
Towards a Subject-Oriented Model-Driven
Framework

Pablo Amaya, Carlos Gonzalez, Juan M. Murillo1,2

Quercus Software Engineering Group
Department of Computer Science
University of Extremadura. Spain

Abstract

Model-Driven Architecture is an approach which tackles such problems as: the high availability that a
software product requires to be ready for use, the high degree of evolution that a software system has
nowadays, etc. However, in the development of large complex systems, the benefits of that approach have
been diminished due to the size and complexity of models that describe these kinds of systems. At this
point Aspect-Oriented Software Development (AOSD) appears to improve the understanding, reusability
and adaptation of the software artefacts. Its mechanism is based on modularization of crosscutting concerns
in well-identified isolated entities called aspects. For this reason we propose to use together AOSD and MDA
in the hope of reducing the shortcomings of the latter. Thus, aspects like security, replication, real-time
constraints, etc., will be modelled by specialist modellers independently throughout the MDA framework.
Our proposal exploits a tool for checking the consistency between different models (aspects) at the same level
of abstraction; supporting the traceability of UML elements, requirements, and concerns; and controlling
the impact of changes throughout the MDA framework.

Keywords: AOSD, Subject-Oriented Modeling, MDA, Traceability

1 Introduction

Model-Driven Development [14] is a paradigm that tries to decrease the amount
of responsibilities and work-load at the implementation time. For this reason, its
objective is to change the classic code-centric development process by a model-
centric one. Thus, the developer can focus on the semantics of software systems to
model it without regarding the details relative to the underlying platforms.

An approach in this area is Model-Driven Architecture [20] from the OMG. This
approach is a step forward in the Separation of Concerns principle [8] for separating

1 This work has been developed with the support of the Spanish Ministry of Science and Technology
under contract TIC2002-04309-C02-01 and with the support of the Junta de Extremadura under contract
2PR04B011.
2 Email: pabloama@unex.es

Electronic Notes in Theoretical Computer Science 163 (2006) 31–44

1571-0661 © 2006 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.07.006
 Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82661303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pabloama@unex.es
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


technological concerns into different abstraction levels (vertical separation of con-
cerns) [19]. Thus, it establishes three abstraction levels called CIM (Computational-
Independent Model), PIM (Platform-Independent Model), and PSM (Platform-
Specific Model). Each of these levels focuses on different concerns of the software
system being developed. The CIM models the real system independently of any
computational system, that is, it makes up a domain model. The PIM models the
system from a computational viewpoint independently of any underlying platform,
and the PSM models the system for a specific platform. Also, between each pair of
consecutive models are the transformations, another key mechanism of MDA and
MDD [32]. Their aim is to establish mappings between elements from a source ab-
straction model to a more refined or abstract one. Thus, supporting traceability of
requirements and elements between different levels of abstraction is achieved. Since
this feature facilitates the system maintenance, it is very important for software
development.

However, when MDA is used in the development of large complex systems,
benefits promised by this framework (traceability, evolution, maintenance, etc.) di-
minish considerably. This problem arises because the system is specified by very
large, complex, and monolithic models [30]. So, these models are difficult to main-
tain, evolve, extend, adapt, reuse, etc. In addition, transformations between the
different abstraction models become very complex, large and less reusable. In this
scope, traceability of elements across different abstraction levels is difficult because
of the lack of alignment between these models [30]. This fact implies design and
implementation of requirements being scattered over several design and implemen-
tation entities respectively. The final consequence is that tracing a requirement
from CIM to code could produce too much traceability information which will be
hard to manage.

On the other hand, the AOSD [3,26] has extended the Aspect Oriented Program-
ming [12,24] benefits to the whole software development life-cycle. This approach
supposes an advance in software modularization. So, it allows us to isolate in ar-
tifacts (called aspects) those properties whose specification is scattered throughout
the system and whose isolation is hard to manage by conventional modelling tech-
niques. In this way, AOSD techniques facilitate the traceability of concerns in a
software system [17].

