing Hilbert Kernel Space of μ is the space E0 := RangeQ

1/2∞ ,
equipped with the scalar product

〈
Q

1/2∞ u,Q
1/2∞ v

〉
E0

= 〈u,v〉E, u, v ∈ E.

2.1. Second quantization

Given h ∈ E0 define a linear functional ψh(x) := 〈Q−1/2∞ h,x〉E , x ∈ E. Then

∫
E

ψh(x)ψu(x)μ(dx) = 〈
Q∞Q

−1/2∞ h,Q
−1/2∞ u

〉
E

= 〈h,u〉E, h,u ∈ E0. (5)

Since E0 is dense in E, for any h ∈ E there is a sequence (hn) ⊂ E0 converging in E to h. By (5),
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(ψhn) converges in L2(μ). The limit will be denoted by ψh. Clearly,

∫
E

ψh(x)ψu(x)μ(dx) = 〈h,u〉E, ∀h,u ∈ E.

Let Pn be the closed subspace of L2(μ) spanned by p(ψh1 , . . . ,ψhk
), k ∈ N, h1, . . . , hk ∈ E,

and p is a polynomial of order � n. Let H0 be the space of all constant functions, and let Hn,
n ∈ N, be the orthogonal complement of Hn−1 in Pn. The Itô–Wiener chaos decomposition says
that

L2(μ) =
∞⊕

n=0

Hn.

Let Prn be the orthogonal projection of L2(μ) into Hn. Given an R ∈ L(E,E) define
Γn(R) : Hn �→ Hn, n = 0,1 . . . , by

Γn(R)Prn(ψh1 . . .ψhn) := Prn(ψRh1 . . .ψRhn), h1, . . . , hn ∈ E.

One can show that Γn(R) is well defined and ‖Γn(R)‖L(Hn,Hn) = ‖R‖n
L(E,E). Hence for any

linear contraction R on E,

Γ (R) :=
∞∑

n=0

Γn(R)Prn

defines a contraction on L2(μ). We call Γ (R) the second quantized operator of R, and Γ the
second quantization operator. In the Gaussian case the action of the second quantization operator
is well understood. In fact, the following lemma gathers some basic properties of Γ . For its proof
we refer the reader to Lemma 2 and Proposition 2 from [8], and to Chapter 1 of [32].

Theorem 2.1. Assume that R,R1,R2 are contractions on E. Then:

(a) Γ (IE) = IL2(μ), where IE and IL2(μ) are the identity operators.
(b) Γ (R1R2) = Γ (R1)Γ (R2), Γ (R∗) = Γ (R)∗.
(c) Γ (R)1 = 1, and Γ (R) is positivity preserving; that is if f � 0, μ-a.s., then Γ (R)f � 0,

μ-a.s.
(d) The operator Γ (R) has an extension (restriction) to a positive contraction on every Lp(μ)

for p � 1.
(e) For any p � 1 and

q0 = 1 + p − 1

‖R‖2
L(E,E)

,

we have ‖Γ (R)‖L(Lp(μ),Lq0 (μ)) = 1 and if q > q0, then ‖Γ (R)‖L(Lp(μ),Lq(μ)) = ∞.
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(f) If R is self-adjoint with a complete set of eigenvectors (vk), then Γ (R) is also self-adjoint
with the complete orthogonal set of eigenvectors

∞∏
j=1

Praj

(
ψ

aj
vj

) : (aj ) ⊂ N ∪ {0} and
∑
j

aj < ∞.

(g) Let p,q � 1 and R �= 0. Then Γ (R) : Lp(μ) �→ Lq(μ) is compact if and only if R is a
compact strict contraction and q < q0, q0 is given in (e).

(h) The operator Γ (R) is Hilbert–Schmidt on L2(μ) if and only if R is a strict Hilbert–Schmidt
contraction. Moreover,

∥∥Γ (R)
∥∥

L(HS)(L
2(μ),L2(μ))

= 1√
det(I − R∗R)

.

2.2. Second quantization of Mehler semigroup

The following lemma and theorem were formulated and proven in [8], see Lemma 4, and
Theorems 1, 2, 3. Let μt be the distribution of the random variable Yt given by (4). Clearly, μt is
mean-zero Gaussian with the covariance

Qt :=
t∫

0

eAsBB∗eA∗s ds.

