Entropy and ergodic probability for differentiable dynamical systems and their bundle extensions

Wenxiang Sun a,∗, Edson Vargas b,2

a LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, PR China
b Department of Mathematics, University of Sao Paulo, Sao Paulo 05508-090, Brazil

Received 18 June 2004; received in revised form 4 September 2006; accepted 4 September 2006

Abstract

We answer a problem of Liao [S.T. Liao, Standard systems of differential equations and obstruction sets—from linearity to perturbations, in: System Researches, Proceedings Dedicated to the 85th Anniversary of Qian Xue-Sen, Zhejiang Education Press, Hangzhou, China, 1996, pp. 279–290 (in Chinese): A C^1 vector field or a C^1 diffeomorphism on an n-dimensional manifold has equal entropy with that of its bundle extensions. We also prove that each ergodic probability with simple Lyapunov spectrum has at most $2^n n!$ covering probabilities on each bundle extension.

© 2006 Elsevier B.V. All rights reserved.

MSC: 37B38; 37D99

Keywords: Entropy equality; Ergodic probability; Bundle extension

1. Notions and a problem

We start from a C^1 vector field S on a compact smooth n-dimensional Riemannian manifold M, and its induced flows $\phi_t : M \to M$, $t \in \mathbb{R}$ on the state manifold and $\Phi_t = d\phi_t : TM \to TM$, $t \in \mathbb{R}$ on the tangent bundle.

Fix some integer ℓ, $1 \leq \ell \leq n$. Construct a bundle $U_\ell = \bigcup_{x \in M} U_\ell (x)$ of ℓ-frames, where the fiber over x is

$$U_\ell (x) = \{(u_1, \ldots, u_\ell) \in T_x M \times \cdots \times T_x M \mid u_1, u_2, \ldots, u_\ell \text{ are linearly independent}\}.$$

The vector field S induces a flow on U_ℓ, which we denote (with the same notation as the tangent map for the sake of simplicity) by Φ_t, $t \in \mathbb{R}$, namely,

$$\Phi_t (u_1, u_2, \ldots, u_\ell) = (d\phi_t (u_1), d\phi_t (u_2), \ldots, d\phi_t (u_\ell)).$$

* Corresponding author.
E-mail addresses: sunwx@math.pku.edu.cn (W. Sun), vargas@ime.usp.br (E. Vargas).
1 Sun is supported by NNSFC (# 10231020, 10171004) and doctor research funds from Education Ministry of China (# 20040001036).
2 Vargas is supported by CNPq-Brazil.

0166-8641/S – see front matter © 2006 Elsevier B.V. All rights reserved.
For $\alpha = (u_1, u_2, \ldots, u_\ell) \in U_\ell$ and a non-degenerate $\ell \times \ell$ matrix $B = (b_{ij})$ we write

$$\alpha \circ B = \left(\sum_{i=1}^{\ell} b_{i1} u_1, \sum_{i=1}^{\ell} b_{i2} u_2, \ldots, \sum_{i=1}^{\ell} a_{i\ell} u_\ell \right).$$

Then $\Phi_t(\alpha \circ B) = \Phi_t(\alpha) \circ B$. By the Gram–Schmidt orthogonalization process there exists a unique upper triangular matrix $\Gamma(\alpha)$ with diagonal elements 1 such that $\alpha \circ \Gamma(\alpha)$ is orthogonal.

Construct the bundle $\mathcal{F}_\ell = U_{x \in M} \mathcal{F}_\ell(x)$ of orthogonal ℓ-frames, where the fiber over x is

$$\mathcal{F}_\ell(x) = \{ (u_1, u_2, \ldots, u_\ell) \in U_\ell(x) \mid (u_i, u_j) = 0, \ 1 \leq i \neq j \leq \ell \}.$$

The vector field S then induces a flow

$$\chi_\ell : \mathcal{F}_\ell \to \mathcal{F}_\ell, \quad \alpha \mapsto \Phi_t(\alpha) \circ \Gamma(\Phi_t(\alpha)).$$

If we define $\pi : U_\ell \to \mathcal{F}_\ell$ by $\alpha \mapsto \alpha \circ \Gamma(\alpha)$ then $\chi_\ell(\alpha) = \pi(\Phi_t(\alpha))$, $t \in \mathbb{R}$.

Construct a bundle $\mathcal{F}_{\ell}^\# = U_{x \in M} \mathcal{F}_{\ell}^\#(x)$ of orthonormal ℓ-frames, where the fiber over x is

$$\mathcal{F}_{\ell}^\#(x) = \{ (u_1, u_2, \ldots, u_\ell) \in \mathcal{F}_\ell(x) \mid \|u_i\| = 1, \ i = 1, 2, \ldots, \ell \}.$$

Then $\mathcal{F}_{\ell}^\#$ is a compact metric space. Let $\pi^\# : \mathcal{F}_\ell \to \mathcal{F}_{\ell}^\#$ be given by

$$\pi^\#(u_1, u_2, \ldots, u_\ell) = \left(\frac{u_1}{\|u_1\|}, \frac{u_2}{\|u_2\|}, \ldots, \frac{u_\ell}{\|u_\ell\|} \right).$$

Setting $\chi_{\ell}^\# = \pi^\# \circ (\chi_\ell | \mathcal{F}_\ell)$, we get a flow $\chi_{\ell}^\# : \mathcal{F}_{\ell}^\# \to \mathcal{F}_{\ell}^\#$, $t \in \mathbb{R}$.

Construct a Grassmann bundle $\mathcal{L}_{\ell}(M) = \bigcup_{x \in M} \mathcal{L}_{\ell}(x)$, where the fiber $\mathcal{L}_{\ell}(x)$ over x is the Grassmann manifold formed by all ℓ-dimensional linear subspaces in $T_x M$. Such a linear subspace H, when regarded as a point of $\mathcal{L}_{\ell}(x)$, will be denoted by $[H]$. Then $\mathcal{L}_{\ell}(M)$ is a compact metric space. Defining $\varphi_t([H]) := [\Phi_t(H)]$ gives a flow $\varphi_t : \mathcal{L}_{\ell}(M) \to \mathcal{L}_{\ell}(M), t \in \mathbb{R}$. By p_ℓ we denote the canonical projections $\mathcal{F}_{\ell}^\# \to M$ and $\mathcal{L}_{\ell}(M) \to M$. The following commutability properties hold clearly

$$p_\ell \circ \chi_{\ell}^\# = \varphi_t \circ p_\ell = p_\ell \circ \varphi_t, \quad t \in \mathbb{R}, \quad \ell = 1, \ldots, n.$$

For more details of these flows see [5] or [12].

A probability μ on M is ϕ-invariant if $\mu(\Phi_t(B)) = \mu(B)$ for any $t \in \mathbb{R}$ for any Borel set $B \subset M$. A probability μ is ϕ-ergodic if each Borel set B that is ϕ_t-invariant for any $t \in \mathbb{R}$ has μ-probability 1 or 0. Denote by $E(M, \phi)$ the set of all ϕ-invariant and ergodic probabilities on M. Similarly one defines $E(\mathcal{F}_{\ell}^\#, \chi^\#)$ and $E(\mathcal{L}_{\ell}(M), \varphi)$, $\ell = 1, \ldots, n$.

Problem. (Liao [7]) Let $1 \leq \ell \leq n$. Take arbitrarily $v \in E(M, \phi)$, $\mu_\ell \in E(\mathcal{F}_{\ell}^\#, \chi^\#)$ and $m_\ell \in E(\mathcal{L}_{\ell}(M), \varphi)$ so that $p_{\ell \times \ell} m_\ell = v = p_\ell m_\ell$. For measure-theoretic entropy, what is the relation among $h_1(\phi)$, $h_\mu(\chi^\#)$ and $h_m(\varphi)$? And what is the relation among topological entropies $h(\phi)$, $h(\chi^\#)$ and $h(\varphi)$?