Trying to support traceability of requirements, UML elements, subjects, and
concerns in the MDA framework, in this paper an approach of integration of both
MDA and AOSD is presented. In this way, an algorithm for tracing a requirements
from CIM to PSM is proposed. In our proposal each MDA level is constituted by
a set of models -each of them corresponding to an aspect of the software system 3 .
Such aspects (models) will be developed and transformed separately throughout the
MDA framework in a collaborative development environment 4 [35]. Typical aspects
in this context could be security, real time constraints, etc, and they will be specified

3 The UML2 specification stated that a model is a partial specification of the software system. In this way,
we consider an aspect as a partial specification of the software system.
4 By collaborative development environment we mean the scenario in which several developers collaborate
on building the same system each of them focused on one area of the system.

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–4432



by an expert in the area focused by the aspect. Thus, keeping different concerns
as different models at each abstraction level allow for clearer transformations and
mappings and consequently for an improved traceability. Moreover, our proposal
allows us to model aspects in a collaborative and consistent way in the MDA context.
It uses xlinkit [7] for model coherence checking at each abstraction level (CIM, PIM
or PSM). This feature also provides support for automatic analysis of the impact
of changes in models at any abstraction level.

The rest of the paper is organized as follows: in section 2 an overview of the
proposal and how xlinkit is used to our goals are shown; section 3 presents the
improvements put into the traceability and facility of evolution in MDA; section 4
shows how model consistency at the same abstraction level is managed; section 5
shows the related works; and finally, in section 6 the conclusions and possible lines
of future work are presented.

2 Consistent Development with Model-Driven Archi-
tecture and Subject-Oriented Design

This section is organized in three subsections: the first presents some background
about AOSD; the second gives an insight into our proposal with an example; and the
third shows how xlinkit is used to check the consistency between models representing
different aspects at the same abstraction level.

2.1 Background

The aim of AOSD is extending the AOP paradigm to all stages of software de-
velopment. The key concept of AOP and AOSD is the separation of crosscutting
concerns. After solving this issue at the implementation stage, AOP concepts are
extended to all stages of the software life-cycle [26]. Thus, some approaches have
been proposed for design stage [30,27], others for analyses stage [11] and some for
requirements stage [4]. Almost all approaches model the systems using UML. This
work is based on Subject-Oriented Modelling (SOM) [28,30]. The choice was mo-
tivated by the high degree of reusability and traceability that it provides in UML
designs. SOM proposes that each requirement can be designed as a UML pack-
age called subject, and each subject will be implemented in Aspect/J or Hyper/J.
Thus, when the system needs a change in its requirements, this change will only
modify one subject so that the system maintenance task is improved. Moreover,
SOM is very suitable for collaborative development due to its characteristic of sym-
metric paradigm for design. In [35] it is explained that symmetric approaches are
suitable for collaborative development, and the asymmetric ones are suitable for
development based on extensions.

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–44 33



2.2 Proposal Overview

This work assumes that the concerns crosscutting the system have been identified at
early stages 5 . Such concerns will be modelled in isolation by specialist work-groups.
The models will also be transformed independently keeping them separated along
the development process. Thus, these work-groups will model and transform each
of those aspects from the CIM to the PSM separately. The separation is managed
by using the SOM approach. In this way, using our proposal to model these aspects
collaboratively is allowed.

Having separate models at the same abstraction level makes it necessary to es-
tablish composition relationships between them. This is because it must be specified
which semantics are shared between all facets of the system (described by different
models), detect conflicts between these models, and to integrate them into a whole.
These relationships are specified by a coordinator-modeller separately to the models
so that the modellers focus on developing their aspects, unaware of other aspects of
the system. The composition relationships are specified in a XML document. More
details about this issue will be given in section 2.3 Xlinkit.

Fig. 1. CIM and PIM modelling two system aspects

Figure 1 shows the CIM and PIM level of our framework which is based on a case
study of an e-government information system. This example deals with a sanction-
ing administrative protocol in our administrative council (Junta de Extremadura).

