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On the basis of the Froggatt–Nielsen mechanism, we study quark flavor mixings in the SU(6) × SU(2)R

model. The characteristic structure of the CKM matrix is attributed to the hierarchical effective Yukawa 
couplings due to the Froggatt–Nielsen mechanism and also to the state-mixings beyond the MSSM. We 
elucidate the detailed form of the CKM matrix elements and find interesting relations between the CP
violating phase and three mixing angles. Taking the existing data of three mixing angles, we estimate the 
quark CP-phase at δ = (75 ± 3)◦. This result is in accord with observations.
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1. Introduction

One of theoretically challenging issues is to understand char-
acteristic features of quark mass patterns and the CKM-mixing 
matrix [1]. It seems that the important key to this issue is the 
state-mixing between quarks and extra particles beyond the mini-
mal supersymmetric standard model (MSSM). In fact, it was shown 
in the context of SU(6) × SU(2)R string-inspired model, which con-
tains massless particles beyond the MSSM, that we were able to 
explain characteristic patterns of the observed mass spectra and 
mixing matrices of quarks and leptons [2–6]. In the model the 
Froggatt–Nielsen (F–N) mechanism [7] plays an important role. It is 
noticeable that doublet Higgs and color-triplet Higgs fields belong 
to different representations of SU(6) × SU(2)R . This situation is fa-
vorable to solve the triplet–doublet splitting problem. In addition, 
the longevity of the proton can be guaranteed under appropriate 
flavor symmetries [2]. In this paper we focus our attention on the 
detailed form of the CKM matrix elements in the above-mentioned 
model. It has been shown that in the model the hierarchical pat-
tern of three mixing angles can be understood systematically [4]. 
We shed light on relations between the CP violating phase and 
three mixing angles in this paper.
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In the present model, it is assumed that the hierarchical struc-
ture of fermion mass matrices is attributed to the F–N factors 
coming from the F–N mechanism. In the previous work [8], we 
derived the typical relations among CKM matrix elements

|V cd| = |V us|, (1)

|Vts| = |V cb|, (2)

|Vtd| = |V us V cb|. (3)

The CKM-matrix is defined as

V CKM =
⎛⎝ V ud V us V ub

V cd V cs V cb
Vtd Vts Vtb

⎞⎠
=

⎛⎝ c12 c13 s12 c13 s13 e−iδ

−s12 c23 − c12 s23 s13 eiδ c12 c23 − s12 s23 s13 eiδ s23 c13

s12 s23 − c12 c23 s13 eiδ −c12 s23 − s12 c23 s13 eiδ c23 c13

⎞⎠
(4)

in the standard representation of Particle Data Group (PDG) [9]. 
Due to unitarity condition on V CKM, Eqs. (1) and (2) are equiva-
lent to each other. From the independent relations (2) and (3), the 
CP-phase δ is expressed in terms of the three mixing angles as

cos δ = s2
23(s2

12 − s2
13) − s2

12 c2
23 s2

13

2 s12 c12 s23 c23 s13
, (5)

cos δ = s13
s2

12 s2
23 (1 + c2

13) + c2
12 c2

23

2 s12 c12 s23 c23
, (6)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/82661316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2016.05.054
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:yama_houshi@ybb.ne.jp
mailto:mmatsuda@nara-edu.ac.jp
mailto:mmatsuda@auecc.aichi-edu.ac.jp
mailto:matsuna@phen.mie-u.ac.jp
mailto:matsumamo@mediacat.ne.jp
mailto:t-matsu@siren.ocn.ne.jp
http://dx.doi.org/10.1016/j.physletb.2016.05.054
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.05.054&domain=pdf