For a given C^1 diffeomorphism $f : M \to M$, we replace the flows $\Phi_t : U_\ell \to U_\ell$, $\chi^\# : \mathcal{F}_{\ell}^\# \to \mathcal{F}_{\ell}^\#$ and $\varphi_t : \mathcal{L}_{\ell}(M) \to \mathcal{L}_{\ell}(M)$ by homeomorphisms $df : U_\ell \to U_\ell$, $F_{\ell}^\# : \mathcal{F}_{\ell}^\# \to \mathcal{F}_{\ell}^\#$ and $L_{\ell} : \mathcal{L}_{\ell}(M) \to \mathcal{L}_{\ell}(M)$, respectively, where $F_{\ell}^\#$ and L_{ℓ} are induced by df in a corresponding process to that for the flow case. Clearly

$$p_\ell \circ F_{\ell}^\# = f \circ p_\ell = p_\ell \circ L_{\ell}, \quad \ell = 1, \ldots, n.$$

For more details of these homeomorphisms one sees [13]. Let $E(M, f)$ denote the set of all f-invariant ergodic probabilities. One can similarly define $E(\mathcal{L}_{\ell}(M), L_{\ell})$ and $E(\mathcal{F}_{\ell}^\#, F_{\ell}^\#)$. One can pose the Liao problem for diffeomorphisms $f : M \to M$.

In Liao’s problem the entropy of a flow indicates the entropy defined by the time one homeomorphism, e.g. $h_1(\phi) := h_t(\phi_1), h(\phi) := h(\phi_1)$. For the entropy of a flow defined by the whole flow itself, instead of by the time one homeomorphism, see Thomas [16,17], Sun [11] and Sun and Vargas [15]. We point out that the above problem is basic in Liao theory [5], the fundamental concepts of which, qualitative functions (see Section 4), standard systems of differential equations (see [5]), and obstruction sets (see [5]), are established on or through the induced flows $\chi_{\ell}^\# : \mathcal{F}_{\ell}^\# \times R \to \mathcal{F}_{\ell}^\#$ and $\varphi : \mathcal{L}_{\ell}(M) \times R \to \mathcal{L}_{\ell}(M)$. We answer Liao’s problem for both cases of a C^1 vector field and a C^1 diffeomorphism by the following.
Theorem 1.1. Let \(\dim M = n \) and let \(1 \leq \ell \leq n \).

1. If \(v \in E(M, \phi) \) and \(m_\ell \in E(L_\ell(M), \varphi) \) and \(\mu_\ell \in E(F^\#, \chi^\#) \) satisfy \(p_{\ell,\#}(m_\ell) = v = p_{\ell,\#}(\mu_\ell) \), then for measure-theoretic entropy
 \[
 h_{m_\ell}(\varphi) = h_v(\phi) = h_{\mu_\ell}(\chi^\#).
 \]
 For topological entropy
 \[
 h(\varphi) = h(\phi) = h(\chi^\#).
 \]

2. If \(v \in E(M, f) \) and \(m_\ell \in E(L_\ell(M), L_\ell) \) and \(\mu_\ell \in E(F^\#, F^\#) \) satisfy \(p_{\ell,\#}(m_\ell) = v = p_{\ell,\#}(\mu_\ell) \), then for measure-theoretic entropy
 \[
 h_{m_\ell}(L_\ell) = h_v(f) = h_{\mu_\ell}(F^\#).
 \]
 For topological entropy
 \[
 h(L_\ell) = h(f) = h(F^\#).
 \]

A special case of Liao’s problem was solved by Sun in [14], where the cardinality of pre-images (under the canonical bundle projection) of \(v \) almost every point is finite, namely, each quasi-regular point (for definition see Section 4) for \(v \) has finitely many pre-images that are quasi-regular with respect to covering probabilities. The difficulty faced in the general case, Theorem 1.1, is that one quasi-regular point for \(v \) has uncountable many pre-images that are quasi-regular with respect to covering probabilities. We will prove Theorem 1.1 by using an approach different from that in [14]. In Section 2, we will present a probability version of the Bowen entropy inequality (his inequality is originally for topological entropy [2, Theorem 17]) for general semi-conjugate systems, by which Liao’s problem can be reduced to show that the set of pre-images (under the natural bundle projection) of \(v \) almost every point contributes no entropy, even though the set is uncountable. In order to show that the set contributes no entropy, Sacksteder–Shub’s argument in [9] on topological entropy for a differentiable dynamical system and its unit sphere bundle will be adapted. We will solve Liao’s problem completely in Section 3.

The next theorem shows that an ergodic probability with a simple Lyapunov spectrum has finitely many covering probabilities on bundle extensions.

Theorem 1.2. Let \(n = \dim M \) and let \(1 \leq \ell \leq n \).

1. Let \(v \in E(M, \phi) \) have a simple Lyapunov spectrum, namely, all Lyapunov exponents of \(v \) have multiplicity 1. Let
 \[
 A = \{ \mu \in E(F^\#, \chi^\#) \mid p_{\ell,\#}(\mu) = v \} \text{ and } B = \{ m \in E(L_\ell, \varphi) \mid p_{\ell,\#}(m) = v \}.
 \]
 Then
 \[
 A_n^\ell \leq \text{Card } A \leq 2^n A_n^\ell \quad \text{and} \quad 1 \leq \text{Card } B \leq 2^n A_n^\ell,
 \]
 where \(A_n^\ell = n(n-1) \cdots (n - \ell + 1) \).

2. Let \(v \in E(M, f) \) have a simple Lyapunov spectrum, namely, all Lyapunov exponents of \(v \) have multiplicity 1. Let
 \[
 A = \{ \mu \in E(F^\#, F^\#) \mid p_{\ell,\#}(\mu) = v \} \text{ and } B = \{ m \in E(L_\ell, L_\ell) \mid p_{\ell,\#}(m) = v \}.
 \]
 Then
 \[
 A_n^\ell \leq \text{Card } A \leq 2^n A_n^\ell \quad \text{and} \quad 1 \leq \text{Card } B \leq 2^n A_n^\ell,
 \]
 where \(A_n^\ell = n(n-1) \cdots (n - \ell + 1) \).

In order to estimate the upper bound of covering probabilities for a given ergodic probability \(v \), we will establish a general criterion Lemma 4.8, by which it suffices to estimate the cardinality of quasi-regular points in one fiber over a quasi-regular point for \(v \). The techniques in [14] could be applied to get the cardinality. However, we will present a more natural proof as Appendix A, by which an interesting relation between the usual Lyapunov exponent \(\lim_{t \to \infty} \frac{1}{t} \log \| \Phi_t(uk) \| \) and the limit \(\lim_{t \to \infty} \frac{1}{t} \log \zeta_{\alpha k}(t) \), where \(u_k \) is the \(k \)th vector in \(\alpha \), defined in Liao theory becomes clear. The argument on the lower bound is quite direct: we take the number of the covering probabilities given in Liao’s reordering lemma [6] as the lower bound. We complete the proof of Theorem 1.2 in Section 4.

The notations employed in the present paper take the same form as in a series of papers by Liao collected in the book in [5].
2. Bowen inequality of measure-theoretic entropy

We will recall in this section an inequality of measure-theoretic entropy for maps and proceed to deduce the inequality for flows. All these inequalities for maps and flows could be regarded as a probability version of Bowen inequality of topological entropy [2, Theorem 17] (see also [10, Theorem 1]).

Let \((X, d)\) be a compact metric space and let \(f : X \to X\) be a continuous and surjective map. For \(x \in X\), \(n > 1\) and \(\varepsilon > 0\) put

\[
D(x, n, \varepsilon, f) := \{ y \in X \mid d(f^i x, f^i y) < \varepsilon, \ 0 \leq i \leq n - 1 \},
\]

and call it an \((n, \varepsilon, f)\)-box. Take a probability \(\mu\) from \(E(X, f)\), the set of all \(f\)-invariant ergodic probabilities. For \(0 < \delta < 1\), let \(R(\delta, \varepsilon, n, f)\) denote the smallest number of \((n, \varepsilon, f)\)-boxes needed to cover a set of \(\mu\)-probability bigger than \(1 - \delta\). According to Katok [3], the measure-theoretic entropy \(h_{\mu}(f)\) can be defined by

\[
h_{\mu}(f) := \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log R(\delta, \varepsilon, n, f),
\]

which is independent of the choice of \(\delta\).

Let \(\alpha\) be an open cover of \(X\). Let \(A\) be a subset of \(X\). Set

\[
N_A(\alpha) := \min \left\{ \text{Card}(\beta) \mid \beta \subset \alpha, \bigcup_{B \in \beta} B \supseteq A \right\}.
\]

Define \(h(f, A, \alpha) := \lim_{\alpha \to 0} \frac{1}{n} \log N_A(\bigcup_{i=0}^{n-1} f^{-i} \alpha)\) and \(h(f, A) := \sup_{\alpha} h(f, A, \alpha)\). According to Adler–Konheim–McAndrew [1], the topological entropy \(h(f)\) of the whole system \((X, f)\) coincides with \(h(f, X)\).