5 This task is out of the scope of this work

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–4434



We present a small example which contains a set of expedients, citizens and magis-
trates. Every time that a citizen must be sanctioned for making an administrative
fault, the system creates a new expedient and assigns it to a specific magistrate.
Then, when the magistrate comes to a verdict, this expedient is a penalty that falls
to the citizen.

In this small example, we have identified three requirements in CIM. Using
Subject-Oriented Design (SOD) the three requirements have been designed keeping
them separately. If a conventional UML modelling was used instead the scattering
and tangling problems described by Jacobson in [15] came up. Figure 1 shows the
”Recover Expedient” use case that is designed by the subject ”RecovExpediente”
(1) in the model ”StakeStaffUser” (2). In addition, two aspects (3)(4) have been
modelled with the viewCIM and viewPIM stereotype of the UML2 model element
[21]. In the same way, both the use cases and the two viewPIM models would remain
separated at PSM level. We have adopted the SOM approach as it is, proposing
a particular way for utilizing and realizing it. Unlike SOD, here the composition
relationship between the expedient and authenticate concerns is specified in XML
(5) by the coordinator-modeller. The XML specification is our own transcription
which we have made of the three kinds of relationships proposed by SOD -merge,
override and bind. This way of specifying composition relationships externally to
the composed models supposes an advantage for two reasons:

• Firstly, because the modellers should develop the concerns with as little commu-
nication as possible between them [9], that is, a modeller should only concentrate
upon his aspect being unaware of other aspects. Then, the composition relation-
ships are established by an expert who is called coordinator-modeller.

• Secondly, using XML as the basis to specify relationship allows the use of tools
for checking model consistency. In particular, we use xlinkit. It will be explained
at length in the next section.

2.3 Xlinkit

Xlinkit is a tool to manage the consistency of distributed and heterogeneous doc-
uments in XML format that are crucial for the software development [7]. These
documents are checked against a set of constraints implemented as rules. For exam-
ple, a very simple rule could check if the classes’ names of a Java implementation
are consistent with their UML classes’ names. This rule could force that for all
classes in the design there must exist a class in the implementation with the same
name. Xlinkit is based on XML, XPath and XLink for the generation of hyperlinks
between distributed documents. The tool accepts a set of XML documents that
represent models and another one which contains rules that elements of those mod-
els must satisfy. So, a XML document with pairs of links to pinpoint the consistent
and inconsistent elements (LinkBase) as output is produced by xlinkit. That is, if
two elements of two models satisfy a specific rule, the LinkBase shows hyperlinks
pointing to the rule and the consistent elements.

The original objective of xlinkit is to manage the consistency between two mod-

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–44 35



Fig. 2. XML files

els. However, this work takes advantage of xlinkit just for:
- Checking aspects (models) at the same abstraction level together with their

composition relationships. Usually, the semantic of checking in xlinkit is stored
entirely in the constraint rules, but in our case, that semantic is shared between
consistency rules and composition relationship because the latter specifies how ele-
ments of two or more models should be related. For this reason, we are developing
a set of rules that validate and identify conflicts in the composition relationships
between models.

- Checking consistency between a model and its transformation into another
more abstract or refined one. In this case, the consistency rule should take account
of the stored information in the transformation model about the mapping between
two models.

- Using LinkBase as document to navigate into the composition relationships be-
tween aspects, as source to support automatic traceability between different models,
and for assessing the impact of a change.

Following the previous example (Figure 1), the first step is to specify the com-
position relationships in XML by the coordinator-modeller so that xlinkit processes
viewPIMs. Figure 2.c shows the bind[-User, getAntecedentData()-] relationship in

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–4436



XML (Figure 1 (6)).
The second step is to create or select a set of rules for checking and establishing

the different relationships specified in the XML composition document. This task
can be accomplished by using the xlinkit workbench tool [31]. Figure 2.b presents
a very simple rule that checks the previous bind relationship, verifying that the
elements specified in the composition relationship exist in both models and are
modelled by the subject stereotype. For example, another rule could validate that
both parameters and elements linked by bind relationship are compatible and that
neither one has been omitted.