C. Hattori et al. / Physics Letters B 759 (2016) 218–222 219
respectively. Here if we input the experimental values of s12 =
0.22536 ≡ λ, s23 � λ2.1 and s13 � λ3.8 [9], Eqs. (5) and (6) exhibit

cos δ � s12 s23

2 s13
� λ−0.7/2, (7)

cos δ � s13

2 s12 s23
� λ0.7/2, (8)

respectively. These results are incompatible with each other.
However, the relations (2) and (3) are derived in the leading 

approximation. So, we need to accomplish more accurate calcula-
tion in order to discuss the quark CP-phase. For this reason, in this 
paper we carry out the analysis up to the next-to-leading approxi-
mation in the F–N scheme, which allows us to find more accurate 
relations among the CKM-matrix elements. For example, we obtain

|V cd|2 � |V us|2 ×
[

1 − |V cb|2
]
,

which yields an attractive relation between the CP-phase and three 
mixing angles. Using these relations, we are able to estimate the 
quark CP-phase without relying on a specific flavor symmetry.

This paper is organized as follows. In Sec. 2 we briefly explain 
Yukawa couplings in the SU(6) × SU(2)R model together with the 
F–N mechanism. Solving the eigenvalue problem for the mass ma-
trices of the up-type and down-type quark sectors, we derive the 
diagonalization matrices. In Sec. 3 the detailed form of the CKM 
matrix is presented and interesting equations among the CKM-
matrix elements are found. In Sec. 4 it is shown that these yield 
attractive interrelations between the quark CP-phase and three 
mixing angles. Taking the existing data of three mixing angles, we 
estimate the quark CP-phase at δ = (75 ± 3)◦ , which is in accord 
with the current data of δ. Section 5 is devoted to summary.

2. Yukawa couplings and F–N mechanism

Here we briefly summarize the parts of the model which are 
relevant to our analysis. For a more complete discussion, see 
Refs. [2–6,8]. In this model the unification gauge symmetry is as-
sumed to be SU(6) × SU(2)R at the underlying string scale M S . The 
gauge group G = SU(6) × SU(2)R is a subgroup of E6. Within the 
framework of E6 we assign three families and one vector-like mul-
tiplet to matter superfields, i.e.,

3 × 27(�1,2,3) + (27(�0) + 27(�)). (9)

The superfields � are decomposed into two multiplets of G as

�(27) =
{

φ(15,1) : {Q , L, g, gc, S},
ψ(6,2) : {(U c, Dc), (Nc, Ec), (Hu, Hd)}, (10)

where g , gc and Hu , Hd represent colored Higgs and SU(2)L -
doublet Higgs superfields, respectively. Doublet Higgs and color-
triplet Higgs fields belong to different representations of G and 
this situation is favorable to solve the triplet–doublet splitting 
problem. The superfields Nc and S are R-handed neutrinos and 
SO(10)-singlets, respectively. Although Dc and gc as well as L and 
Hd have the same quantum numbers under the standard model 
gauge group GSM = SU(3)c × SU(2)L × U (1)Y , they belong to differ-
ent irreducible representations of G . We assign odd (even) R-parity 
to superfields �1,2,3 (�0 and �). Since ordinary Higgs doublets 
have even R-parity, they are contained in �0. It is assumed that 
R-parity remains unbroken down to the electroweak scale.

The gauge symmetry G gets spontaneously broken in two steps 
at the scales 〈S0〉 = 〈S〉 and 〈Nc

0〉 = 〈Nc〉 to GSM as

G = SU(6) × SU(2)R
〈S0〉−→ SU(4)PS × SU(2)L × SU(2)R

〈Nc
0〉−→ GSM,
where SU(4)PS represents the Pati–Salam SU(4) [10]. The D-flat-
ness conditions require 〈S0〉 = 〈S〉 and 〈Nc

0〉 = 〈N
c〉 at each step 

of the symmetry breakings. Hereafter it is supposed that the 
symmetry breaking scales are 〈S0〉 = 1017–18 GeV and 〈Nc

0〉 =
1015–17 GeV. Under the SU(4)PS × SU(2)L × SU(2)R the chiral su-
perfields φ(15, 1) and ψ(6, 2) are decomposed as

(15,1) = (4,2,1) + (6,1,1) + (1,1,1),

(6,2) = (4,1,2) + (1,2,2).