It is convenient to formulate the following condition

RangeQ
1/2
t = RangeQ

1/2∞ = E0. (6)

Lemma 2.2. For any t � 0, eAtE0 ⊂ E0, and S0(t) = Q
−1/2∞ eAtQ

1/2∞ , t � 0, is a C0-semigroup
of contractions on E. Moreover, ‖S0(t)‖L(E,E) < 1 if and only if (6) holds.

Theorem 2.3. For any t � 0, Pt = Γ (S∗
0 (t)) and P ∗

t = Γ (S0(t)). Moreover, the following state-
ments hold:

(a) Let t � 0. If (6) holds, then for any p,q � 1, ‖Pt‖L(Lp(μ),Lq(μ)) = 1 if and only if

q � 1 + p − 1

‖S0(t)‖2
L(E,E)

.

Otherwise, ‖Pt‖L(Lp(μ),Lq(μ)) = ∞.
(b) For p,q � 1 and t � 0, the operator Pt is compact from Lp(μ) into Lq(μ) if and only if (6)

holds, S0(t) is compact and

q < 1 + p − 1

‖S0(t)‖2
L(E,E)

.
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(c) The operator Pt is Hilbert–Schmidt on L2(μ) if and only if S0(t) is Hilbert–Schmidt on E

and (6) holds. In this case

‖Pt‖L(HS)(L
2(μ),L2(μ)) = 1√

det(I − S0(t)S
∗
0 (t))

.

3. Chaos decomposition in Poisson case

For the convenience of the reader we recall here some basic facts on the chaos decomposition
in a Poisson case. This section is based on Last and Penrose [19], see also [18,22,27] and refer-
ences therein. Namely, let (E, B) be a measurable space, and let Π be a Poisson random measure
on E with intensity measure λ. We assume that Π is defined on a probability space (Ω,F,P). Let
Z+(E) be the space of integer-valued σ -finite measures on (E, B) with the σ -field G generated
by the family of functions

Z+(E) � ξ �→ ξ(A) ∈ {0,1,2, . . . ,+∞}, A ∈ B.

Denote by PΠ the law of Π in (Z+(E), G). Let L2(PΠ) be the space of all measurable
F : Z+(E) �→ R such that |F |2

L2(PΠ)
:= EF 2(Π) < ∞.

Given F : Z+(E) �→ R, and y ∈ E write

DyF(ξ) := F(ξ + δy) − F(ξ), ξ ∈ Z+(E).

Differences Dn
y1,...,yn

F , n ∈ N, y1, . . . , yn, are defined by induction. Note that

Dn
y1,...,yn

F (ξ) =
∑

I⊂{1,...,n}
(−1)n−|I |F

(
ξ +

∑
i∈I

δyi

)
, ξ ∈ Z+(E). (7)

Set T 0(F ) := EF(Π), and for n ∈ N,

T nF (y1, . . . , yn) := EDn
y1,...,yn

F (Π) =
∫

Z+(E)

Dn
y1,...,yn

F (ξ)PΠ(dξ),

provided that the function Dn
y1,...,yn

F appearing on the right-hand side is integrable with re-

spect to PΠ . We denote by L2
(s)(E

n,λn) the (closed) subspace of symmetric functions from

L2(En,λn), with the scalar product inherited from L2(En,λn). We set L2
(s)(E

0, λ0) := R.

Theorem 3.1. For any F ∈ L2(PΠ) and for λn-almost all y1, . . . , yn ∈ E, T nF (y1, . . . , yn) is
well defined and T nF ∈ L2

(s)(E
n,λn). Moreover, for any F,G ∈ L2(PΠ),

EF(Π)G(Π) = EF(Π)EG(Π) +
∞∑

n=1

1

n!
〈
T nF,T nG

〉
L2(En,λn)

.
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Corollary 3.2. For any n, T n is a bounded acting operator from L2(PΠ) into L2
(s)(E

n,λn) and

its operator norm is bounded by
√

n!.

In what follows T := T 1. For f ∈ L2(En,λn) we denote by In(f ) the multiple Itô integral
with respect to the compensated measure Π̃ := Π − λ. We set I0(f ) := f .

Theorem 3.3. Let F ∈ L2(PΠ). Then

F(Π) =
∞∑

n=0

1

n!In

(
T nF

)
.