The third step is to export viewPIMs to a XMI [22] document. Currently, these
three previous steps are done manually.

Once the three previous steps have already been completed, xlinkit can be ex-
ecuted for processing the models and the composition relationships against the set
of specified rules. Afterwards, the LinkBase is generated in XML format by xlinkit
and it is divided into two parts:

• The first one contains those elements that are consistent between viewPIMs (a
list with subject-relationships-subject).

• The second one contains inconsistent elements that have violated some of the
rules against which they were checked.

Figure 2.a shows a simple LinkBase that contains two consistent elements between
two viewPIMs. These elements [@xmi.id=4] and [@xmi.id=6] (Figure 1 (7) and (8))
and the composition relationship ([@id=1] Figure 1 (6)) are consistent with the r1
checking rule.

At this point, two strategies can be followed for obtaining the whole system
implementation:

• Generating the code of each model (aspect) for Hyper/J [13]. In this case, the
LinkBase and the composition XML are used in order to derive the composition
relationship between Hyperslices and Hypermodules.

• Composing or weaving the models (aspects) at PSM level and later generating
the code of a usual PSM [10].

We have chosen the first option because it is less complex that the second one. The
second strategy should do a compositional transformation for weaving the aspect
models and a model transformation for generating the code from PSM [18]. More-
over, since our proposal both generates aspect-oriented code and checks models (and
composition relationships) at PIM and PSM level by using xlinkit, then the model
compositions are not necessary. This feature is very important, because the model
composition is a complex and hard task [5].

Currently, we are mapping models (aspects) and composition relationship man-
ually from PSM to code. This mapping is based on rules stated in [29]. However,
we have already started to use tools for automatically transforming these entities
but we have not obtained results yet. These tools are based on QVT [25].

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–44 37



3 Checking Consistency and Supporting Traceability

In this section, it is shown how using xlinkit consistency between models can be
checked. The checking process produces the LinkBase documents that will serve as
an entry for the automatic traceability of requirements from CIM to PSM.

Having done the steps described in the last sections, consistency between models
can be checked. In particular, the checking process should be performed in the next
situations:

- Before transforming a model into another (more refined) one, it is convenient
to check its consistency with those models at the same abstraction level. This step
guarantees that the source model is correct.

- After executing a transformation, the consistency between source and target
models should be checked to verify the correctness of the transformation.

- When a new aspect (model) is added to the system, checking whether the
resulting model is correct is necessary.

Fig. 3. LinkBases for checking partial consistencies

Checking consistency with xlinkit produces a set of LinkBase documents. As
it can be seen in figure 3, having separated models allows for a partial manage-
able consistency checking. Instead, without the separation proposed in this work
only global consistency checking is allowed which is sometimes neither possible nor
desirable when large complex systems are being developed [6].

In addition, the LinkBase documents can be used as entry to an algorithm for
tracing UML elements, concerns, requirements, and subjects within our framework.
For example, if the Java programming language has been chosen to implement the
system and a failure is obtained when a java class is generated. Then it would be
very useful to be able to trace ”where that class comes from”, that is, what PIM
and PSM elements (even CIM) are the ”causes” of that class.

The traceability can be accomplished by processing the LinkBase documents in
a simple downwards and upwards way. This process could be as follows: first the
source element to be traced is located in the LinkBase, then its pair in next model
in the path is determined. The pair is traced in that model and located in the next
LinkBase document and so on. Algorithm 1 shows how to trace a use case from the

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–4438



CIM to the PSM. For instance, we use the XMI models and vertical LinkBases of
Security View (right part on Figure 3) for tracing the Authenticate User use case
(Figure 1) from CIM to PSM. In more detail, the algorithm runs the following steps:

(i) It initializes a trace list for storing the elements to be traced from CIM to
PSM.

(ii) Next the use case XMI identifier is searched in the CIM (in XMI format). It
uses the //UML:UseCase/@name XPath for extracting the node which con-
tains information about that use case, and then the searched XMI identifier is
obtained by using the //UML:UseCase/@xmi.id XPath. The use case name
and identifier are stored in the trace list together with the CIM’s name.