Lemma 2.3. Let \(f : X \to X\), \(g : Y \to Y\), and \(p : X \to Y\) be continuous surjective maps on compact metric spaces satisfying \(p \circ f = g \circ p\). Take \(\mu \in E(X, f)\) and \(m \in E(Y, g)\), with \(p_*(\mu) = m\). Then for any \(f\)-invariant and \(\mu\) full probability subset \(W \subseteq X\) and any \(g\)-invariant and \(m\) full probability subset \(W' \subseteq Y\) satisfying \(p(W) = W'\), we have

\[
h_{\mu}(f) \leq h_{m}(g) + \sup_{y \in \Lambda} h(f, \rho^{-1}(y)),
\]

where \(\rho = p|W : W \to \Lambda\), and \(\rho^{-1}(\Lambda) \subseteq W\).

Proof. This result appears in other places, for example it is a special case (put \(f = 0\)) of Proposition 3.5 in [4].

We now present an alternative proof by using Katok’s entropy definition (2.1). Take \(\varepsilon > 0\) and \(0 < \delta < 1\). Let \(\alpha\) be a cover consisting of open balls \(B(x, \varepsilon)\) of radius \(\varepsilon\). Set

\[
a := \sup \inf_{y \in \Lambda, n} \frac{1}{n} \log N_{\rho^{-1}(y)}(\bigcup_{i=0}^{n-1} f^{-i} \alpha).
\]

If \(a = \infty\), the formula holds automatically. Hence we assume that \(a < \infty\). For each \(y \in \Lambda\) there exists a positive integer \(m_y\) such that

\[
N_{\rho^{-1}(y)}(\bigcup_{i=0}^{m_y-1} f^{-i} \alpha) \leq e^{m_y(a+\varepsilon)}.
\]

We extend \(\rho : W \to \Lambda\) to \(\tilde{\rho} : \tilde{W} \to \tilde{\Lambda}\) (we denote the extended map by \(\rho\) for notational simplicity). Denote

\[
b := \sup \inf_{y \in \tilde{\Lambda}, n} \frac{1}{n} \log N_{\rho^{-1}(y)}(\bigcup_{i=0}^{n-1} f^{-i} \alpha).
\]

Then \(b \geq a\) and for each \(y \in \tilde{\Lambda}\) there exists \(m'_y, m''_y = m_y\) when \(y \in \Lambda\), such that

\[
N_{\rho^{-1}(y)}(\bigcup_{i=0}^{m'_y-1} f^{-i} \alpha) \leq e^{m'_y(b+\varepsilon)}.
\]
For $y \in \tilde{A}$, take $\alpha_y \in \bigcup_{i=0}^{n-1} f^{-i}\alpha$ such that $\text{Card}(\alpha_y) = N_{\rho^{-1}(y)}(\bigcup_{i=0}^{n-1} f^{-i}\alpha)$ and $\bigcup_{\Lambda \in \alpha_y} \Lambda \supset \rho^{-1}(y)$. Set $O_y = \bigcup_{\Lambda \in \alpha_y} \Lambda$. Denote by $C(y)$ the set of all neighborhoods of y in \tilde{A}. Then there exists $K(y) \in C(y)$ such that $\rho^{-1}(K(y)) \subset O_y$. Let $U_y = \text{int} \ K(y)$, the interior of $K(y)$, and construct an open cover $\{U_y; y \in \tilde{A}\}$. Choose a Lebesgue number ε_1 for this cover with $0 < \varepsilon_1 < \varepsilon$. Choose (n, ε_1, g)-boxes in the compact subset \tilde{A}

$$D(y_1, n, \varepsilon_1, g), \ldots, D(y_R, n, \varepsilon_1, g),$$

where $R = R(\delta, \varepsilon_1, n, g)$, so that their union covers a subset of Y of m-probability bigger than $1 - \delta$. For a fixed i,

$$D(y_i, n, \varepsilon_1, g) = B(y_i, \varepsilon_1) \cap g^{-1}B(g(y_i), \varepsilon_1) \cap \cdots \cap g^{-(n-1)}B(g^{n-1}(y_i), \varepsilon_1).$$

(2.2)

Since Λ is dense in \tilde{A}, without loss of generality we suppose $y_i \in \Lambda, i = 1, 2, \ldots, R$. Write $m_k := m_{g^k(y_i)}$, $k = 0, 1, 1, \ldots, n - 1$. From the choice of ε_1 it is easy to see that

$$N_{\rho^{-1}(B(g^k(y_i), \varepsilon_1))} \left(\bigvee_{i=0}^{m_k-1} f^{-i}\alpha \right) \leq e^{m_k(a+\varepsilon)}, \quad k = 1, \ldots, n - 1.$$

Rewrite (2.2) as

$$A = A(0) \cap g^{-1}A(1) \cap \cdots \cap g^{-(n-1)}A(n-1),$$

where

$$A = D(y_i, n, \varepsilon_1, g), \quad A(j) = B(g^j(y_i), \varepsilon_1).$$

for $j = 0, \ldots, n - 1$. By using the collection $\{A(j)\}_{j=0}^{n-1}$ we define recursively a sequence $\{i_s\}$ as follows:

$$i_0 = 0,$$

$$i_{s+1} = i_s + m_k, \quad \text{where } A(i_s) = B(g^k(y_i), \varepsilon_1).$$

Let q denote the least integer such that $i_{q+1} \geq n$ and put $n_s = m_k$, if $A(i_s) = B(g^k(y_i), \varepsilon_1)$ for $0 \leq s \leq q$. Then $i_{q+1} = n_0 + n_1 + \cdots + n_q$. Since $i_{q+1} \geq n$,

$$N_{\rho^{-1}(A)} \left(\bigvee_{i=0}^{n-1} f^{-i}\alpha \right) \leq N_{\rho^{-1}(A)} \left(\bigvee_{i=0}^{i_{q+1}-1} f^{-i}\alpha \right).$$

Now we have

$$N_{\rho^{-1}(A)} \left(\bigvee_{i=0}^{n-1} f^{-i}\alpha \right) \leq N_{\rho^{-1}(A(0))} \left(\bigvee_{i=0}^{n_0-1} f^{-i}\alpha \right) N_{\rho^{-1}(g^{-n_0}A(n_0))} \left(f^{-n_0} \bigvee_{i=0}^{n_1-1} f^{-i}\alpha \right) \cdots$$

$$\times N_{\rho^{-1}(g^{-n_0-\cdots-n_q-1}A(n_0+\cdots+n_q-1))} \left(f^{-n_0-\cdots-n_q-1} \bigvee_{i=0}^{n_q-1} f^{-i}\alpha \right)$$

$$= N_{\rho^{-1}(A(0))} \left(\bigvee_{i=0}^{n_0-1} f^{-i}\alpha \right) N_{f^{-n_0}\rho^{-1}A(n_0)} \left(f^{-n_0} \bigvee_{i=0}^{n_1-1} f^{-i}\alpha \right) \cdots$$

$$\times N_{f^{-(n_0+\cdots+n_q-1)}\rho^{-1}A(n_0+\cdots+n_q-1)} \left(f^{-(n_0+\cdots+n_q-1)} \bigvee_{i=0}^{n_q-1} f^{-i}\alpha \right)$$

$$= N_{\rho^{-1}(A(0))} \left(\bigvee_{i=0}^{n_0-1} f^{-i}\alpha \right) N_{\rho^{-1}(A(n_0))} \left(\bigvee_{i=0}^{n_1-1} f^{-i}\alpha \right) \cdots$$

$$\times N_{\rho^{-1}(A(n_0+\cdots+n_q-1))} \left(\bigvee_{i=0}^{n_q-1} f^{-i}\alpha \right)$$

$$\leq e^{(a+\varepsilon)(n_0+\cdots+n_q)}$$

$$\leq e^{(a+\varepsilon)(n+H)}.$$
where $H = \max\{n_0, \ldots, n_q\}$. Observe that
\[
\mu \left(\cup_{i=1}^R D(y_i, n, \epsilon_1, g) \right) = m \left(\cup_{i=1}^R D(y_i, n, \epsilon_1, g) \right) > 1 - \delta.
\]
Thus
\[
R(\delta, n, \epsilon, f) \leq R(\delta, n, \epsilon_1, g) e^{(n+H)(a+\epsilon)}.
\]
Therefore,
\[
\lim_{n \to \infty} \frac{1}{n} \log R(\delta, n, \epsilon, f) \leq \lim_{n \to \infty} \frac{1}{n} \log R(\delta, n, \epsilon_1, g) + a + \epsilon.
\]
So by (2.1), $h_\mu(f) \leq h_m(g) + a$.

