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Summary

Objective: Small interfering RNA (siRNA) triggers RNA interference in mammalian somatic cells. Nuclear factor kB (NF-kB) is a transcription
factor that is implicated in inflammation and immune activation. This study was to use NF-kBp65-specific siRNA to inhibit the expression of genes
of cyclooxygenase-2 (COX-2), nitric oxide synthase-2 (NOS-2) and matrix metalloproteinase-9 (MMP-9), which is paralleled with the initiation
and progression of cartilage lesions in osteoarthritis (OA) model, in induced chondrocytes, and therefore to explore a new gene therapy for OA.

Methods: Western blot and reverse transcriptase polymerase chain reaction (RT-PCR) were performed to optimize the silencing effects of NF-
kBp65-specific siRNA in cultured rat chondrocytes, and then to determine the expression of COX-2, NOS-2 and MMP-9 in induced chondro-
cytes. The activation of NF-kB was determined by electrophoretic mobility shift assay (EMSA). Western blot and RT-PCR were subjected to
densitometric analysis and then band intensities were also determined.

Results: The NF-kBp65-specific siRNA inhibited the expression of NF-kBp65 and activation of NF-kB, reducing significantly the expression of
COX-2, NOS-2 and MMP-9 induced by interleukin-1b (IL-1b) and tumor necrosis factor-a (TNF-a) in cultured chondrocytes.

Conclusions: NF-kBp65-specific siRNA can inhibit the expression of COX-2, NOS-2 and MMP-9 in IL-1b-induced and TNF-a-induced chon-
drocytes. This suggests that NF-kBp65-specific siRNA has potential to be a useful, preventive and therapeutic agent for OA at early stages.
ª 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Osteoarthritis (OA) is a degenerative joint disease affecting
a large population, and results in significant morbidity and
disability. It is strongly associated with aging and sport injury.
Although excessive or traumatic joint loading coupled with
genetic predisposition is considered to be an initiative factor
in OA1, the etiology of OA is poorly understood, except that
several cytokines and enzymes in human OA have been re-
ported. Studies have shown that interleukin-1b (IL-1b) and
tumor necrosis factor-a (TNF-a), synthesized locally by sy-
novial cells and chondrocytes, are pivotal driving forces in in-
ducing and sustaining cartilage damage in arthritis due to
their ability of suppressing the balance between excessive
cartilage destruction and cartilage repair process2e4. They
can inhibit proteoglycan anabolism and enhance the degra-
dation of extracellular matrix components through matrix
metalloproteinases’ (MMPs) activation5,6. Activated MMPs
can cleave most of the components of cartilage extracellular
matrix including type II collagen and aggrecan. IL-1b and
TNF-a can also mediate their effects through cyclooxyge-
nase-2 (COX-2) induction and nitric oxide synthase-2
(NOS-2) expression, which produce the inflammatory
mediators prostaglandins and nitric oxide (NO) that are
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responsible for the pain and swelling of the inflamed
joint7e11. Furthermore, NO interferes with chondrocyte func-
tion, resulting in loss of cartilage matrix through MMPs’ acti-
vation, induction of apoptosis or inhibition of proteoglycan
and type II collagen synthesis12e15. The mediated induction
of COX-2 produces high levels of prostaglandin E2 (PGE2),
which mediates cartilage resorption by decreasing prolifera-
tion of chondrocytes, enhancing MMPs’ activity, and inhibit-
ing aggrecan synthesis in chondrocytes16. Dumond et al.17

studied in rat early experimental OA and demonstrated
that the expression of typical factors such as COX-2,
NOS-2 and MMPs is paralleled with the initiation and pro-
gression of cartilage lesions in OA model.

Ideally, successful treatment of OA would not only reduce
or eliminate joint pain, but also retard or reverse the loss of
articular cartilage. In this respect, present treatment is un-
satisfactory. For example, nonsteroidal anti-inflammatory
drugs, the most commonly used agents in the management
of arthritis, improve the quality of life by diminishing pain
and inflammation; intra-articular corticosteroids and hyalur-
onan are useful with acutely inflamed painful joints18,19; and
joint lavage has been shown to improve symptoms of knee
OA20. But all these frequently cause adverse side effects
and do not modify the course of the degenerative process.
However, gene therapy offers one way to obviate this limi-
tation. One target gene in the treatment of arthritis is nuclear
factor kB (NF-kB).