(iii) Then, it looks for subjects which model the use case functionality at PIM
level by using the CIM-PIMs LinkBase and the identifier found in the previous
step. It uses the //xlinkit:locator/@ xlink:href XPath for extracting nodes
which contain consistency links (inconsistent or consistent) between the use
case and subjects. Therefore, we can obtain the siblings of that node which
store the subject XMI identifiers. Moreover, it searches the subjects’ names
(//UML:Package/@name) by using the previous subject XMI identifiers and
the //UML:Package/@xmi.id XPath. The subjects’ names and identifiers are
stored into the trace list together with their PIM’s name.

(iv) Once the subjects at PIM level have been obtained, the next step is to obtain
the subjects at PSM level. The algorithm searches PSM subjects which imple-
ment the PIM subjects by using the PIM-PSMs LinkBase and the identifiers
found in the previous step. It uses the //xlinkit:locator/@ xlink:href XPath
for extracting nodes which contain consistency links (inconsistent or consis-
tent) between these subjects. Therefore, we can obtain the siblings of that
node which store the subject XMI identifiers of the PSM. Again, it searches
the subjects’ packages (//UML:Package/@name) in the PSM by using the pre-
vious subject XMI identifiers and the //UML: Package/@xmi.id XPath. The
subjects’ names and identifiers are stored into the trace list together with their
PSM name. This trace list can also be used for other aims such as: printing a
report, storing a historical traceability, etc.

Since the previous steps are used for tracing a use case from CIM to PSM, the
needed changes for tracing another kind of element such as subjects or classes are
minimal. For instance, in order to trace a class from PIM to PSM, the third and
fourth steps should only change the use case reference by a class reference and
the //UML:Package string by the //UML:Class string in the XPaths. Moreover,
our framework could have other extra PIM or PSM levels. In this case, the trace
algorithm should only repeat the third and fourth steps for tracing from the CIM
to the lower PSM.

At any rate, if the use case is not mapped onto well-modularized entities (sub-
jects in our proposal) at the PIM and PSM level, that is, its functionality is scattered
over several classes, then the information about traceability is too large because the
mapping is not as lineal as in our proposal. This information is even larger and

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–44 39



Algorithm 1 .
trace-list :=initialize
with CIM in XMI
xmi-id-CIM := get the ID for the searched use-case
add to trace-list the xmi-id-CIM and use-case’s name
end-with
with the CIM:PIM LinkBase
forall xlinkit:locator with xmi-id-CIM
xmi-id-PIM := get the element ID for the sibling of this node
with PIM in XMI
add to trace-list the element with id=xmi-id-PIM and element’s name
with the PIM:PSM LinkBase
forall xlinkit-locator with xmi-id-PIM
xmi-id-PSM := get the element ID for the sibling of this node
with PSM in XMI
add to trace-list the element with id=xmi-id-PSM and element’s name
end forall
end forall
end-with

Algorithm 1. Tracing a use case throughout the MDA framework

more complex for handling it at PSM level.
This algorithm is able to trace those elements that have been checked using

xlinkit, that is, whatever kind of element which appears in the LinkBase.
One of the benefits of traceability is the ability to predict the impact of change

[17]. Once the system has been developed, if a change is needed either in require-
ments, in design, or in an element, it would be desirable to know what elements
in lower and upper levels will be affected by that change. Since our proposal can
trace elements from top to bottom and bottom to top, by means of processing the
LinkBase, the elements of other level which could be affected by such change can be
obtained. For example, if a requirement is removed at the CIM level, this change
could bring on several changes for removing subjects at PIM and PSM levels, adapt-
ing composition relationships, modifying mappings between abstraction levels, etc.
Therefore, these changes could be too costly and they could be performed, delayed
or cancelled.

The same procedure can be used to trace and control changes in a horizontal
direction. In this case, we process the LinkBase which relates different models at
the same abstraction level, that is, the horizontal LinkBases.