Now we present a parallel Bowen entropy inequality for flows. Observe that an ergodic probability for ϕ is not necessarily ergodic for ϕ_1, the time one homeomorphism for ϕ, one cannot deduce the inequality for flows automatically from Lemma 2.3.

Lemma 2.4. Let $\tilde{\psi} : X \times \mathbb{R} \to X$, $\psi : Y \times \mathbb{R} \to Y$ be two continuous flows on compact metric spaces and let $p : X \to Y$ be a continuous surjective map with $p \circ \tilde{\psi}_t = \psi_t \circ p$, for $t \in \mathbb{R}$. If $\mu \in E(X, \tilde{\psi})$ covers $m \in E(Y, \psi)$, namely, $p^*\mu = m$, then for any $\tilde{\psi}_1$ invariant and μ full probability subset $W \subset X$ and any ψ_1 invariant and m full probability subset $\Lambda \subset Y$ with $p(W) = \Lambda$, we obtain
\[
h_\mu(\tilde{\psi}_1) \leq h_m(\psi_1) + \sup_{y \in \Lambda} h(\tilde{\psi}_1, \eta_1^{-1}(y)),
\]
where $\eta = p|_W : W \to \Lambda, \eta^{-1}(\Lambda) \subset W$.

Proof. Denote by $I(X, \tilde{\psi}_1)$ and $I(Y, \psi_1)$ the set of $\tilde{\psi}_1$-invariant probabilities and the set of ψ_1-invariant probabilities, respectively. Then $\mu \in I(X, \tilde{\psi}_1)$ and $m \in I(Y, \psi_1)$. By ergodic decomposition theorem, there exist uniquely probabilities τ on $I(X, \tilde{\psi}_1)$ and σ on $I(Y, \psi_1)$ so that $\tau(E(X, \tilde{\psi}_1)) = 1$ and $\sigma(E(Y, \psi_1)) = 1$ and $\mu = \int_{E(X, \tilde{\psi}_1)} \mu' d\tau(\mu')$ and $m = \int_{E(Y, \psi_1)} m' d\sigma(m')$.

The map $p_* : I(X, \tilde{\psi}_1) \to I(Y, \psi_1)$, $\mu_0 \to \mu_0 \circ p^{-1}$ induced by p is continuous. Thus $(p_*)_* (\tau)$, denoted by $p_{**}(\tau)$ for notational simplicity, is a Borel probability on $I(Y, \psi_1)$. We assert that
\[
\sigma = p_{**}(\tau).
\]

Indeed,
\[
(p_{**}(\tau))(E(Y, \psi_1)) = \tau \circ p_{**}^{-1} E(Y, \psi_1) \\
\geq \tau\{E(X, \tilde{\psi}_1)\} = 1.
\]

For a given $g \in C^0(Y)$, we have
\[
\int_{E(Y, \psi_1)} \left(\int_Y g(y) d\mu' \right) d\mu = \int_{E(Y, \psi_1)} \left(\int_Y g(y) d\mu' \right) \circ p_* d\tau \\
= \int_{E(X, \tilde{\psi}_1)} \left(\int_X g \circ p(x) d\mu' \right) d\tau \\
= \int_X g \circ p d\mu = \int_Y g d\mu.
\]
This implies $m = \int_{E(Y, \psi_1)} m' d\mu_{**}(\tau)$ and thus by the ergodic decomposition theorem $p_{**}(\tau) = \sigma$.

From the Jacob theorem (see [18, Theorem 8.4])

\[h_\mu(\tilde{\psi}_1) = \int_{E(X,\tilde{\psi}_1)} h_{\mu'}(\tilde{\psi}_1) d\tau(\mu'), \]

\[h_\sigma(\psi_1) = \int_{E(Y,\psi_1)} h_{\sigma'}(\psi_1) d\sigma(m'). \]

The above assertion together with Lemma 2.3 gives rise to

\[h_\mu(\tilde{\psi}_1) \leq h_\sigma(\psi_1) + \sup_{y \in A} h(\tilde{\psi}_1, \eta^{-1}(y)). \quad \square \]

Due to the same observation as for Lemma 2.4, the following variational principle for flows is not an automatic corollary of the variation principle for the discrete case.

Lemma 2.5. Let \(\psi : X \times R \to X \) be a continuous flow on a compact metric space. Then

\[h(\psi_1) = \sup\{ h_\mu(\psi_1) \mid \mu \in E(X, \psi) \}. \]

Proof. This is Theorem A in [14]. \(\square \)

3. Proof of Theorem 1.1

Based on Bowen inequality of topological entropy [2, Theorem 17] Sacksteder and Shub established in [9] an equality of topological entropy between a diffeomorphism and its sphere bundle. By using Lemma 2.3, we obtain a probability version of Sacksteder–Shub equality and then prove Theorem 1.1 in this section.

Let \(X_0, X_1, \ldots, \) be a sequence of metric spaces with metrics \(d_0, d_1, \ldots, \) and let \(\tau = \{\tau_i : i = 1, 2, \ldots, \} \) be a sequence of continuous maps \(\tau_i : X_{i-1} \to X_i. \) Let \(\Sigma = \{\sigma_i : i = 0, 1, 2, \ldots, \} \) be a sequence of continuous maps \(\sigma_i : X_0 \to X_i \) defined by \(\sigma_i = \prod_{j=1}^{i} \tau_j \) for \(i \geq 1. \) We call \(\Sigma \) a compositional representation of \(\tau. \) If \(\delta > 0 \) and \(K \subset X_0 \) is compact, a subset \(W \subset K \) is said to \((n, \delta) \)-span \(K \) if for every \(y \in K \) there is an \(x \) in \(W \) such that for \(0 \leq j \leq n, \) \(d_j(\sigma_j(x), \sigma_j(y)) < \delta. \) Such a set \(W \) is said to be \((n, \delta) \) separated in \(K \) if for all \(x, y \in W \) with \(x \neq y, d_j(\sigma_j(x), \sigma_j(y)) > \delta \) for some \(j, 0 \leq j \leq n. \) Let \(r_n(\delta, K) \) denote the minimal cardinality of any \((n, \delta) \) separated set for \(K \) and \(s_n(\delta, K) \) the maximal cardinality of any \((n, \delta) \) separated set of \(K. \) As in Bowen [2] it follows for any compact \(K, \)

\[\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log r_n(\epsilon, K) = \lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s_n(\epsilon, K). \]

We denote this equality by \(h(\Sigma, K) \) and define the entropy of \(\Sigma \) by

\[h(\Sigma) := \sup_{K \text{ compact}} h(\Sigma, K). \]

Let \(E \) be a vector bundle (over a compact metric space \(X \)) with a Finsler structure, that is, with a norm \(\| \cdot \| \) on the fibers, and let \(S(E) \) be the corresponding unit sphere sub-bundle of \(E. \) If \(A : E \to E \) is a vector bundle map, one can define a map \(S(A) : S(E) \to S(E) \) by

\[S(A)(v) = A(v) \setminus \| A(v) \|. \quad (3.1) \]

The following lemma is from [9].

Lemma 3.6. Let \(A_i : R^n \to R^n \) \((i = 1, 2, \ldots; n \geq 2) \) be linear isomorphisms such that for some \(\lambda > 0, \| A_i \| \leq \lambda \) and \(\| A_i^{-1} \| \leq \lambda. \) If \(S(A_i) : S^n \to S^n \) is defined as in (3.1) for \(i = 1, 2, \ldots, \) and \(\Sigma = \{\sigma_i = \prod_{j=1}^{i} S(A_j) : i = 1, 2, \ldots\} \) is a compositional representation of \(\{S(A_i) : i = 1, 2, \ldots\}, \) then \(h(\Sigma) = 0. \)
Set
\[P(E) := \{ [u] | v \in [u] \text{ iff } v = au, a \neq 0 \}. \]

Let \(A: E \to E \) be a vector automorphism over a given diffeomorphism \(f: X \to X \). \(A \) induces a bundle map \(P(A) : P(E) \to P(E), [u] \to [Au] \). The following theorem could be regarded as a probability version of Sacksteder–Shub equality [9].

Theorem 3.7. Let \(E \) be a vector bundle over the compact metric space \(X \) with a Finsler structure. Suppose that \(A: E \to E \) is a vector bundle endomorphism of \(E \) over a homeomorphism \(f: X \to X \). Let \(m \in E(X, f) \) and \(\mu \in E(P(E), P(A)) \) be probabilities with \(\pi_s(\mu) = m \), where \(\pi : P(E) \to X \) denotes the canonical bundle projection. Then \(h_\mu(P(A)) = h_m(f) \).