From the viewpoint of the string unification theory, it is probable 
that the hierarchical structure of Yukawa couplings is attributed to 
some kind of flavor symmetries at the string scale M S . If the flavor 
symmetry contains Abelian groups, the F–N mechanism works for 
the interactions among quarks, leptons and Higgs fields. The su-
perpotential at the string scale is governed by the flavor symmetry 
as well as the gauge symmetry G . Aside from the flavor symmetry, 
we have two types of gauge invariant trilinear combinations

(φ(15,1))3 = Q Q g + Q gc L + gc g S,

φ(15,1)(ψ(6,2))2 = Q Hd Dc + Q Hu U c + LHd Ec + LHu Nc (11)

+ S Hu Hd + gNc Dc + g EcU c + gc U c Dc .

They must be multiplied by additional G-invariant factors sup-
pressed by powers of 1/M S to form flavor symmetric terms. 
Namely, the couplings arise from the nonrenormalizable terms 
controlled by the flavor symmetry [2,11,12].

We first consider the effective Yukawa couplings of up-type 
quark sector, which are given by

W U =
3∑

i, j=1

Mi j Q i U
c
j Hu0. (12)

Due to the F–N mechanism, the dimensionless matrix M takes the 
form

M = f M Γ1MΓ2. (13)

Our basic assumption is that the hierarchical structure of all 3 × 3
mass matrices is attributed to the F–N factors Γ1 and/or Γ2. Hence, 
hierarchy of Mi j stems only from Γ1 and Γ2, and the dimension-
less matrix M contains no hierarchical structure. Here we put a 
factor f M in order to set det M = 1. It means that all the elements 
of M are O(1). The F–N factors Γ1 and Γ2 are described as

Γ1 = diag(xα1 , xα2 , 1), Γ2 = diag(xβ1 , xβ2 , 1) (14)

with the hierarchy xα1 	 xα2 	 1 and xβ1 	 xβ2 	 1. To be spe-
cific, we take the F–N factors like xα1 ∼ λ3, xα2 � xβ2 ∼ λ2 and 
xβ1 ∼ λ4−5 consonant to the experimental data.

The mass matrix M is diagonalized via biunitary transforma-
tion as

V−1
u MUu = Λu, vu0Λu = diag(mu, mc, mt) (15)

with vu0 = 〈Hu0〉. According to the standard procedure for diago-
nalizing MM†, we obtain mass eigenvalues

(mu, mc, mt)

� |vu0 f M | ×
(

1

|m11| xα1+β1 ,
|m11|
|m33| xα2+β2 , |m33|

)
, (16)

where mij = (M)i j , mij = (M−1)∗ji = �(M)∗i j . The diagonalization 
matrix Vu is described in terms of eigenvectors w(u)

i of MM†

as

Vu = (w(u)
, w(u)

, w(u)
), (17)
1 2 3
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where w(u)
i are expressed as

w(u)
1 = N(u)

1

⎛⎜⎝ 1

u(u)
1

v(u)
1

⎞⎟⎠ , w(u)
2 = N(u)

2

⎛⎜⎝ u(u)
2

1

v(u)
2

⎞⎟⎠ ,

w(u)
3 = N(u)

3

⎛⎜⎝ u(u)
3

v(u)
3

1

⎞⎟⎠ . (18)

Here N(u)
i are normalization factors. The phase factors are so cho-

sen that the diagonal elements of Vu are real. Explicit forms of u(u)
i

and v(u)
i (i = 1, 2, 3) are

u(u)
1 = xα1−α2

[
m21

m11
+O(x2(β1−β2))

]
,

v(u)
1 = xα1

[
m31

m11
+O(x2(β1−β2))

]
,

u(u)
2 = −xα1−α2

[
m∗

21

m∗
11

+O(x2α2 , x2(β1−β2))

]
,

v(u)
2 = −xα2

[
m∗

23

m∗
33

− x2(α1−α2) m∗
13 m∗

21

m∗
33 m∗

11
+O(x2β2)

]
,

u(u)
3 = xα1

[
m13

m33
+O(x2β2)

]
,

v(u)
3 = xα2

[
m23

m33
+O(x2β2)

]
,

(19)

where xα1−α2 ∼ λ, xα1 ∼ λ3 and xα2 ∼ λ2.
Note that x2(β1−β2) , x2α2 and x2β2 are O(λ4) or less than O(λ4). 