Let H0 = R, and let

Hn := {
In(f ): f ∈ L2

(s)

(
En,λn

)}
, n ∈ N.

By Theorems 3.1 and 3.3, Hn, n ∈ N∪{0}, are orthogonal closed subspaces of L2(Ω, F ,P), and
the operators

1√
n!In : L2

(s)

(
En,λn

) � f �→ 1√
n!In(f ) ∈ L2(Ω, F ,P), n ∈ N, (8)

are linear and isometric. Let Prn be the orthogonal projection of L2(Ω,σ(Π),P) into Hn. Com-
bining Theorems 3.1 and 3.3 we obtain:

Corollary 3.4. One has

L2(Ω,σ(Π),P
) =

∞⊕
n=0

Hn

and for any F ∈ L2(PΠ), Pr0F(Π) = EF(Π), and PrnF (Π) = 1
n!In(T

nF ), n ∈ N.

4. Second quantization in Poisson case

Given an R ∈ L(E,E), and a real-valued function f on En write

ρn
Rf (y1, . . . , yn) := f (Ry1, . . . ,Ryn), y1, . . . , yn ∈ E.

The proof of the following lemma is elementary.

Lemma 4.1. If ρR := ρ1
R is a contraction on L2(E,λ), then for any n ∈ N, ρn

R is a contraction on
L2

(s)(E
n,λn). Moreover, ‖ρn

R‖ � ‖ρR‖n, where ‖·‖ stands for the operator norm on L2
(s)(E

n,λn)

and on L2(E,λ).
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Taking into account Theorem 3.1 and Lemma 4.1 for any R ∈ L(E,E) such that ρR is a con-
traction on L2(E,λ) we can define the second quantized operator Γ (R) : L2(PΠ) �→ L2(PΠ)

putting

Γ (R)F(Π) :=
∞∑

n=0

1

n!In

(
ρn

R(TnF )
)
. (9)

Obviously, Γ (R) is a contraction on L2(PΠ).

5. Lévy–Ornstein–Uhlenbeck equation

Assume that:

(H.1) E is densely and continuously imbedded into Ẽ.
(H.2) For any t > 0, the semigroup eAt has an extension to a bounded linear map, denoted also

by eAt , from Ẽ into E, and that eAt , t � 0, is stable on E; that is |eAtx|E → 0 as t ↑ +∞
for any x ∈ E.

(H.3) L is a pure jump process; that is

E ei〈x,L(t)〉
Ẽ = e−tΨ (x), x ∈ Ẽ,

where the co-called Lévy exponent

Ψ (x) :=
∫

Ẽ

(
1 − ei〈x,y〉

Ẽ + i〈x, y〉
Ẽ
χ{|y|

Ẽ
�1}

)
ν(dy),

and ν, called the Lévy measure of L, is a non-negative measure on Ẽ satisfying∫
Ẽ
(|x|2

Ẽ
∧ 1) ν(dx) < ∞.

(H.4)

∞∫
0

∫

Ẽ

∣∣eAsy
∣∣
E
|χ{|y|

Ẽ
�1} − χ{|eAsy|E�1}|ν(dy)ds < ∞.

(H.5)

∞∫
0

∫

Ẽ

(∣∣eAsy
∣∣2
E

∧ 1
)
ν(dy)ds < ∞.

For t ∈ [0,+∞], define

mt :=
t∫

0

∫

Ẽ

eAsy(χ{|y|
Ẽ

�1} − χ{|eAsy|E�1}) ν(dy)ds, (10)

νt :=
t∫
ν ◦ (

eAs
)−1 ds. (11)
0
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Clearly, by (H.4) and (H.5), for each t ∈ [0,+∞], the integral appearing in (10) converges,
mt ∈ E, and νt is a measure on E satisfying

∫
E

(|y|2E ∧ 1
)
νt (dy) < ∞.

Let

Ψt(x) := i〈x,mt 〉E +
∫
E

(
1 − ei〈x,y〉E + i〈x, y〉Eχ{|y|E�1}

)
νt (dy). (12)

Proposition 5.1. Eq. (1) defines a Markov family (Xx , x ∈ E) on E, with a unique invariant
measure μ. Moreover, Xx(t) = eAtx + Yt , where Yt is given by (4), and its distribution μt is
infinitely divisible with the Lévy exponent Ψt and Lévy measure νt . Finally μ is the distribution
of Y∞ defined by (2), it is infinitely divisible with the Lévy exponent Ψ∞ and Lévy measure ν∞.