Proof. By \(\pi \) we denote both projections \(S(E) \to X \) and \(P(E) \to X \) without confusion. Define a map \(q : S(E) \to P(E) \) by \(u \to [u] \), then \(q \) is a two-to-one map with \(q \circ S(A) = P(A) \circ q \). Take \(\tilde{\mu} \in E(S(E), S(A)) \) with \(q_\ast \tilde{\mu} = \mu \). Then \(h_{\tilde{\mu}}(S(A)) = h_\mu(P(A)) \) by Lemma 2.3. Note \(\pi_s \circ q_\ast \tilde{\mu} = m \). To show the equality \(h_{\tilde{\mu}}(S(A)) = h_m(f) \), it suffices to show \(h_m(f) \geq h_{\tilde{\mu}}(S(A)) \).

Let \(C^0(X) \) be the set of continuous functions on \(X \) and define

\[\Lambda := \left\{ x \in X \mid \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \xi(f^i x) = \int \xi \, dm, \, \xi \in C^0(X) \right\}. \]

By the Birkhoff ergodic theorem, \(f(A) = \Lambda \) and \(m(A) = 1 \). By Lemma 2.3,

\[h_{\tilde{\mu}}(S(A)) \leq h_m(f) + \sup_{x \in A} h(S(A), \pi^{-1}(x)). \]

Fix \(x \in \Lambda \) and set

\[X_0 = \pi^{-1}(x), \quad X_1 = S(A)X_0 = \pi^{-1}(fx), \quad X_2 = S(A)^2 X_0 = \pi^{-1}(f^2x), \ldots. \]

Clearly \(\pi^{-1}(f^j x) \) is homeomorphic to \(S^{n-1} \), where \(n \) indicates the fiber dimension of \(E \). Set \(\Sigma := \{ S(A)^j : X_0 \to X_i, \, i = 1, 2, \ldots \} \). Since \(A : E \to E \) is a vector bundle endomorphism and nonsingular, then \(\| S(A) \| \leq \lambda, \| S(A)^{-1} \| \leq \lambda \) for a constant \(\lambda \). Thus \(h(\Sigma) = 0 \) by Lemma 3.6. It is then simple to show by definition that

\[h(S(A), \pi^{-1}(x)) = h(\Sigma), \quad \forall x \in \Lambda. \]

Thus \(h_{\tilde{\mu}}(S(A)) \leq h_m(f) \). \(\Box \)

Proof of Theorem 1.1. We prove (2) and leave (1) to readers.

Let \(TM \) be the tangent bundle and let \(E_\ell = \bigwedge^\ell(TM) \), where \(\bigwedge^\ell \) denotes \(\ell \)-th-exterior power. Let

\[A_\ell = \bigwedge^\ell (Df) : E_\ell \to E_\ell, \]

where \(e_1, \ldots, e_n \) from a basis in \(T_xM \). Let \(\{ e_1, e_2, \ldots, e_\ell \} \) and \(\{ w_1, w_2, \ldots, w_\ell \} \) be two bases in \(T_xM \). They span the same \(\ell \)-dimensional subspace iff

\[w_1 \wedge w_2 \wedge \cdots \wedge w_\ell = ae_1 \wedge e_2 \wedge \cdots \wedge e_\ell, \quad a \in \mathbb{R}. \]

This gives an equivalence relation \(\sim \). Set

\[D_\ell(x) := \{ e_1 \wedge e_2 \wedge \cdots \wedge e_\ell | \, e_1, e_2, \ldots, e_\ell \text{ are linearly independent in } T_xM \}. \]

Set \(G_\ell(x) := D_\ell(x) \setminus \sim \) and \(G_\ell := \bigcup_{x \in M} G_\ell(x) \). Then \(G_\ell \subset P(E_\ell) \) is a sub-bundle whose fiber over \(x \) is the projectivization of the set of decomposable \(\ell \)-vectors in \(E_\ell(x) \). \(G_\ell \) is invariant under the map \(P(A_\ell) : P(E_\ell) \to P(E_\ell), \ [u] \to [A_\ell u], \ u \in E_\ell \). Note that \(L_\ell \) is isomorphic to \(G_\ell \). Moreover, the isomorphism conjugates \(L_\ell : L_\ell \to L_\ell \).
to the restriction $P(A_\ell)|G_\ell : G_\ell \to G_\ell$ and sends $m_\ell \in E(L_\ell, L_\ell)$ to some $\tilde{m}_\ell \in E(G_\ell, P(A_\ell))$. We have, by Theorem 3.7, $\tilde{m}_\ell(L_\ell) = h_\nu(f)$ and thus by the variational principle (see Lemma 2.5 in the flow case) $h(L_\ell) = h(f)$.

Now we prove that the equality $h_{\mu_\ell}(F_\ell^\#) = h_\nu(f)$. Consider the bundle $L_{1, \ell}$ whose fiber over x is $L_{1}(x) \times L_{2}(x) \times \cdots \times L_{u}(x)$ and let $L_{1, \ell}$ be the automorphism of $L_{1, \ell}$ given by

$$(x, V_1, \ldots, V_\ell) \to (f(x), Df(x)(V_1), \ldots, Df(x)(V_\ell)).$$

Denote by $p_{1, \ell} : L_{1, \ell} \to M$ the canonical bundle projection. Note by Lemma 3.6 that

$$h(L_i, L_i(x)) = h(P(A_i), G_i(x)) = 0, \quad i = 1, \ldots, \ell, \quad \forall x,$$

it is simple to show that $h(L_{1, \ell}, L_{1, \ell}(x)) = 0, \quad \forall x$. By Lemma 2.3 we have $h_\nu(f) = h_{\mu_{1, \ell}}(L_{1, \ell})$ for each $\mu_{1, \ell} \in E(L_{1, \ell}, L_{1, \ell})$ covering ν, namely, $p_{(1, \ell)} \mu_{1, \ell} = \nu$. Next, let H_{ℓ} be the sub-bundle of $L_{1, \ell}$ formed by elements (x, V_1, \ldots, V_ℓ) such that $V_1 \subset V_2 \subset \cdots \subset V_\ell$. Then $L_{1, \ell}(H_{\ell}) = H_{\ell}$. For a given $\alpha = (u_1, u_2, \ldots, u_\ell) \in \mathcal{F}_\ell^\#$ define

$$V_1 = [u_1], \quad V_2 = [u_1, u_2], \quad \ldots, \quad V_\ell = [u_1, u_2, \ldots, u_\ell],$$

where $[u_1, \ldots, u_i]$ denotes the linear subspace in $T_x M$ generated by u_1, \ldots, u_i. Set

$$p : \mathcal{F}_\ell^\# \to H_{\ell}, \quad p(\alpha) := (x, V_1, V_2, \ldots, V_\ell).$$

Then p is a finite-to-one surjective map satisfying $p \circ F_\ell^\# = L_{1, \ell} | H_{\ell} \circ p$. It follows by Lemma 2.3 that $h_{\mu_{1, \ell}}(F_\ell^\#) = h_{\mu_{1, \ell}}(L_{1, \ell}) = h_\nu(f)$. By the variational principle (see Lemma 2.5 in the flow case) $h(F_\ell^\#) = h(f)$. This completes Theorem 1.1(2).

4. Proof of Theorem 1.2

Let $\phi : X \times R \to X$ be a continuous flow on a compact metric space and let $\nu \in E(X, \phi)$. Define

$$Q_\nu(X, \phi) := \left\{ x \in M \mid \lim_{t \to \pm \infty} \frac{1}{t} \int_0^t \xi(\phi_s(x)) \, ds = \int \xi \, d\nu, \quad \forall \xi \in C^0(X) \right\}.$$

A point in $Q_\nu(X, \phi)$ is called a quasi-regular point for ν. By the Birkhoff ergodic theorem $\nu(Q_\nu(X, \phi)) = 1$ and $\phi_t(Q_\nu(X, \phi)) = Q_\nu(X, \phi), t \in \mathbb{R}$.