The normalization factors are given by

N(u)
1 = 1 − x2(α1−α2) |m21|2

2|m11|2 + O(x4(α1−α2)),

N(u)
2 = 1 − x2(α1−α2) |m21|2

2|m11|2 + O(x4(α1−α2), x2α2), (20)

N(u)
3 = 1 + O(x2α2),

and we have the relation N(u)
1 N(u)

3 = N2(u)(1 +O(λ6)).
We next proceed to study the effective Yukawa couplings of 

down-type quark sector, which are of the form

W D =
3∑

i, j=1

[
Zi j gi gc

j S0 +Mi j

(
gi Dc

j N
c
0 + Q i Dc

j Hd0

)]
, (21)

where Z = f Z Γ1 ZΓ1 and det Z = 1. It is assumed that there is no 
hierarchical structure in Z . The mass matrix of down-quark sector 
is given by the 6 × 6 matrix

gc Dc

M̂d = g
D

(
ρSZ ρNM

0 ρdM

)
,

(22)

where ρS = 〈S0〉/M S , ρN = 〈Nc
0〉/M S and ρd = 〈Hd0〉/M S =

vd0/M S . It is noticeable that Dc–gc mixings occur in down-type 
quark sector. Diagonalization is accomplished via biunitary trans-
formation as

V̂−1
d M̂d Ûd = diag(Λ

(0)

d , εd Λ
(2)

d ), (23)

where εd = ρd/ρN = vd0/〈Nc
0〉 = O(10−15). Λ(0)

d means the heavy 
modes with the GUT scale masses. To solve the eigenvalue prob-
lem, we deal with M̂dM̂† , which are expressed as
d
M̂dM̂†
d =

(
Ad + Bd ε∗

d Bd

εd Bd |εd|2 Bd

)
(24)

with the notation Ad = |ρS |2 ZZ† and Bd = |ρN |2 MM†. Within 
O (εd

2) mass eigenvalues Λ(2)

d are given as

(Λ
(2)

d )2 = V−1
d (A−1

d + B−1
d )−1Vd (25)

and

M S |εd ρN |Λ(2)

d = diag(md, ms, mb), (26)

where Vd is unitary within O (εd) as seen in Eq. (24). It turns out 
that down-type quark masses are

(md, ms, mb)

� |vd0 f M | ×
(

1√
l11

xα1+β1 ,

√
l11

g
xα2+β1 ,

√
g

h
xβ1

)
, (27)

where

li j = ξ2
d zi1 z∗

j1 + mi1 m∗
j1,

g = ξ2
d |D11

3 |2,
h = ξ4

d x2(α1−α2) |(z3 · m∗
1)|2 + ξ2

d x2(β1−β2) |(m3 · z∗
1)|2,

ξ2
d =

∣∣∣∣ρN f M

ρS f Z

∣∣∣∣2

x2(β1−α1), Dij
k = (zi × m j)k.

Here we use the notations zi j = (Z)i j , zi j = Δ(Z)∗i j and

mi = (m1i, m2i, m3i)
T , mi = (m1i, m2i, m3i)

T ,

zi = (z1i, z2i, z3i)
T , zi = (z1i, z2i, z3i)

T .