Summarizing, on one hand, SOM provides a good alignment between abstrac-
tion levels (CIM, PIM and PSM), and therefore identification of concerns and re-
quirements which are affected after a change in any abstraction level of the MDA
framework is facilitated. On the other hand, the LinkBases can be used for tracing
requirements, concerns, elements, and subjects throughout the MDA framework.

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–4440



Also, model transformations automate and make agile changes in the system. Thus
this work integrates all these technologies in a suitable way for Model-Driven De-
velopment.

4 Towards a consistent incremental development

Another impotant feature of the work presented here is the support of the incremen-
tal development process of large complex systems by integrating Subject-Oriented
Modelling and MDA. This is due to SOM being able to add or modify behaviour
and structures in a model already implemented additively instead of invasively. For
example, in our case study, once the three abstraction levels of the security aspect
(viewCIM, viewPIM, and viewPSM) have been modelled, the system may need a
change in the specification of its requirements: ”the access control will be made on
a secure flow by SSL”. This modification will involve creating a new use case that
”extends” the previous one of security. Also, this change implies the modification
of PIM and PSM entities, but these are accomplished additively.

Thus, a new subject will be designed for appending the new security behaviour
on ”AuthenticateUser” subject (Figure 1 (8)) without modifying the existing one.
The same process is repeated exactly for the PSM. Therefore, this supposes an
improvement in the evolution and maintenance of the software system by making
changes additively.

In addition, these kinds of additive changes can be easily managed by xlinkit.
Xlinkit allows us to do an incremental analysis of the consistency, that is, it extracts
the differences between a XMI model before and after its modification by analyzing
only those elements that could have been inconsistent after these modifications.
Therefore, as the change introduced in the system is well identified and isolated,
then xlinkit will only check the new aspect and the elements related to it.

5 Related Works

Reina et al. [1] propose the using of different aspect oriented modelling proposals
at PSM level. The reason that the authors argue for this is that these proposals
are platform specific. Thus, they suggest to use Domain-Specific Languages (DSL)
for each aspect that is modelled at PIM level. The problem is that for each new
system aspect it is necessary to use a new DSL (based on meta-model extensions or
UML profiles), and therefore, developers must work with several languages at the
same abstraction level. In addition, this approach proposes a set of models that are
related to Web technology (presentation, navigation, security, etc) at PIM level and
really it could seem that this level is not technology independent.

Ivar Jacobson analyzes in [15,16] the problems of tangling and scattering in com-
ponent diagrams during use cases guided software development. He solves these
problems using multi-dimensional separation of concerns. The dimensions that he
establishes are use cases and classes. However he does not give details about compo-
sition, nor transformations of models, rules of composition, structural relationships,

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–44 41



etc.
Kulkarni et al. [33,34] integrate separation of concerns into MDD for facilitating

traceability, reusability and evolution in a software system. In order to carry out this
separation, an abstract template meta-model is used to separate system concerns in
a hierarchical way at model and code level. But the abstract template itself couples
some aspects to others.

The work presented in this paper is similar to the Theme approach [11]. In
that approach, software requirements are specified with Theme/DOC using Action
Views, and analysis and design stages are modelled by Theme/UML using themes
(subjects and Composition Patterns). Thus, this approach should compose models
for checking and validating them, but this task is not necessary in our proposal
due to the use of xlinkit. Moreover, they do not propose anything on aspect or
model transformations, and they only present analysis and design stages without
focusing on possible intermediate stages or refinement of models. That is, our pro-
posal explicitly separates the software system design into two stages, one technology
independent stage and another specific one for MDA compliance.

Our proposal is very similar to the approach, presented by Robert France et
al. [2,10], which is also based on MDA. The most important difference is that it
distinguishes between a core model and other aspect models that will be applied
to the former, therefore, it is an asymmetric aspect approach and our proposal is a
symmetric one [23] [35]. Thus, this proposal is highly influenced by AspectJ [12],
while our work is closest to the multi-dimensional separation of concerns [24].