Lemma 4.8. Let $\tilde{\nu} : X \times R \to X, \psi : Y \times R \to Y$ be two continuous flows on compact metric spaces and let $p : X \to Y$ be a continuous surjective map with $p \circ \tilde{\nu} = \psi \circ p, t \in \mathbb{R}$. Let $\nu \in E(Y, \psi)$ and let $A = \{ \mu \in E(X, \tilde{\nu}) \mid p_* \mu = \nu \}$ and let $Q = \bigcup_{\mu \in A} Q_\mu(X, \phi)$. Let $\rho = p|Q : Q \to Q_\nu(Y, \psi), \quad \rho^{-1} Q_\nu(Y, \psi) \subset Q$. Suppose that $\text{Card}(\rho^{-1}(a)) = N$ for some $a \in Q_\nu(Y, \psi)$, some positive integer N, then $\text{Card} A \leq N$.

Proof. It is known (see [6, Lemma 2.1]) that $A \neq \emptyset$. Now we show that $\text{Card} A \leq N$.

Suppose on the contrary that $\text{Card} A > N$. Take $\mu_n \in A, n = 1, 2, \ldots, N + 1$ and suppose that $\mu_i \neq \mu_j, i \neq j$. Let $A = Q_\nu(Y, \psi) \cap \bigcap_{n=1}^{N+1} p Q_{\mu_n}(X, \phi)$. Then $\nu(A) = 1$ and $\psi_t(A) = A, t \in \mathbb{R}$. Fix $a \in A$. Since $\text{Card} \rho^{-1}(a) = N$ then there exists $b \in \rho^{-1}(a)$ so that $b \in Q_{\mu_i}(X, \tilde{\nu}) \cap Q_{\mu_j}(X, \tilde{\nu})$ for some $i \neq j$. Thus

$$\int_0^t \xi \, d\mu_i = \lim_{t \to \pm \infty} \frac{1}{t} \int_0^t \xi(\tilde{\nu}_s(b)) \, ds = \int \xi \, d\mu_j, \quad \forall \xi \in C^0(X).$$

This implies that $\mu_i = \mu_j$, a contradiction to the choice of μ_n. Therefore, $\text{Card} A \leq N$.

In light of Lemma 4.8, the bounds of the number of covering probabilities rely on the cardinality of the quasi-regular points that are pre-images of a quasi-regular point of ν under the natural bundle projection. Liao qualitative functions (see below for definition) will turn out to be crucial while dealing with these quasi-regular points. These functions are a generalization of the function $\omega : TM \to R, \omega(u) := \frac{d}{dt} \|\Phi_t(u)\|_{t=0}$.

Now we recall Liao qualitative functions, which were first introduced in [5].

For \(\alpha = (u_1, u_2, \ldots, u_\ell) \in \mathcal{F}_\ell \) denote \(\chi_t(\alpha) = (u_1(t), u_2(t), \ldots, u_\ell(t)) \) and define \(\zeta_{\alpha k}(t) := \|u_k(t)\| \). It is clear that \(\zeta_{\alpha 1}(t) = \|d\phi_t(u_1)\| \). The limit
\[
\lim_{t \to +\infty} \frac{1}{t} \log \zeta_{\alpha k}(t).
\]

whenever it exists, coincides with the Lyapunov exponent
\[
\lim_{t \to +\infty} \frac{1}{t} \log \|\Phi_t(u_k)\|,
\]
for \(k = 1 \) and is not necessarily equal to the Lyapunov exponent for \(k = 2, \ldots, \ell \). Liao qualitative functions \(\omega_k : \mathcal{F}_\ell \to \mathbb{R} \) are defined by
\[
\omega_k(\alpha) := \frac{d\zeta_{\alpha k}(t)}{dt} \bigg|_{t=0}, \quad k = 1, \ldots, \ell.
\]

All these functions are continuous, see [5]. For \(\alpha \in \mathcal{F}_\ell^# \), it holds clearly that \(\omega_k(\chi_t(\alpha)) = \frac{d\zeta_{\alpha k}(t)}{dt} \) and \(\omega_k(\chi^#_t(\alpha)) = \frac{1}{\zeta_{\alpha k}(t)} \frac{d\zeta_{\alpha k}(t)}{dt} \) and thus
\[
\log \|d\phi_t(u_1)\| = \int_0^t \omega_k(\chi^#_s(\alpha)) \, ds.
\]

(4.1)

We point out that (4.1) is a quite natural formula while \(k = 1 \) by the following argument:
\[
\zeta_{\alpha 1}(t) = \|d\phi_t(u_1)\|,
\]
\[
\omega_1(\alpha) := \frac{d\|d\phi_s(u_1)\|}{ds} \bigg|_{s=0}, \quad \omega_1(\chi^#_t(\alpha)) = \frac{1}{\zeta_{\alpha 1}(t)} \frac{d\zeta_{\alpha 1}(t)}{dt},
\]
\[
\log \|d\phi_t(u_1)\| = \int_0^t \frac{d\|d\phi_s(u_1)\|}{ds} \, ds.
\]

where \(u_1 \) is the first vector in \(\alpha = (u_1, \ldots, u_\ell) \), \(\|u_1\| = 1 \).

Proof of Theorem 1.2. We prove (1) with \(\ell = n \) and leave other cases to readers.

Step 1. The upper bounds. Let \(O_\nu(M, \phi) \) denote the Oseledec basin for \(\nu \), it consists of all points \(x \in M \) for which there is a splitting \(T_x M = E^1_x \oplus \cdots \oplus E^n_x \) with the invariant property \(\Phi_t(E^i_x) = E^i_{\phi_t(x)} \) and satisfying
\[
\lim_{t \to \pm \infty} \frac{1}{t} \log \|\Phi_t|_{E^i_x}\| = \lambda_i, \quad i = 1, \ldots, n,
\]
where \(\lambda_1 < \cdots < \lambda_n \) are Lyapunov exponents for \(\nu \). From the Oseledec theorem [8], the angle \(\angle(E^i_x, E^j_x) \) of two sub-bundles \(E^i_x, E^j_x \) is measurable and positive with respect to \(\nu \)-a.a. \(x \in M \), hence by Birkhoff ergodic theorem
\[
\lim_{t \to \pm \infty} \frac{1}{t} \int_0^t \angle(E^i_{\phi_s x}, E^j_{\phi_s x}) \, ds = \int_0^\infty \angle(E^i_x, E^j_x) \, dv(y) > 0
\]
\(\mu \)-a.a. \(x \in M \). Denote
\[
G_{ij}(\nu) = \{ x \in M \mid (4.2) \text{ holds} \}, \quad i, j = 1, 2, \ldots, n.
\]

Let
\[
H(\nu) = Q_\nu(M, \phi) \cap O_\nu(M, \phi) \bigcap_{i,j=1, \ldots, n; i \neq j} G_{ij}(\nu).
\]

Then \(\phi_t H(\nu) = H(\nu) \) and \(\nu(H(\nu)) = 1 \). Denote by \(\rho \) the restriction map \(p_n \big|_{\bigcup_{\mu \in \mathcal{A}} Q_\mu(X^\phi \times X^\phi)} \).

Claim. Card \(\rho^{-1}(x) = 2^n n! \) for any given \(x \in H(\nu) \).

For the proof of claim, please see Appendix A.

From the claim and Lemma 4.8, Card \(\mathcal{A} \leq 2^n n! \) when \(\ell = n \).
One shows similarly that
\[\operatorname{Card} \mathcal{A} \leq 2^\ell A^\ell_n \]
(4.3)
when \(1 \leq \ell < n \).

When \(\ell = n \), there is exactly one \(m \in E(L_n, \varphi) \) to cover \(v \). Now let \(1 \leq \ell < n \) and consider a map \(\operatorname{id}_\ell : F^\#_\ell \to L_\ell(M), (u_1, \ldots, u_\ell) \to [u_1, \ldots, u_\ell] \). We have then
\[\operatorname{id}_\ell \circ E(F^\#_\ell, \chi^\#) = E(L_\ell, \varphi), \quad p_\ell \circ E(L_\ell, \varphi) = E(M, \phi) = p_\ell \circ E(F^\#_\ell, \chi^\#). \]

So by (4.3) the number of \(\mu \in E(L_\ell(M), \varphi) \) covering \(v \) is less than or equal to \(2^n A_n^\ell \).

Step 2. The lower bounds. To show the lower bounds we quote the following Liao’s reordering lemma.