NF-kB is a transcription factor that is implicated in inflam-
mation and immune activation21e23, activated by oxidants
and cytokines24e27 such as IL-1b and TNF-a, which play
67
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important roles in the initiation and development of OA. A
total of five subunits that form dimers have been identified
in mammalian cells, that is, RelA (p65), RelB, c-Rel, p50,
and p52. The most common and best characterized form
of NF-kB is the RelAep50 heterodimer. Each dimer combi-
nation exhibits differences in DNA-binding affinity and trans-
activation potential, and its DNA-binding activity is important
for many cytokine-inducible responses. NF-kB is retained in
the cytoplasm through heterodimerization with IkB proteins
that mask the NF-kB nuclear location signal. IL-1b and
TNF-a trigger the phosphorylation and degradation of IkB,
thus permitting the entry of p65/p50 into the nucleus, where
p65/p50 activates the transcription of various genes, and
two of the many genes are NOS-228,29 and COX-230,31.
p65 has shown to be a key active subunit in NF-kB tran-
scription in several cell types32e35. Since NF-kBp65 plays
a major role in the expression of key inflammatory cytokines
that involve in the pathogenesis of arthritis, efficient meth-
ods are needed to interrupt its action.

In the present study, we used small interfering RNA
(siRNA), which is able to trigger RNA interference in mam-
malian somatic cells36,37, to inhibit the expression of p65 in
cultured IL-1b-induced and TNF-a-induced chondrocytes,
so as to explore the inhibitive effects in transcription activa-
tion of NF-kB, and further observe the expression of MMPs,
NOS-2, and COX-2 in both levels of mRNAs and proteins.
Our results provided evidences that NF-kBp65-specific
siRNA can effectively inhibit the transcription activation of
NF-kB and the expression of MMP-9, NOS-2 and COX-2
in induced chondrocytes.

Materials and methods

siRNA TEMPLATE DESIGN

Ambion’s siRNA target design online tool was utilized
to choose five sequences (Table I) for target rat NF-kBp65
mRNA. BLAST searches were conducted on all sequences
to ensure gene specificity. All template oligonucleotides
were synthesized by AuGCT Biotechnology Co., Ltd. (Bei-
jing, PR China). All siRNA duplexes were synthesized with
the silencer siRNA construction kit (Ambion, Austin, TX) ac-
cording to the manufacturer’s protocol. The positive (anti-
glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
siRNA) and negative control (scrambled siRNA) siRNAs
were purchased from Ambion. The procedure overview
was: In separate reactions, two template oligonucleotides
were hybridized to a T7 Promoter Primer and extended by
the Klenow fragment of DNA polymerase to create double-
stranded siRNA transcription templates. The sense and an-
tisense siRNA templates were transcribed by T7 RNA
polymerase and the resulting RNA transcripts were hybrid-
ized to create dsRNA. The leader sequences were removed
by digesting the dsRNA with a single-stranded specific ribo-
nuclease, and the DNA template was removed at the same
time by a deoxyribonuclease. The resulting siRNA was puri-
fied by glass fiber filter binding and elution which removed
excessive nucleotides, short oligomers, proteins, and salts
in the reaction.

CHONDROCYTES’ ISOLATION AND CULTURE

Articular chondrocytes were isolated from femoral heads
and knees of Sprague Dawley male rats (200e250 g, Exper-
imental Animal Center of Peking University Health Science
Center, Beijing, PR China) under aseptic conditions. The pri-
mary chondrocytes were obtained by enzymatic dispersal of
cartilage as previously described38. Cells were seeded into
Costar 24-well plates (Costar, Corning, NY) at a final density
of 1� 105 cells/well in Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco BRL, Grand Island, NY) supplemented with
10% fetal bovine serum (FBS) (Hyclone, Logan, UT) and
cultured for 3 days under normal growth conditions. Experi-
ments were performed with the first or second passage cells.
In each experiment, monolayer cells were made quiescent
for 24 h in DMEM medium without serum, and then incubat-
ed in 1% FBS with or without the transfection complexes for
4 h as described below, after which they were processed for
the various analyses.

siRNA TRANSFECTION AND CYTOKINE INDUCTION

Three days postseeding and quiescent for 24 h, NF-
kBp65-specific siRNA was transfected into chondrocyte
monolayers using the siPORT� Lipid (Ambion) according
to the manufacturer’s protocol. After 4 h of transfection, 2 ml
fresh medium containing 10% FBS was added to the plates.
According to different experiments, chondrocytes were
stimulatedwith IL-1b (Sigma,St.Louis,MO)orTNF-a (Sigma)
at a concentration of 10 ng/ml, which were optimized formerly
(data not shown), in 1 ml complete medium for 24 h or 1 h at
indicated time points, then the cells were harvested from
three independent wells and used for the following analyses.
This procedure was performed at least three times. The
positive and negative controls were analyzed in parallel.