Proof. This result is a rather standard generalization of [6]. Namely, the identity Xx(t) =
eAtx + Yt is the so-called mild formula for the solution. The question is only, if the process
Xx or equivalently Y takes values in E. To see this note that the law of Y is infinitely divisible
in Ẽ, with the jump measure νt . Then, by (H.5), νt is a jump measure of an infinitely-divisible
law on E. For more details see [6]. �
Remark 5.2. Assume that E = Ẽ, and that the semigroup eAt , t � 0, is exponentially stable; that
is there are M,ω > 0 such that ‖eAt‖L(E,E) � Me−ωt , t � 0. Then (H.4) and (H.5) hold if and
only if

∫
{|x|E�1}

log |x|E ν(dx) < ∞,

see [31] for finite-dimensional case and [6] for infinite-dimensional case.

From now on μ = μ∞, λ = ν∞, and Π is a Poisson random measure on E with the intensity
measure λ. Given a ξ ∈ Z+(E) write

ξ(dx) = ξ(dx)χ{|x|E>1} + (
ξ(dx) − λ(dx)

)
χ{|x|E�1}.

Recall that by the Lévy–Khinchin decomposition theorem there is a vector m ∈ E such that

Y∞ = m +
∫
E

x Π(dx).



3466 S. Peszat / Journal of Functional Analysis 260 (2011) 3457–3473
6. Main result

The main result of the present paper can be illustrated by the following diagram.

L2(μ)
Pt−−−−→ L2(μ)

j

⏐⏐� j

⏐⏐�
L2(PΠ)

Γ (eAt )−−−−→ L2(PΠ)

τ

∥∥∥ τ

∥∥∥
⊕∞

n=0 L2
(s)(E

n,λn)

⊕∞
n=0ρ

n

eAt−−−−−→ ⊕∞
n=0 L2

(s)(E
n,λn).

(13)

More precisely, we have the following theorem:

Theorem 6.1. Under assumptions (H.1) to (H.5), for any t > 0, ρeAt is a contraction on L2(E,λ)

and (13) holds with

(jf )(ξ) := f

(
m +

∫
E

x ξ(dx)

)
, f ∈ L2(μ), ξ ∈ Z+(E),

and

τ :=
∞⊕

n=0

1√
n!T

n.

Proof. Let us fix a t > 0. The contractivity of ρeAt on L2(E,λ) follows from the fact that λ = ν∞
is given by (11). We have

∫
E

∣∣ρeAt f (x)
∣∣2
E
λ(dx) =

∞∫
0

∫
E

∣∣f (
eAtx

)∣∣2
E
ν ◦ (

eAs
)−1

(dx)ds

=
∞∫

0

∫
E

∣∣f (
eA(t+s)x

)∣∣2
E

ν(dx)ds

�
∞∫

0

∫
E

∣∣f (
eAsx

)∣∣2
E

ν(dx)ds =
∫
E

∣∣f (x)
∣∣2
E

λ(dx).

To see (13) it is enough to show that for all n ∈ N and f ∈ L2(μ),

T n(jPtf ) = ρn
At T

n(jf ).
e
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To do this fix an f ∈ L2(μ). Given a t ∈ [0,+∞) denote by Ỹt a copy of Yt , independent of Ys ,
s ∈ [0,+∞], and by Ẽ the expectation with respect to Ỹt , t ∈ [0,+∞). Note that for any t , the
random variable eAtY∞ + Ỹt has the law μ. Finally, by Proposition 5.1, the Mehler formula (3)
reads

Ptf (x) = Ẽf
(
eAtx + Ỹt

)
. (14)

If n = 0, then, by (14),

T 0(jPtf ) = E(jPtf )(Π) = EPtf (Y∞) = EẼf
(
eAtY∞ + Ỹt

) = Ef (Y∞)

= Ejf (Π) = T 0(jf ).

Assume now that n � 1. Then by (7),

T n(jPtf )(y1, . . . , yn) = EDn
y1,...,yn

jPtf (Π)

= E

∑
I

(−1)n−|I |Ptf

(
m +

∫
E

y

( ∑
i∈I

δyi
+ Π

)
(dy)

)

= E

∑
I

(−1)n−|I |Ptf

( ∑
i∈I

yi + Y∞
)

.