The diagonalization matrix Vd is expressed as

Vd = (w(d)
1 , w(d)

2 , w(d)
3 ) (28)

with

w(d)
1 = N(d)

1

⎛⎜⎝ 1

u(d)
1

v(d)
1

⎞⎟⎠ , w(d)
2 = N(d)

2

⎛⎝ u(d)
2
1

v(d)
2

⎞⎠ ,

w(d)
3 = N(d)

3

⎛⎜⎝ u(d)
3

v(d)
3
1

⎞⎟⎠ . (29)

Here the phase factors are so taken that the diagonal elements of 
Vd are real. Each element of Vd is of the form

u(d)
1 = xα1−α2

[
l21

l11
+ x2(α1−α2)

ξ2
d

(l11)2

(
z∗

12 n∗
13 + l21

l11
|D11

3 |2
)

+O(λ4)

]
,

v(d)
1 = xα1

[
l31

l11
− x2(α1−α2)

ξ2
d

(l11)2

(
z∗

12 n∗
12 + l21

l11
D11

2 D11∗
3

)
+O(λ4)

]
,

u(d)
2 = − xα1−α2

[
l12

l11
+ x2(α1−α2)

ξ2
d

(l11)2

(
z12 n13 (30)
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+ l12

l11
|D11

3 |2
)

+O(λ4)

]
,

v(d)
2 = − xα2

[
D11

2

D11
3

+ x2(α1−α2)
(

f ∗
α n13 − l12 D11

1

l11 D11
3

)
+O(λ4)

]
,

u(d)
3 = xα1

[
D11∗

1

D11∗
3

− x2(α1−α2) fα n∗
23 +O(λ4)

]
,

v(d)
3 = xα2

[
D11∗

2

D11∗
3

+ x2(α1−α2) fα n∗
13 +O(λ4)

]
,

where

nij = ξ2
d zi1 z j3 − mi1 D21∗

j , fα = (z3 · m∗
1)

D11∗
3 |D11

3 |2 .

The normalization factors become

N(d)
1 = 1 − x2(α1−α2) |l21|2

2(l11)2
+ O(x4(α1−α2)),

N(d)
2 = 1 − x2(α1−α2) |l21|2

2(l11)2
+ O(x4(α1−α2), x2α2), (31)

N(d)
3 = 1 +O(x2α2)

with

N(d)
1 N(d)

3 = N(d)
2 (1 +O(λ6)). (32)

3. The CKM matrix

In the present framework the CKM matrix is given by

V CKM = V−1
u Vd = V†

u Vd (33)

and each element of V CKM becomes

(V CKM)i j = w(u)∗
i · w(d)

j . (34)

Using approximate analytic expressions of w(u) and w(d) given in 
the preceding section, we are in a position to exhibit each element 
of V CKM explicitly. Thus V us and V cd are expressed as

V us = xα1−α2 N(u)
1 N(d)

2

[
ξ2

d z11 D11∗
3

m∗
11 l11

− x2(α1−α2)
ξ2

d

(l11)2

×
(

z12 n13 + l12

l11
|D11

3 |2
)

+O(λ4)

]
, (35)

V cd = − xα1−α2 N(u)
2 N(d)

1

[
ξ2

d z∗
11 D11

3

m11 l11
− x2(α1−α2)

ξ2
d

(l11)2

×
(

z∗
12 n∗

13 + l21

l11
|D11

3 |2
)

+O(λ4)

]
, (36)

where xα1−α2 ∼ λ. The relation of V cd = −(V us)
∗ × (1 + O(λ4)) is 

hold in the present phase convention, in which the diagonal ele-
ments of Vu and Vd are chosen to be real. Also the other elements 
are given as

V cb = xα2 N(u)
2 N(d)

3

[
m∗

11 (z∗
1 · m3)

m33 D11∗
3

+ x2(α1−α2)

×
(

fα n∗
13 + |m21|2 (z∗

1 · m3)

m33 m11 D11∗
)

+O(λ4)

]
, (37)
3

Vts = −xα2 N(u)
3 N(d)

2

[
m11 (z1 · m∗

3)

m∗
33 D11

3

+ x2(α1−α2)

×
(

f ∗
α n13 + m21 l12 (z1 · m∗

3)

m∗
33 l11 D11

3

)
+O(λ4)