SELECTION OF OPTIMAL siRNA AND OPTIMIZATION OF

TRANSFECTION CONDITION

The effects of silencing were determined by Western
blot and reverse transcription polymerase chain reaction
(RT-PCR) analyses. The starting amount for transfection
Table I
siRNA template sequences

Sequence range (GC%) siRNA oligonucleotide template

siRNA150e170 (42.9) Antisense 5#-AAGCACAGATACCACTAAGACCCTGTCTC-3#
Sense 5#-AAGTCTTAGTGGTATCTGTGCCCTGTCTC-3#

siRNA665e685 (33.3) Antisense 5#-AAGACATTGAGGTGTATTTCACCTGTCTC-3#
Sense 5#-AATGAAATACACCTCAATGTCCCTGTCTC-3#

siRNA740e760 (47.6) Antisense 5#-AAGTGGCCATTGTGTTCCGAACCTGTCTC-3#
Sense 5#-AATTCGGAACACAATGGCCACCCTGTCTC-3#

siRNA909e929 (47.6) Antisense 5#-AAGGACCTACGAGACCTTCAACCTGTCTC-3#
Sense 5#-AATTGAAGGTCTCGTAGGTCCCCTGTCTC-3#

siRNA928e948 (38.1) Antisense 5#-AAGAGCATCATGAAGAAGAGTCCTGTCTC-3#
Sense 5#-AAACTCTTCTTCATGATGCTCCCTGTCTC-3#
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of siRNA was 0.3 mg/ml and the ratio of siRNA to transfec-
tion reagent was 1:1 according to the manufacturer’s rec-
ommendations. To optimize the contribution of siRNA
concentration and siRNA/transfection reagent ratio to trans-
fection condition, concentrations of siRNA were varied be-
tween 0.3 mg/ml and 2.4 mg/ml, siRNA and siRNA/
transfection reagent ratios were varied between 1:1 and
1:10. A time-course experiment was performed at 0 h,
24 h, 48 h, 72 h, 96 h and 120 h after transfection and
24 h stimulation with IL-1b. Finally, the optimized concentra-
tion was determined at 1.2 mg/ml and the ratio 1:1, the time
point after transfection was 72 h.

NUCLEAR PROTEIN ISOLATION AND ELECTROPHORETIC

MOBILITY SHIFT ASSAY (EMSA)

EMSA was used to study the effect of siRNA on NF-kB ac-
tivation. Nuclear proteins of chondrocytes were isolated us-
ing NE-PER� Nuclear and Cytoplasmic Extraction
Reagents (Pierce, Rockford, IL) according to the manufactur-
er’s protocol. The concentration of the proteins in the sam-
ples was measured using the BCA Protein Assay Kit
(Pierce) and their assay protocol. The oligonucleotides for
the NF-kB consensus sequence were 5#-AGTTGAGGG
GACTTTCCCAGGC-3# and 3#-TCAACTCCCCTGAAAGGG
TCCG-5# which were end-labeled with biotin (synthesized
by Beijing AuGCT Biotechnology Co., Ltd.). Complementary
oligonucleotides were annealed in 10 mmol/l TriseCl, pH
8.0, 1 mmol/l EDTA, pH 8.0, and 0.1 mol/l NaCl (STE buffer)
by slow cooling to room temperature in boiling water. Nuclear
extracts (5 mg) were added in 20 ml of binding reactions and
incubated for 20 min at room temperature. EMSA were
performed according to the manufacturer’s protocol of Light-
Shift� Chemiluminescent EMSA Kit (Pierce). To establish the
specificity of the reaction, negative controls without cell ex-
tracts and competition assays with a 200-fold excess of unla-
beledoligonucleotidewereperformed. Incompetitionassays,
the corresponding unlabeled probe was added to the reaction
mixture 10 min before the addition of the labeled probe.

mRNA EXPRESSION ANALYSIS

Total mRNA was isolated from cultured chondrocytes
with Trizol (Invitrogen, Carlsbad, CA). Isolated RNA was re-
verse transcribed and then amplified with a commercial kit
(Access RT-PCR system�, Promega, Madison, WI) accord-
ing to the manufacturer’s protocol. The specific primers,
which were designed with software of Primer Premier 5,
used for RT-PCR, temperature of annealing (Ta) and cycles
are shown in Table II. Total RNAs (2 mg) were reverse tran-
scribed for 45 min at 54(C, and PCR amplification was then
performed in a volume of 25 ml. The house-keeping gene
GAPDH was amplified as an internal control for normaliza-
tion. PCR products were separated on 1.5% agarose gels
and visualized by ethidium bromide staining. DNA bands
were visualized under UV light, photographed and quanti-
tated by densitometric analysis.