Hence, again by (14),

T n(jPtf )(y1, . . . , yn) =
∑
I

(−1)n−|I |
EẼf

( ∑
i∈I

eAtyi + eAtY∞ + Ỹt

)

=
∑
I

(−1)n−|I |
Ef

( ∑
i∈I

eAtyi + Y∞
)

=
∑
I

(−1)n−|I |
Ef

(
m +

∫
E

y

( ∑
i∈I

δeAt yi
+ Π

)
(dy)

)

=
∑
I

(−1)n−|I |
Ejf

( ∑
i∈I

δeAt yi
+ Π

)

= EDn
eAt y1,...,eAt yn

jf (Π)

= T n(jf )
(
eAty1, . . . , eAtyn

)
. �

As a direct consequence of Theorem 6.1 we have the following decomposition formula.

Corollary 6.2. For all t � 0 and f ∈ L2(μ),

Ptf (Y∞) =
∞∑

n=0

1

n!In

(
ρn

eAt T
n(jf )

)
, (15)

where the series converges in L2(Ω,F,P).
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7. One-dimensional case with density

Assume that E = R, and that μ is absolutely continuous with respect to Lebesgue measure.
Let q := dμ/dx. We start this section with two simple general observations. We will use them to
the study of the equation driven by an α-stable noise.

Note that

κ : L2(R,dx) � f �→ f q−1/2 ∈ L2(μ)

is a linear isometry. Let T̃ n := T n ◦ j ◦ κ : L2(R,dx) �→ L2
(s)(R

n, λn). By Theorem 6.1 we have
the following fact.

Lemma 7.1. Let t > 0. If Pt is a compact operator on L2(μ), then for any n, ρn
eAt ◦ T̃ n is a

compact operator from L2(dx) to L2
(s)(R

n, λn).

For f : R �→ R write

∇n
y1,...,yn

f (x) =
∑

I⊂{1,...,n}
(−1)n−|I |f

(
x −

∑
i∈I

yi

)
, n ∈ N.

Lemma 7.2. For any n, f : R �→ R and y = (y1, . . . , yn) ∈ R
n,

T̃ nf (y) =
∫
R

Gn(x, y)f (x)dx,

where

Gn(x, y) := q−1/2(x)∇n
y q(x).

Proof. We have

T̃ nf (y1, . . . , yn) = EDn
y1,...,yn

j
(
f q−1/2)(Π)

=
∑

I⊂{1,...,n}
(−1)n−|I |

∫
R

f

(
z +

∑
i∈I

yi

)
q−1/2

(
z +

∑
i∈I

yi

)
q(z)dz

=
∫
R

Gn(x, y)f (x)dx. �

7.1. α-Stable case

Assume that L is a symmetric α-stable process taking values in E = R. Then its Lévy expo-
nent is Ψ (x) = |x|α and the Lévy measure is λ(dx) = cα|x|−1−α dx. Given γ > 0, consider the
following one-dimensional Lévy–Ornstein–Uhlenbeck equation

dX = −γX dt + (αγ )1/α dL. (16)
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Note that the invariant measure μ for the Markov family given by (16) is symmetric α-stable.
Our main result of this section is the following theorem.

Theorem 7.3. Let α ∈ (0,2). Then for any t > 0, Pt is neither compact nor self-adjoint. More-
over, the adjoint semigroup is given by

P ∗
t g(Y∞) =

∞∑
n=0

e−nγαt

n! In

(
ρn

eγ t

(
T n(jg)

))
, ∀t � 0, ∀g ∈ L2(μ), (17)

and (Pt ) satisfies the following spectral gap property

∫
R

∣∣∣∣Ptf (x) −
∫
R

Ptf (z)μ(dz)

∣∣∣∣
2

μ(dx) � e−γαt |f |2
L2(μ)

(18)

for all t � 0 and f ∈ L2(μ).

Proof. Note for any z ∈ R\ {0}, ρz is a bounded bijection on L2(R, λ). Therefore, as far as com-
pactness is concerned, then, taking into account Lemma 7.1, it is enough to show that T̃ := T̃ 1

is not compact from L2(dx) into L2(R, λ). By Lemma 7.2, T̃ is given by the kernel

G1(x, y) = q(x − y) − q(x)√
q(x)

, x, y ∈ R,

where q is the density of the α-stable law μ. We will use the fact, see e.g. [17], that q ∈ C1(R),
q(x) > 0, and q(x) decreases like |x|−1−α as |x| → ∞. Let fn(x) = χ[n,n+1](x), n ∈ N, x ∈ R.
Then

gn(y) := T̃ fn(y) =
1∫

0

q(x + n − y) − q(x + n)√
q(x + n)

dx, y ∈ R, n ∈ N.