]
, (38)

where xα2 ∼ λ2. These equations yield the relation

|Vts|2 = |V cb|2 ×
[

1 − |V us|2 + p λ4
]

(39)

with p =O(1), which is free from the phase convention. From the 
unitarity condition on V CKM Eq. (39) can be rewritten as

|V cd|2 = |V us|2 ×
[

1 − |V cb|2 +O(λ6)
]
. (40)

Further we obtain

Vtd = xα1 N(u)
3 N(d)

1

[
ξ2

d z∗
11 (m∗

3 · z1)

m∗
33 l11

+ x2(α1−α2)
ξ2

d

m∗
33 (l11)2

×
(
ξ2

d z∗
11 z∗

12 (m3 × z3)
∗
1 + z∗

12 |m11|2 (m∗
3 · z2)

− l21

l11
m11 D11∗

3 (m∗
3 · z1)

)
+O(λ4)

]
, (41)

V ub � x3α1−2α2 N(u)
1 N(d)

3

ξ2
d z∗

33 (z3 · m∗
1)

m∗
11 |D11

3 |2 , (42)

where xα1 ∼ λ3 and x3α1−2α2 ∼ λ5. In the above equation (42) the 
element V ub is rather small compared to the element Vtd due to 
the cancellation of leading term. The above expression of Vtd leads 
us to the relation

|Vtd|2 = |V us V cb|2 × (1 + q λ2) (43)

with q =O(1).

4. The quark CP-phase

Here we pay attention to Eqs. (39) and (43), which yield inter-
esting relations between the CP-phase and three mixing angles. It 
has been shown that in the present model the hierarchical magni-
tude of three mixing angles can be understood systematically [4]. 
The recent values of the CKM matrix elements have been summa-
rized by PDG [9] as

|Vts| = 0.0405 ± 0.0012, |V cb| = 0.0414 ± 0.0012,

|V us| = 0.22536 ± 0.00061, |V cd| = 0.22522 ± 0.00061,

|Vtd| = 0.00886 ± 0.00033. (44)

As seen in Eq. (4), the values of |Vts| and |V cb| are mainly de-
termined by s23 due to the hierarchical structure of the mixing 
angles. So it is noted that the double-sign in them corresponds in 
the same order. Then, with the aid of these data the relations (39)
and (43) lead to

p = 3.0 ± 0.6, q = −1.9 ± 0.4, (45)

which are consistent with p, q = O(1). The relation (40) is also in 
good agreement with the data. These results are in support of the 
present analyses up to the next-to-leading approximation in the 
F–N scheme.

In the standard representation of PDG [9] for V CKM the relation 
(39) becomes∣∣∣c12 s23 + s12 c23 s13 ei δ

∣∣∣2

= (s23 c13)
2 ×

[
1 − (s12 c13)

2 + p λ4
]
, (46)
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which is rewritten as

cos δ = s23 (c13)
2

2 s12 c12 c23 s13
p λ4 − s13

2 s12 c12 s23 c23

(
(s12 c23)

2

+ (s23)
2 − (s23 s12)

2
(

1 + (c13)
2
))

. (47)

It is worth noting that in Eq. (46) the leading terms in the l.h.s. and 
the r.h.s. are canceled out and that Eq. (47) represents a relation 
between the non-leading terms. When we take p = 3.0 ± 0.6 and 
the experimental values [9]

s12 = 0.22536 ± 0.00061, s23 = 0.0414 ± 0.0012,

s13 = 0.00355 ± 0.00015,

the above equation (47) results in cos δ = 0.20 ± 0.04. It might be 
thought that we can simply derive cos δ from |Vts| =∣∣c12 s23 + s12 c23 s13 ei δ

∣∣. However, it is impossible for us to get in-
formation about cos δ because the magnitude of the experimental 
error of |Vts| is larger than the coefficient of eiδ .