WESTERN BLOT ANALYSIS

Total proteins were extracted from the cultured chondro-
cyte monolayers with Trizol (Invitrogen) on the indicated
days, and protein concentrations were determined by the
BCA method. Western blot analysis was performed as pre-
viously described39. The blots were immersed in 20 ml of
blocking buffer (5% skimmed milk and 1& Tween-20 in
Tris-buffered saline (TBST)) for 2 h at room temperature
and subsequently incubated overnight at 4(C with the fol-
lowing primary antibodies: polyclonal anti-NF-kBp65 (1/
500), anti-COX-2 (1/400), anti-MMP-9 (1/500), monoclonal
anti-NOS-2 (1/400) and anti-GAPDH (1/5000), followed by
a secondary IgG (1/10,000) conjugated to horseradish per-
oxidase, then were washed three times for 15 min each in
20 ml of TBST with gentle shaking. Visualization of the im-
munocomplexes was conducted with the Luminol reagent
kit according to the manufacturer’s specifications. The blots
imaged by autoradiography were quantified by densitome-
try. All reagents were from Santa Cruz (Santa Cruz, CA),
except for anti-GAPDH (Ambion).

STATISTICAL ANALYSIS

Densitometric results, expressed as arbitrary units (AU)
as n-fold over control are expressed as the mean� stan-
dard error of the mean (S.E.M.). Comparisons between two
groups were made by Student’s t test, comparisons among
multiple groups were made by one-way analysis of variance
(ANOVA) and least significant difference (LSD) post hoc
multiple comparison tests, at a significance level of P< 0.01.

Results

THE IDENTIFICATION OF SYNTHESIZED siRNA BY IN VITRO

TRANSCRIPTION

The degree of purification and the concentration of siRNA
used for transfection are critical to the success of gene si-
lencing experiment. Transfecting too much siRNA causes
Table II
Specific primers used for RT-PCR

Gene Primer sequence Size (bp) Ta* ((C) Cycles

NF-kBp65 Forward 5#-TCACCAAAGACCCACCTCACCG-3# 243 60 35
Reverse 5#-GGACCGCATTCAAGTCATAGTCCC-3#

COX-2 Forward 5#-GTGGGATGACGAGCGACTG-3# 288 57 28
Reverse 5#-CCGTGTTCAAGGAGGATGG-3#

NOS-2 Forward 5#-TTCAGATCCCGAAACGCTACAC-3# 308 60 30
Reverse 5#-ACAATCCACAACTCGCTCCAAG-3#

MMP-9 Forward 5#-CCTGCGTATTTCCATTCATC-3# 498 58 34
Reverse 5#-GCCTTGGGTCAGGTTTAGAG-3#

GAPDH Forward 5#-ATCATCTCCGCCCCTTCTGC-3# 437 57 25
Reverse 5#-GCCTGCTTCACCACCTTCTT-3#

*Ta: temperature of annealing.
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nonspecific reductions in gene expression and toxicity to
the transfected cells, while transfecting too little siRNA
does not change the target gene, and poor purification
can impair the effect of gene silencing. When we measured
the absorbance of siRNA sample at 260 nm with the UV
spectrophotometer to assess the concentration of the
siRNA preparation, concentrations of seven siRNAs were
537 mg/ml, 539 mg/ml, 571 mg/ml, 585 mg/ml, 554 mg/ml,
532 mg/ml, and 521 mg/ml, respectively. The degree of puri-
fication of siRNA was assessed by gel electrophoresis on
2% agarose in 90 mmol/l TriseCl, 90 mmol/l boric acid,
and 2 mmol/l EDTA (TBE) that showed a single band at
21 bp (Fig. 1). These siRNAs were diluted to 300 mg/ml
with 10 mmol/l TriseCl, pH 8.0, and 1 mmol/l EDTA, pH
8.0 (TE) and stored at �80(C.