Hence there are constants C0,C1 > 0 and n0 ∈ N such that for m � n0,

gm(y) � C0

1∫
0

q(x + m)−1/2 dx � C1m
(1+α)/2, ∀y ∈ [m,m + 1].

Next note that for any n there is an mn such that for all m � mn,

q(x + n − y) � q(x + n), ∀x ∈ [0,1], ∀y ∈ [m,m + 1].

Therefore, for all n ∈ N and m � mn,
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|gm − gn|2L2(R,λ)
�

m+1∫
m

∣∣gm(y) − gn(y)
∣∣2 cα dy

|y|1+α

�
m+1∫
m

C2
1m1+α cα dy

|y|1+α

� αC2
1cαm1+α

(
m−α − (m + 1)−α

)
,

and consequently there is a constant C > 0 such that

|gm − gn|2L2(R,λ)
� C, ∀n � n0, ∀m � mn.

Thus the sequence (gn) is not relatively compact in L2(R, λ), and hence T̃ is not compact.
We will show that for t > 0, Pt is not symmetric. By Theorems 3.1 and 6.1, for f,g ∈ L2(μ),

〈Ptf, g〉L2(μ) = EPtf (Y∞)g(Y∞) = E(jPtf )(Π)(jg)(Π)

=
∞∑

n=0

1

n!E
〈
ρn

e−γ t T
n(jf ), T n(jg)

〉
L2(R,λn)

.

Note that for the operator ρn
e−γ t considered on L2(Rn, λn) we have

(
ρn

e−γ t

)∗
h(y1, . . . , yn) = e−nγαth

(
eγ ty1, . . . , eγ tyn

)
,

and hence (17) holds. To show that Pt is not symmetric it is enough to find a g ∈ L2(μ) such that

I1
(
ρe−γ t

(
T (jg)

)) �= e−γαt I1
(
ρeγ t

(
T (jg)

))
. (19)

Since

T (jg)(y) = E
(
g(Y∞ + y) − g(Y∞)

) =
∫
R

(
g(x + y) − g(x)

)
μ(dx),

(19) can be written in the equivalent form

KL :=
∫
R

∫
R

(
g
(
x + e−γ ty

) − g(x)
)
μ(dx)Π(dy)

�= KR := e−γαt

∫
R

∫
R

(
g
(
x + eγ ty

) − g(x)
)
μ(dx)Π(dy).
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Take g(x) = eix . Then

KL = e−1
∫
R

(
eie−γ t y − 1

)
Π(dy), KR = e−γαt−1

∫
R

(
eieγ t y − 1

)
Π(dy).

Thus for any z ∈ R,

EeizeKL = E exp

{
iz

∫
R

(
eie−γ t y − 1

)
Π(dy)

}

= exp

{
−

∫
R

(
1 − eiz(eie−γ t y−1)

)
λ(dy)

}

and

EeizeKR = E exp

{
ize−γαt

∫
R

(
eieγ t y − 1

)
Π(dy)

}

= exp

{
−

∫
R

(
1 − eize−γαt (eieγ t y−1)

)
λ(dy)

}
.

To see the spectral gap property note that by Theorems 3.1, 6.1, and 3.3, for f ∈ L2(μ),

∫
R

∣∣∣∣Ptf (x) −
∫
R

Ptf (z)μ(dz)

∣∣∣∣
2

μ(dx) = E
∣∣Ptf (Y∞) − EPtf (Y∞)

∣∣2

=
∞∑

n=1

∣∣ρn
e−γ t T

n(jf )
∣∣2
L2(Rn,λn)

.

By direct calculation for any z > 0 and any h ∈ L2(Rn, λn), we have |ρn
z h|L2(Rn,λn) =

znα/2|h|L2(Rn,λn). Hence

∥∥ρn
z

∥∥
L(L2(Rn,λn);L2(Rn,λn))

= znα/2,

and consequently (18) holds. �
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