6 Conclusions a Future Works

In this work we have presented a MDA framework by proposing aspects of a system
as different models keeping them separated from the CIM to the PSM. In addition,
the viewModels (an aspect developed for the three abstraction levels) can be devel-
oped by different specialist modellers in a consistent and incremental way by using
the xlinkit tool. Also, the proposal integrates a flexible and external mechanism
for automating traceability of concerns, requirements, and other abstract artefacts
on MDA. So, the software system maintenance and evolution can be carried out in
a controlled way through the identification of elements that can be affected after
a change in the system. In this case, the Subject-Oriented Modelling allows us to
design these changes additively instead of invasively.

We argue that model composition is a hard and complex task that can be too
costly. Thus, we propose to generate aspect-oriented code and use xlinkit for check-
ing models in order to avoid model compositions.

An important open question is to study how ViewPIMs and ViewPSMs internal
organization could change if other kinds of diagrams to model system requirements
in CIM are used: activity diagrams, workflows, domain models, mixtures of these,
BPMS, etc. In addition, we can look for the most appropriate way to separate and
make ”slices” of each model accordingly to the system requirements.

Nowadays, we are working on a viewModels repository that covers all MDA

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–4442



levels. That is, our aim is to have aspect models repositories that cover the three
abstraction levels for reusing them in different systems in the same domain.

As already indicated, we are making a catalogue with rules on constraints of
subject compositions in order to execute a strong checking at model level. This will
validate the composition at that abstraction level so that the code generated from
this model won’t have consistency problems.

References

[1] A.M. Reina, J. Torres, and M. Toro. Towards developing generic solutions with aspects. Workshop in
Aspect Oriented Modelling held in conjunction with the UML 2004 Conference, oct 2004.

[2] A. Solberg, D. Simmonds, R. Reddy, S. Ghosh, R. France, ”Using Aspect Oriented Technologies
to Support Separation of Concerns in Model Driven Development”, Accepted in the 29th Annual
International Computer Software and Applications Conference (COMPSAC 2005), Edinburgh,
Scotland, July, 2005

[3] Aspect-Oriented Software Development Web Site, http://www.aosd.net, 2005

[4] A. Rashid, A. Moreira, J. Arajo. Modularisation and Composition of Aspectual Requirements, AOSD
2003, Boston, USA, 17-21. March, 2003.

[5] B. Baudry, F. Fleurey, R. France, R. Reddy. Exploring the Relationship between Model Composition
and Model Transformation. In Workshop on Aspect Oriented Modelling held in conjunction with the
AOM 2005 Conference, oct 2005.

[6] B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging Inconsistency in Software Development. IEEE
Computer, 33(4):24-29, April 2000.

[7] C. Nentwich, W. Emmerich, A. Finkelstein and E. Ellmer, ”Flexible Consistency Checking,” ACM
Transactions on Software Engineering and Methodology, vol. 12, pp. 28-63, 2003.

[8] Dijkstra, E.W., A Discipline of Programming, Prentice-Hall, 1976.

[9] D. L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules. In Communications
of ACM, Vol. 15, issue 12. ACM, December 1972.

[10] D. Simmonds, A. Solberg, R. Reddy, R. France, S. Ghosh. An Aspect Oriented Model Driven
Framework. ”An Aspect Oriented Model Driven Framework”, Accepted to Ninth IEEE ”The Enterprise
Computing Conference” (EDOC 2005), Enschede, Netherlands, 19-23 September, 2005.

[11] E. Baniassad and S. Clarke. Theme: An approach for Aspect-Oriented Analysis and Design. In
Proceedings of the 26th ICSE, 2004.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, and J. Irwin. Aspect-
oriented programming. In ECOOP’97Object- Oriented Programming, 11th European Conference.
LNCS 1241, pages 220- 242, 1997.

[13] H. Ossher and P. Tarr: Multi-Dimensional Separation of Concerns and The Hyperspace Approach. In
Proceedings of the Symposium on Software Architectures and Component Technology: The State of
the Art in Software Development. Kluwer, 2000

[14] IEEE Software. Special issue on Model-Driven Development. Volume 20, number 5. September/October
2003.