OPTIMIZATION OF THE siRNA TRANSFECTION

The silencing effect of siRNA varied with the sequence of
siRNA, the total siRNA content for transfection and the
siRNA/transfection reagent ratio. Of the siRNAs tested, the
silencing of NF-kBp65 was achieved at 48 h posttransfection
with siRNA928e948-based RNA with 1.2 mg/ml siRNA and
transfection reagent/siRNA ratio of 1:1, the expression of
NF-kBp65 was reduced to 71.69% at the level of mRNA
and to 74.82% at the level of protein (Fig. 2). The obvious si-
lencing of NF-kBp65 at the level of mRNA was started from

Fig. 1. Seven synthesized siRNAs were analyzed by electrophore-
sis on 2% agarose gel and ethidium bromide staining. The single

band was present at 21 bp.
the concentration of 1.2 mg/ml; and at the level of protein it
was started from the concentration of 0.6 mg/ml (Fig. 3).
The fact of no reduction in NF-kBp65 mRNA levels at
0.6 mg/ml but a decrease in protein levels may suggest post-
translational regulation of p65 level40. A time-course experi-
ment was performed at multiple time points after transfection,
the expression of NF-kBp65 significantly decreased at 48 h
and kept silencing effect for 48 h (Fig. 4). These optimal
schemes were used in subsequent experiments.

THE EFFECTS OF NF-kBP65-SPECIFIC siRNA928e948 ON THE

ACTIVATION OF NF-kB

On EMSA, exposure to IL-1b or TNF-a significantly en-
hanced NF-kB binding in comparison with normal chondro-
cytes, and the effect of TNF-a (lane 6) was greater than that
of IL-1b (lane 4) (Fig. 5). However, siRNA928e948-preincu-
bated IL-1b-stimulated or TNF-a-stimulated chondrocytes
showed a significant inhibition of NF-kB binding (lanes 5
and 7), but not reducing to the level of normal chondrocytes.
This binding reaction was specific since unlabeled NF-kB
probe prevented the formation of the complexes with bio-
tin-labeled NF-kB probe (lane 3).

NF-kBP65-SPECIFIC siRNA928e948 INHIBITED THE EXPRESSION

OF COX-2, NOS-2 AND MMP-9 IN CHONDROCYTES

INDUCED BY IL-1b

In cultured chondrocytes, IL-1b remarkably increased the
expression of COX-2, NOS-2 and MMP-9, but pretransfec-
tion of siRNA928e948 reduced the expression of COX-2,
NOS-2 and MMP-9 to 45.12%, 31.26% and 52.28%, respec-
tively, at the level of mRNA and to 42.31%, 29.49% and
50.42%, respectively, at the level of protein induced by IL-
1bþ lipid, and did not reduce to the levels of normal chon-
drocytes. There was no difference between IL-1b group
and IL-1bþ lipid group, suggesting that transfection agent
had no effect on the expression of these genes. Among
groups of positive control, negative control and IL-1bþ lipid,
there also was no significant difference, which indicated that
Fig. 2. Different RNAi activities induced by different siRNAs. Rat chondrocytes were transfected with different siRNAs at a concentration of
1.2 mg/ml for 48 h, and then stimulated with IL-1b (10 ng/ml) for 24 h, the expression of NF-kBp65 was assessed at levels of mRNA and protein
by RT-PCR and Western blot. The densitometric quantification of NF-kBp65 was normalized to GAPDH. Upper panel: Representative RT-
PCR of NF-kBp65 and GAPDH expression, graph shows the mean� S.E.M. of the three independent experiments. Lower panel: Correspond-

ing Western blot analysis for both NF-kBp65 and GAPDH, and graph shows NF-kBp65 at protein levels. *P< 0.01 vs control.
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Fig. 3. The silencing effect of siRNA928e948 on the expression of NF-kBp65 at different concentrations (mg/ml). The rat chondrocytes were
transfected with siRNA928e948 at concentrations of 0 mg/ml, 0.3 mg/ml, 0.6 mg/ml, 1.2 mg/ml, 1.8 mg/ml and 2.4 mg/ml for 48 h, and then stimu-
lated with IL-1b (10 ng/ml) for 24 h, the expression of NF-kBp65 was assessed at levels of mRNA and protein by RT-PCR and Western blot.
The densitometric quantification of NF-kBp65 was normalized to GAPDH. Upper panel: Representative RT-PCR of NF-kBp65 and GAPDH
expression, graph shows the mean� S.E.M. of the three independent experiments. Lower panel: Corresponding Western blot analysis for both

NF-kBp65 and GAPDH, and graph shows NF-kBp65 at protein levels. *P< 0.01 vs control.
the silencing effect of siRNA928e948 was specific (Fig. 6). At
the same time, transfection of siRNAGAPDH reduced the
expression of GAPDH to 21.39% at the level of mRNA and
to 19.87% at the level of protein (Fig. 6), which could be
regarded as the transfection efficiency of siRNA by transfec-
tion agent. This also confirmed the selectivity of the
NF-kBp65-specific siRNA and the viability of the system.