Lemma 4.9. ([6, Theorem 4.1], [12, Theorem 2.1]) Let \(1 \leq \ell \leq n \) and let \(\mu \in E(F^\#_\ell, \chi^\#) \) cover \(v \in E(M, \phi) \), \(p_\ell \circ \mu = v \). For a permutation
\[\gamma : \{1, 2, \ldots, \ell\} \to \{\gamma(1), \gamma(2), \ldots, \gamma(\ell)\}, \]
there exists \(\mu_\gamma \in E(F^\#_\ell, \chi^\#) \) such that \(p_\ell \circ \mu_\gamma = p_\ell \circ (\mu_\gamma) \) and
\[\int \omega_{\gamma(k)} d\mu_\gamma = \int \omega_k d\mu, \quad k = 1, 2, \ldots, \ell. \]
Moreover, for each permutation \(\gamma : \{1, 2, \ldots, n\} \to \{\gamma(1), \gamma(2), \ldots, \gamma(n)\}, \)
\[\left\{ \int \omega_{\gamma(k)} d\mu_\gamma, k = 1, \ldots, n \right\} = \{\lambda_1, \ldots, \lambda_n\}, \]
where \(\lambda_1 < \cdots < \lambda_n \) are all Lyapunov exponents of \(v \), and \(v \) is given in the assumption of Theorem 1.2.

From Lemma 4.9, covering probabilities corresponding to different permutations are different. Note there are \(n! \) many permutations, so \(\operatorname{Card} \mathcal{A} \geq n! \) while \(\ell = n \). If \(1 \leq \ell < n \), one shows similarly that \(\operatorname{Card} \mathcal{A} \geq A_n^\ell \). This completes Theorem 1.2. \(\square \)

Remark 4.1. Let us make an explanation of Theorem 1.2 in the case when \(\dim M = 2 \).

Let \(f : M \to M \) be a \(C^1 \) diffeomorphism preserving an ergodic hyperbolic probability \(v \) with Lyapunov exponents \(\lambda_1 < 0 < \lambda_2 \). Define \(O_\nu(M, f) \) to be all points \(x \in M \) for which there is a splitting \(T_x M = E^1_x \oplus E^2_x \) with invariant property \(d f | E^i_x = E^i f(x) \) and satisfying
\[\lim_{n \to +\infty} \frac{1}{n} \log \| d f | E^i_x \| = \lambda_i, \quad i = 1, 2. \]
Let
\[H(v) = O_v(M, f) \cap Q\nu(M, f). \]
Then \(f(H(v)) = H(v) \) and \(v(H(v)) = 1 \). Since \(\dim E^1_x = 1 \), there are exactly two unit vectors \(u^1, u^2 \) in each \(E^1_x, \quad i = 1, 2 \).

Recall that \(\mathcal{A} = \{ \mu \in E(F^\#_2, F^\#_2) \mid p_\ell \circ \mu = v \} \) and \(Q = \bigcup_{\mu \in \mathcal{A}} Q\mu(F^\#_2, F^\#_2) \). Denote by \(\rho \) the restriction map \(p_2|_{\bigcup_{\mu \in \mathcal{A}} Q\mu(F^\#_2, F^\#_2)} \).

Fix \(x \in H(v) \) and let \(\alpha = (u_1, u_2) \) denote arbitrarily a frame in \(\rho^{-1}(x) \). From the proof in Appendix A, \(u_1 \) belongs to \(E^1_x \) or \(E^2_x \).

Case 1: \(u_1 \in E^1_x \). In this case it follows that
\[\lambda_2 = \lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| > \lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| = \lambda_1. \]
Case 2: \(u_1 \in E^2_x \). In this case it follows that
\[\lambda_2 = \lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| > \lim_{t \to -\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| = \lambda_1. \]
The set \(\rho^{-1}(x) \) consists of exactly \(2^2 \times 2! = 8 \) elements, they are all orthonormal frames expressed by

\[
(u^i, v) \in \mathcal{F}_2^\#(x),
\]
while \(v \) has two choices for each \(u^i, 1 \leq i, j \leq 2 \). For each \(\alpha = (u^i, v) \), denote by \(\mu \) its individual ergodic probability, namely the probability satisfies

\[
\lim_{n \to \pm \infty} \frac{1}{n} \sum_{i=1}^{n-1} \xi ((F_2^\#)(\alpha)) = \int \xi \, d\mu, \quad \forall \xi \in C^0(\mathcal{F}_2^\#).
\]

Then \(\mu \in \mathcal{A} \), and from Lemma 4.8 and its proof, \(\mathcal{A} \) consists only of probabilities that are individual of the frames \((u^i, v) \). So the cardinality of \(\mu \in \mathcal{A} \) is no greater than \(8 = 2^2 \times 2! \).

Observe that the two individual probabilities \(\mu \) of \((u^{11}, v)\) and \(\tilde{\mu}\) of \((u^{22}, v')\) are different. To show this, let us consider a continuous function \(\omega_1 : \mathcal{F}_2^\# \to \mathbb{R} \), \(\alpha = (u_1, u_2) \to \omega_1(\alpha) = \log \|df(u_1)\| \). Now that the following two limits are different:

\[
\int \omega_1 \, d\mu = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \omega_1(F_2^\#(u^{11}, v)) = \lim_{n \to \infty} \frac{1}{n} \log \|df^n(u^{11})\| = \lambda_1,
\]

\[
\int \omega_1 \, d\tilde{\mu} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \omega_1(F_2^\#(u^{22}, v')) = \lim_{n \to \infty} \frac{1}{n} \log \|df^n(u^{22})\| = \lambda_2,
\]

so \(\mu \neq \tilde{\mu} \). Thus the cardinality of \(\mathcal{A} \) is greater than or equal to 2. Finally,

\[A_1^2 = 2 \leq \text{Card} \mathcal{A} \leq 8 = 2^2 \times 2! \.

Appendix A

Proof of claim in the proof of Theorem 1.2. One can prove the claim in a similar way as in Claim 1 in the proof of [14, Theorem B]. We give here a different and more natural proof, from which the interesting relation (see (A.7), (A.10) and (A.11)) between the usual Lyapunov exponent \(\lim_{t \to \pm \infty} \frac{1}{t} \log \|\Phi_t(u_k)\| \) and the number \(\lim_{t \to \pm \infty} \frac{1}{t} \log \zeta_{\alpha k}(t) \) defined in Liao theory, where \(u_k \) is the \(k \)th vector of \(\alpha \), becomes clear.

Take an \(n \)-frame \(\alpha = (u_1, \ldots, u_n) \) to represent a common point in \(\rho^{-1}(x) \), now we figure out how many choices each \(u_i \) has. Since \(\alpha \) is in the set \(\bigcup_{\mu \in A} Q_\mu(\mathcal{F}^\#, \chi^\#) \) and \(\omega_\alpha \) is continuous, it holds from (4.1)

\[
\lim_{t \to \pm \infty} \frac{1}{t} \log \zeta_{\alpha k}(t) = \lim_{t \to +\infty} \frac{1}{t} \log \zeta_{\alpha k}(t) = \lim_{t \to +\infty} \frac{1}{t} \int s(\chi_k(\alpha)) \, ds = \lambda_{i_k}.
\]

The first vector \(u_1 \) in \(\alpha \) must be taken from some subspace \(E_{i_1}^{x} \). Indeed, by definition, \(\|\Phi_t(u_1)\| = \zeta_{\alpha_1}(t) \) and by (A.1), \(\lim_{t \to +\infty} \frac{1}{t} \log \|\Phi_t(u_1)\| \) coincides with \(\lim_{t \to +\infty} \frac{1}{t} \log \|\Phi_t(u_1)\| \). The common limit coincides with a Lyapunov exponent \(\lambda_{i_1} \) for some \(i_1 \in \{1, \ldots, n\} \). This implies by the Oseledec theorem that \(u_i \in E_{i_1}^{x} \). Observe that \(i_1 \) is taken from \(\{1, \ldots, n\} \), and the one-dimensional sub-bundle \(E_x^{i_1} \) has exactly 2 unit vectors, so the maximal choice that \(u_1 \) has is \(2n \).