[15] Ivar Jacobson: Use Cases and Aspects Working Seamlessly Together. In Journal of Object Technology,
vol. 2, no. 4, July-August 2003, pp. 7-28.

[16] I. Jacobson, Pan-Wei Ng. Aspect-Oriented Software Development with Use Cases. Addison Wesley
Professional, 2004.

[17] J. Bakker. Traceability of Concerns. Master’s thesis, University of Twente, April 2005.

[18] Krzystof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Boston, 2000

[19] M. Aksit. Systematic analysis of crosscutting concerns in the MDA design approach. Symposium How
Adaptable is MDA?. University of Twente, May 2005.

[20] OMG. MDA Guide V1.0.1. Document – omg/03-06-01

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–44 43

http://www.aosd.net


[21] OMG. UML 2.0 Superstructure. Document – ptc/04-10-02

[22] OMG. XMI 2.0. Document- formal/03-05-02

[23] P. Amaya, C. Gonzlez, J.M. Murillo. MDA and Separation of Aspects: An approach based on multiple
views and Subject Oriented Design. In Workshop on Aspect Oriented Modelling held in conjunction
with the AOSD 2005 Conference, mar 2005.

[24] P. Tarr, H. Ossher, W. H. Harrison, and S. S. Jr. N degrees of separation: Multi-dimensional separation
of concerns. In Proceedings of the ICSE, pages 107119. IEEE Computer Society Press,1999.

[25] QVT-Merge Group. Revised submission for MOF 2.0 Query / View / Transformation RFP (ad/2002-
04-10). OMG, 2005.

[26] R. Filman, T. Elad, S. Clarke, M. Aksit (Editors) ”Aspect-Oriented Software Development” Addison-
Wesley, 2005.

[27] R. B. France, I. Ray, G. Georg, and S. Ghosh. An aspect-oriented approach to design modeling. IEE
Proceedings - Software, Special Issue on Early Aspects: Aspect-Oriented Requirements Engineering and
Architecture Design, 151(4), August 2004.

[28] S. Clarke. ”Extending standard UML with model composition semantics” in Science of Computer
Programming, Volume 44, Issue 1, pp. 71-100. Elsevier Science, July 2002.

[29] S. Clarke, Robert J Walker. ”Separating Crosscutting Concerns across the Lifecycle: From Composition
Patterns to AspectJ and Hyper/J”. [TCD-CS-2001-15], Trinity College, Dublin and UBC-CS-TR-2001-
05, University of British Columbia. May 2001

[30] S. Clarke, W. Harrison, H. Ossher, P. Tarr. ”Subject-Oriented Design: Towards Improved Alignment
of Requirements, Design and Code”. In Proceedings of OOPSLA) Denver, Colorado U.S., November
1999.

[31] Systemwire Web Page. Xlinkit Rule Workbench. http://www.systemwire.com, 2005

[32] S. Sendall, W. Kozaczynski. ”Model Transformation: The Heart and Soul of Model-Driven Software
Development,” IEEE Software, vol. 20, no. 5, pp. 42-45, September/October 2003.

[33] V. Kulkarni, S. Reddy: Integrating aspects with Model Driven Software Development. In International
Conference on SERP’03. Las Vegas, USA. June 2003

[34] V. Kulkarni, S. Reddy: Separation of Concerns in Model-Driven Development. IEEE Software 20(5):
64-69 (2003).

[35] W. Harrison, H. Ossher and P.Tarr. Asymmetrically vs. symmetrically organized paradigms for software
composition. Technical report, IBM, 2002.

P. Amaya et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 31–4444

http://www.systemwire.com

	Introduction
	Consistent Development with Model-Driven Architecture and Subject-Oriented Design
	Background
	Proposal Overview
	Xlinkit

	Checking Consistency and Supporting Traceability
	Towards a consistent incremental development
	Related Works
	Conclusions a Future Works
	References