NF-kBP65-SPECIFIC siIRNA928e948 INHIBITED THE

EXPRESSION OF COX-2, NOS-2 AND MMP-9

IN CHONDROCYTES INDUCED BY TNF-a

In cultured chondrocytes, TNF-a also remarkably in-
creased the expression of COX-2, NOS-2 and MMP-9,
but when we pretransfected siRNA928e948 into chondro-
cytes, the expression of COX-2, NOS-2 and MMP-9 was re-
duced to 30.19%, 21.32% and 44.98%, respectively, at the
level of mRNA, and 26.91%, 19.85% and 48.26%, respec-
tively, at the level of protein induced by TNF-aþ lipid. And
the expression of NOS-2 was the most markedly de-
creased. There was no significant difference between
TNF-a group and TNF-aþ lipid group, and among groups
of positive control, negative control and IL-1bþ lipid (Fig. 7).
Discussion

Because the pathogenesis of OA remains elusive, it re-
mains incurable despite the existence of an extensive med-
ical and surgical armamentarium. In recent years, gene
therapy targeting cytokines offers a new hope to OA treat-
ment, and IL-1b and TNF-a are considered to be the princi-
pal inflammatory cytokines41,42 and are thus natural targets
for therapy for OA. Therefore the use of biological agents
that block the activity of these cytokines is the current
focus43. These agents include such molecules as TNF-a
soluble receptor (TNF-sR)44, IL-1 receptor antagonists
(IL-1Ra)45,46, anti-inflammatory cytokines47e49 and inhibi-
tors of catabolic enzyme50. As there are many proinflamma-
tory cytokines, oxidants and other factors exerting action in
initiation and development of OA, it is hard to get complete
therapeutic effects in blocking the activity of one or two
cytokines. So we attempted to inhibit signal pathway of
NF-kB, which is an important mediator of cellular respon-
siveness to immunogenic, stress and mitogenic signals
leading to the induction of a number of genes encoding
for cytokines, cell adhesion molecules, immunoreceptors,
and oxidative stress-related enzymes51, to explore a new
approach of gene therapy on OA.
Fig. 4. siRNA928e948 silencing of NF-kBp65 over time. The rat chondrocytes were transfected with siRNA928e948 at a concentration of 1.2 mg/ml
for 0 h, 24 h, 48 h, 72 h, 96 h and 120 h. Before harvest, the cells all were stimulated by IL-1b (10 ng/ml) for 24 h except for the cells that were
transfected for 24 h, and stimulated for 18 h. The expression of NF-kBp65 was assessed by RT-PCR and Western blot, the expression of NF-
kBp65 significantly decreased at 48 h and kept silencing effect for 48 h, and then increased at 120 h. The densitometric quantification of NF-
kBp65 was normalized to GAPDH. Upper panel: Representative RT-PCR of NF-kBp65 and GAPDH expression, graph shows the mean
� S.E.M. of the three independent experiments. Lower panel: Corresponding Western blot analysis for both NF-kBp65 and GAPDH, and graph

shows NF-kBp65 at protein levels. *P< 0.01 vs control.
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NF-kB is one of the principal proinflammatory transcription
factors52. Several methods have been used to inhibit the
function of NF-kB ranging from specific small molecule inhib-
itors to nucleotide-based approaches such as antisense oli-
gonucleotides53, decoy DNA54, and dominant negative
mutant IkB in an adenoviral construct78. In the present study,
we utilized siRNAs to knockdown p65 subunit and inhibited
the function of NF-kB. The rationale for choosing p65 but
not other potential NF-kB subunits was because p65, which
contains a C-terminal transactivation domain in addition to
the N-terminal Rel-homology domain, is the most common
transcriptionally active subunit of NF-kB32e35, and there
are some relevant reports which targeted at p65 to study
the effects of NF-kB in different cells53,55e58. So we synthe-
sized NF-kBp65-specific siRNA by in vitro transcription,
screened out one efficacious siRNA in cultured rat chondro-
cytes, and used it to carry out the subsequent experiment.

Posttranscription gene silencing (PTGS) and RNAi are
terms describing the specific suppression of genes by com-
plementary dsRNA59. Although the mechanism by which
dsRNA suppresses gene expression is not entirely under-
stood, experimental data provide important insights. In non-
mammalian systems such as Drosophila, it appears that
longer dsRNA is processed into 21e23 nt dsRNA (called
small interfering RNA or siRNA) by an enzyme containing

Fig. 5. The effects of IL-1b, TNF-a and siRNA928e948 on NF-kB
DNA binding in rat chondrocytes. Cells were preincubated for
72 h with siRNA928e948 at 1.2 mg/ml, and then stimulated with IL-
1b (10 ng/ml), and TNF-a (10 ng/ml), respectively, for 1 h. Upper
panel: Representative autoradiogram of the three different experi-
ments with similar results is shown. The specificity of the reaction
was established using competition assays with a 200-fold excess
of unlabeled probe (lane 3). The positions of the specific NF-kB
complexes are indicated. Lower panel: Results of the densitometric
analysis for the specific NF-kB binding are shown (mean� S.E.M.).