Further Eq. (43) is translated into∣∣∣s12 s23 − c12 c23 s13 ei δ
∣∣∣2 = (s12 s23 c2

13)
2 ×

(
1 + q λ2

)
, (48)

which contains

cos δ = c12 c23 s13

2 s12 s23
− s12 s23

2 c12 c23 s13

(
(c13)

4 q λ2

− (s13)
2(1 + (c13)

2)
)
. (49)

Substituting the experimental values of the three mixing angles 
and q = −1.9 ± 0.4 to Eq. (49), we obtain cos δ = 0.32 ± 0.03. 
Note that the uncertainty of cos δ obtained here is rather small 
compared with that (cos δ = 0.32 ± 0.11) determined directly from 
|Vtd| =

∣∣s12 s23 − c12 c23 s13 ei δ
∣∣.

Within 2σ there is no discrepancy in the above two values of 
cos δ. Consequently, we conclude with cos δ = 0.26 ± 0.05 and δ =
(75 ± 3)◦ in this analysis. The current experimental data show that 
γ = (68 ± 8)◦ [9], where γ = arg

(−(V ud V ∗
ub)/(V cd V ∗

cb)
) � δ. In 

addition, the recent averaged value is γ = (73 +9
−10 )◦ [13]. So our 

result is consistent with the data.

5. Summary

In the present model, the characteristic structure of the CKM 
matrix is attributed to the hierarchical effective Yukawa couplings 
due to the Froggatt–Nielsen mechanism and also to the state-
mixings beyond the MSSM. The Dc–gc mixings as well as gen-
eration mixings take place in the down-type quark sector. On the 
other hand, in the up-type quark sector we have no such mixings. 
These differences cause the nontrivial structure in CKM matrix. 
Specifically, the down-type mass matrix is described in terms of 
M and Z matrices in contrast with the up-type mass matrix of 
M itself. As a result, all off-diagonal elements of the CKM matrix 
are expressed as the products of M and Z elements.
In the Dc–gc mixings, since Dc and gc are both SU(2)L -singlets, 
the disparity between the diagonalization matrices for up-type 
quarks and down-type quarks in SU(2)L -doublets is rather small. 
Accordingly, V CKM exhibits small mixing. In this study we have 
found interesting relations between the CP-phase and three mix-
ing angles without relying on a specific flavor symmetry. Taking 
the current data of three mixing angles, we estimate the quark 
CP-phase at δ = (75 ± 3)◦ . This result is in accord with the current 
data of δ.

The relations between the CP-phase and three mixing angles 
stem from the fact that the CKM matrix comprises only two matri-
ces M and Z . This is because all matter fields belong to either of 
(15, 1) or (6, 2) representations in the gauge group SU(6) ×SU(2)R . 
If the gauge group is chosen to be smaller than the above group, 
the number of irreducible representations for matter fields be-
comes larger than two. In such a case, there appear more pa-
rameters and hence we have no interesting relations between the 
CP-phase and three mixing angles. We expect that the present 
model gives a comprehensive explanation of fermion mass spec-
tra and mixing matrices together with the longevity of the proton 
and gauge coupling unification [2–6].

Finally, we touch upon the study of the MNS matrix [14]. 
The observed features of the MNS matrix differ considerably 
from those of the CKM matrix. In the present model the L–Hd
mixings occur in the lepton sector. Since L and Hd are both 
SU(2)L -doublets, there appears no disparity between the diago-
nalization matrices for charged leptons and neutrinos unless the 
seesaw mechanism does not take place. As a matter of fact, how-
ever, the seesaw mechanism is at work and an additional trans-
formation is required to diagonalize the neutrino mass matrix. 
This additional transformation matrix yields nontrivial V MNS. The 
seesaw mechanism brings about the cancellation of the F–N fac-
tors in the neutrino mass matrix [6,8]. As a consequence, there is 
no hierarchical structure in neutrino mass matrix and eventually 
V MNS exhibits large mixing. It does not seem that the MNS matrix 
elements are connected to the CKM matrix elements in an uncom-
plicated way. For this reason it is difficult for us to find a simple 
interrelation among the quark CP-phase and the leptonic CP-phase.
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