Asterisks (*) denote values which differ at P< 0.01.
RNase III motifs60e64. The siRNA apparently then acts as
a guide sequence within a multicomponent nuclease com-
plex to target complementary mRNA for degradation65.
However, mammalian cells have a potent antiviral response
pathway that induces global changes in gene expression
when dsRNA molecules longer than 30 nt are introduced
into cells66,67. The antiviral response makes it difficult to
distinguish target-specific effects of long dsRNA from the
general antiviral response. Whereas, siRNA, comprising
21-mer dsRNAs, do not trigger the antiviral response, making
it possible to perform gene silencing experiments in mam-
malian cells36,37,68,69. So we used 21-mer siRNA to perform
experiments in rat chondrocytes.

Research at Ambion has found that typically more than
half of randomly designed siRNAs provide at least a 50%
reduction in target mRNA levels and approximately one of
four siRNAs provides a 75e95% reduction69. It might be
that some regions of mRNA may be either highly structured
or bounded by regulatory protein, and difference in internal
configuration of siRNA may also be one reason70. Our
study indicated that one siRNA928e948 could significantly re-
duce expression of p65 at levels of mRNA and protein, and
others had no significant silencing effects.

Cells transfected with effective siRNA exhibit a reduction in
the amount of the targeted mRNA and the protein that it en-
coded. To assess whether siRNA-mediated gene silencing
occurred, levels of target RNA and target protein can be mon-
itored. In our study, we examined NF-kBp65 protein level by
Western blot and mRNA level by RT-PCR and found that ex-
pression of NF-kBp65 was obviously less in siRNA-trans-
fected cells than in mock-transfected cells on both levels. In
the subsequent experiment, both methods indicated good
knockdown by the positive control siRNAGAPDH, further indi-
cating that the system worked well and with good silencing ef-
fects. These data suggested that the NF-kBp65-specific
siRNA could bring action in primary cultured chondrocytes
and silenced the expression of p65. Olaf et al.55 utilized
siRNA against the NF-kBp65 to significantly reduce the p65
protein, then to significantly suppress the secretion of IL-8
from BEAS-2B cells (The BEAS-2B cell line was derived
from a human bronchial epithelial tumor cell that was trans-
formed with Ad12-SV40 construct.) in a cellular model of
TNF-a induced inflammation. Roopashree et al.56 utilized
siRNA PCR products targeting p65 cDNA to induce up to
92% reduction in hemagglutitin (HA)-p65 protein levels, a six-
fold decrease in NF-kB dependent luciferase activity, and
resulted in 70% reduction in p65 protein levels and blocked
13-hydroperoxy-octadecadienoic acid (13-HPODE)-induced
expression of both monocyte chemoattractant protein-1
(MCP-1) and TNF-a genes. In our study, the expression of
NF-kBp65 was reduced by 71.69% and 74.82% at levels of
mRNA and protein, respectively, and inhibited induced ex-
pression of COX-2, NOS-2, and MMP-9. Although RNAi can-
not replace a gene knockout experiment in which both alleles
are deleted cleanly from the genome, it produces hypomor-
phic mutants that are extremely useful for understanding
gene functions, and also plays an important role in therapeu-
tic application for a number of diseases71. Zhou et al.72 re-
ported that siRNA silencing of p16INK4a decreased at 24 h
after transfection of siRNA and reached its maximum at
72 h. Our study here indicated reaching maximum at 48 h,
and incomplete recovery at 120 h, which might be related to
the concentration of siRNA as a result of different dilutions
and types of cells59,66.

To elucidate the role of p65 in the bioactivity of chondro-
cytes in OA model in vitro, siRNA was used to decrease
NF-kBp65 expression in the study. First of all, IL-1b and
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Fig. 6. The effect of siRNA928e948 on the expression of COX-2, NOS-2, and MMP-9 induced by IL-1b and of siRNAGAPDH on the expression of
GAPDH. Rat chondrocytes were incubated with siRNA928e948 for 48 h and stimulated with IL-1b for 24 h, all controls were performed in parallel.
IL-1b significantly enhanced the expression of COX-2, NOS-2 and MMP-9 (#P< 0.01 vs control), and siRNA928e948 could reduce the enhance-
ment (*P< 0.01 vs corresponding values for IL-1bþ lipid treated cells). Similarly, the positive control, siRNAGAPDH, leads to significant reductions
in the GAPDH expression (*P< 0.01 vs control). The densitometric quantification of COX-2, NOS-2 and MMP-9 was normalized to GAPDH. Up-
per panel: Representative RT-PCR of COX-2, NOS-2, MMP-9 and GAPDH expression. Graphs show the mean� S.E.M. of the three independent

experiments. Lower panel: Corresponding Western blot analysis for COX-2, NOS-2, MMP-9 and GAPDH, and graphs show protein levels.
TNF-a were found to markedly increase the activation of NF-
kB and the expression of COX-2, NOS-2, and MMP-9 at lev-
els of mRNA and protein, and after the silencing of NF-
kBp65 gene expression, the signal pathway of activation
of NF-kB was disturbed, and we found that the expression
of NF-kB-dependent genes (such as COX-2 and NOS-2)
and of downstream gene (MMP-9) was repressed. This indi-
cated that p65 played crucial role in mediating expression of
these genes. Since the expression of typical factors such as
COX-2, NOS-2 and MMPs is paralleled with the initiation
and progression of cartilage lesions17, these results seem
particularly important that p65 subunit is linked to joint carti-
lage destruction in OA model.

We all know that chondrocytes are targets of TNF-a and
IL-1b42, which exert catabolic function through specific cell
surface receptors. TNF-a binds to TNF-a type 1 receptor
(TNF-R1), activates TNF receptor-associated factor-2
(TRAF-2), IL-1, IL-1R1, and TRAF-673. Then, TRAF-2 and
TRAF-6 interact with mitogen-activated protein kinase ki-
nase kinase (MAP3K) called NF-kB-inducing kinase (NIK).
NIK is able to phosphorylate IkB kinase B (IKK-B) and
IkB isoforms are rapidly phosphorylated which leads to
IkB degradation. Therefore, distinct upstream signaling
pathways induced by different cytokines can still lead to
a similar effect51. In our study, the effects in silencing of
NF-kBp65 to inhibit the expression of COX-2, NOS-2 and
MMP-9 in chondrocytes induced by IL-1b were almost par-
alleled with those by TNF-a. The difference between cells
induced by TNF-a and by IL-1b was that the former is
more obvious than the latter, although there is no significant
difference. The reason is that there are other transcriptional
factors, including signal transducer and activator of
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Fig. 7. The effect of siRNA928e948 on the expression of COX-2, NOS-2 and MMP-9 induced by TNF-a in chondrocytes. Rat chondrocytes were
incubated with siRNA928e948 for 48 h and stimulated with TNF-a for 24 h, all controls were performed in parallel. TNF-a significantly enhanced
expression of COX-2, NOS-2 and MMP-9 (#P< 0.01 vs control), and siRNA928e948 could reduce the enhancement (*P< 0.01 vs correspond-
ing values for TNF-aþ lipid treated cells) at the levels of mRNA and protein. The densitometric quantification of COX-2, NOS-2 and MMP-9
was normalized to GAPDH. Upper panel: Representative RT-PCR images of COX-2, NOS-2, MMP-9 and GAPDH expression, and graph
shows the mean� S.E.M. of the three independent experiments. Lower panel: Corresponding Western blot analysis for COX-2, NOS-2,

MMP-9 and GAPDH, and graph shows protein levels.
transcription (STAT)-1 and activator protein (AP)-174e76,
participating in mediating inflammatory factors in IL-1b-in-
duced chondrocytes. As COX-2 and NOS-2 being depen-
dent on NF-kB2,77 and MMP-9 being downstream factor of
COX-2 and NOS-213,16, the decreased levels of COX-2
and NOS-2 are greater than that of MMP-9.

Since NF-kB is a known cell survival signal for most cells,
we realize that chronic and long term reduction of basal
NF-kB could lead to cell death or apoptosis. However, we
believe that this could still be an effective anti-inflammatory
intervention under disease and stimulated conditions.
Importantly, the technology of siRNA which is a gene knock-
down, not a gene knockout, can only decrease the increased
levels of expression of catabolic genes in the early phase of
OA, and cannot completely block conduction of the signal of
NF-kB. So we conclude that although the precise mechanism
of siRNA remains to be determined, it is likely that NF-kBp65-
specific siRNA could be developed as a powerful approach to
prevent induction of mediators of the degeneration of cartilage
in OA in vitro. Further studies on in vivo effect of NF-kBp65-
specific siRNA on OA in animal model are needed.
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