Now we assert that there exists \(i_2 \in \{1, \ldots, n\} \setminus \{i_1\} \) so that \(u_2 \in E_{i_1}^{x} \oplus E_{i_2}^{x} \) and

\[
\lim_{t \to +\infty} \frac{1}{t} \log \zeta_{\alpha 2}(t) = \lambda_{i_2}.
\]

Observe from the Oseledec theorem that the filtration

\[
E^1 \subset E^1 \oplus E^2 \subset \cdots \subset E^1 \oplus \cdots \oplus E^n = TM
\]

is \(d\Phi_t \) invariant. There is a minimal index \(j \) such that \(u_2 \in E_j^{x} \oplus \cdots \oplus E_i^{x} \). There are three possibilities, \(j = i_1, j < i_1 \), and \(j > i_1 \).
The first case: $j = i_1$. We see that $i_1 > 1$ in this case, because the 1-dimensional space E_i^1 cannot contain two orthonormal vectors u_1 and u_2. We take $i_2 := i_1 - 1$. From the choice of j, which equals to i_1 in this case, we see that $u_2 \in E_i^1 \oplus \cdots \oplus E_x^i$, hence
\[
\lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| = \lambda_{i_1}.
\]

Note from definition that $\| \Phi_t(u_2) \| \geq \eta_{i_2}(t)$, hence we have by (A.1)
\[
\lambda_{i_1} = \lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| \geq \lim_{t \to +\infty} \frac{1}{t} \log \eta_{i_2}(t) = \lim_{t \to +\infty} \frac{1}{t} \log \eta_{i_2}(t) \geq \lim_{t \to -\infty} \frac{1}{t} \log \| \Phi_t(u_2) \|.
\]

Let us write
\[
u_2 := v_1 + \cdots + v_{i_2} + v_{i_1}, \quad v_1 \in E_x^1, \ldots, v_{i_2} \in E_x^{i_2}, \quad v_{i_1} \in E_x^{i_1}.
\]

Denote by $\text{proj}_j : F_n \to TM$ the projection that sends an n-frame to its ith vector. Since $\langle \text{proj}_1 \chi_i^j(\alpha), \text{proj}_2 \chi_i^j(\alpha) \rangle = 0$ and $\Phi_t(v_{i_1}) \in E_x^{i_1}$, $\Phi_t(u_2)$ and $\Phi_t(v_1 + \cdots + v_{i_2})$ have the same projection in the direction determined by $\text{proj}_2 \chi_i^j(\alpha)$. Since $\chi_i^j(\alpha)$ is an orthonormal frame on $T_{\phi_t(x)}M$ and $\Phi_t(v_1 + \cdots + v_{i_2})$ is orthogonal to the linear subspace in $T_{\phi_t(x)}M$ generated by $\text{proj}_3 \chi_i^j(\alpha), \ldots, \text{proj}_n \chi_i^j(\alpha)$, we can represent $\Phi_t(v_1 + \cdots + v_{i_2})$ as
\[
\frac{\Phi_t(v_1 + \cdots + v_{i_2})}{\| \Phi_t(v_1 + \cdots + v_{i_2}) \|} = a_1(t) \text{proj}_1 \chi_i^j(\alpha) + a_2(t) \text{proj}_2 \chi_i^j(\alpha)
\]
with $|a_i(t)| \leq 1$. Since $\text{orb}(x, \phi) \subset H(v)$ we have by (4.2) that
\[
\pi \geq \limsup_{t \to +\infty} \left(\langle E_x^{i_1}, E_x^{i_2} \rangle \right) > 0.
\]

Remember that $\langle \text{proj}_1 \chi_i^j(\alpha), \text{proj}_2 \chi_i^j(\alpha) \rangle = \frac{\pi}{2}$. Then
\[
\limsup_{t \to +\infty} \left(\langle E_x^{i_2}, \text{proj}_2 \chi_i^j(\alpha) \rangle > 0.
\]

This together with the following equality
\[
\lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(v_1 + \cdots + v_{i_2}) \| = \lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(v_{i_2}) \|
\]
implies that $\limsup_{t \to +\infty} |a_2(t)| > 0$. Observe that $\text{proj}_2 \chi_i^j(\alpha)$ and $a_2(t) \| \Phi_t(v_1 + \cdots + v_{i_2}) \| \text{proj}_2 \chi_i^j(\alpha)$ denote the same projection of $\Phi_t(v_1 + \cdots + v_{i_2})$ to the direction determined by $\text{proj}_2 \chi_i^j(\alpha)$, so $\eta_{i_2}(t) = |a_2(t)| \| \Phi_t(v_1 + \cdots + v_{i_2}) \|$. Thus
\[
\limsup_{t \to +\infty} \frac{1}{t} \log \eta_{i_2}(t) = \lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(v_1 + \cdots + v_{i_2}) \| = \lambda_{i_2}.
\]

This together with (A.2) gives
\[
\lambda_{i_1} = \lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| > \lim_{t \to +\infty} \frac{1}{t} \log \eta_{i_2}(t) = \lim_{t \to +\infty} \frac{1}{t} \log \eta_{i_2}(t) = \lambda_{i_2}.
\]

Now we show that $u_2 \in E_x^{i_2} \oplus E_x^{i_1}$. Otherwise, by (A.3) there is $k < i_2$ such that
\[
u_2 := v_k + \cdots + v_{i_2} + v_{i_1}, \quad 0 \neq v_k \in E_x^k, \ldots, v_{i_2} \in E_x^{i_2}, \quad v_{i_1} \in E_x^{i_1}.
\]

One can deduce by using a similar argument as above while $t \to -\infty$ that,
\[
\lim_{t \to -\infty} \frac{1}{t} \log \eta_{i_2}(t) = \lim_{t \to -\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| = \lambda_{i_2},
\]
which contradicts to (A.5). Therefore, $u_2 \in E_x^{i_1} \oplus E_x^{i_2}$ and
\[
\lambda_{i_1} = \lim_{t \to +\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| > \lim_{t \to +\infty} \frac{1}{t} \log \eta_{i_2}(t) = \lim_{t \to +\infty} \frac{1}{t} \log \eta_{i_2}(t) = \lim_{t \to -\infty} \frac{1}{t} \log \| \Phi_t(u_2) \| = \lambda_{i_2}.
\]
This completes the first case.

The second case: \(j < i_1 \). In this case we set \(i_2 = j \). From (A.1) and from the choice of \(j \) it follows that

\[
\lambda_{i_2} = \lim_{i \to \infty} \frac{1}{i} \log \left\| \Phi_t(u_2) \right\| = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t) = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t) \geq \lim_{i \to \infty} \frac{1}{i} \log \left\| \Phi_t(u_2) \right\|. \quad (A.8)
\]

Since \(\chi^\#(\alpha) \) is an orthonormal frame on \(T_{\phi^{(\alpha)}}M \) and by definition \(\Phi_t(u_2) \) have no projection on the subspace generated by \(\text{proj}_3 \chi^\#(\alpha) \), ..., \(\text{proj}_n \chi^\#(\alpha) \), then we can represent \(\frac{\Phi_t(u_2)}{\left\| \Phi_t(u_2) \right\|} = b_1(t) \text{proj}_1 \chi^\#(\alpha) + b_2(t) \text{proj}_2 \chi^\#(\alpha) \)

with \(|b_1(t)| \leq 1 \). We observe that \(\langle \text{proj}_1 \chi^\#(\alpha), \text{proj}_2 \chi^\#(\alpha) \rangle = \frac{\pi}{2} \) and by (4.2) that

\[
\frac{\pi}{2} \geq \limsup_{t \to \infty} \langle E^{i_1}_{\phi^{(\alpha)}}, E^{i_2}_{\phi^{(\alpha)}} \rangle > 0.
\]

So \(\limsup_{t \to \infty} \langle E^{i_2}_{\phi^{(\alpha)}}, \text{proj}_2 \chi^\#(\alpha) \rangle > 0 \). This implies that \(\limsup_{t \to \infty} |b_2(t)| > 0 \). Note that \(\zeta_{a_2}(t) = |b_2(t)| \times \left\| \Phi_t(u_2) \right\| \), we have that

\[
\lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t) = \lim_{i \to \infty} \frac{1}{i} \log \left\| \Phi_t(u_2) \right\| = \lambda_{i_2}.
\]

This together with (A.8) gives

\[
\lambda_{i_2} = \lim_{i \to \infty} \frac{1}{i} \log \left\| \Phi_t(u_2) \right\| = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t) = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t). \quad (A.9)
\]

We now show that \(u_2 \in E^{i_2}_x \oplus E^{i_1}_x \). Otherwise, there exists \(k < i_2 \) such that \(u_2 = v_k + \cdots + v_{i_2}, v_j \in E^j_x, j = k, \ldots, i_2 \), \(v_k \neq 0 \). It is not difficult to show that

\[
\lim_{i \to -\infty} \frac{1}{i} \log \zeta_{a_2}(t) = \lim_{i \to -\infty} \frac{1}{i} \log \left\| \Phi_t(u_2) \right\| = \lambda_k < \lambda_{i_2},
\]

which contradicts Eq. (A.9). Therefore, \(u_2 \in E^{i_2}_x \oplus E^{i_1}_x \), and by (A.9)

\[
\lambda_{i_2} = \lim_{i \to \infty} \frac{1}{i} \log \left\| \Phi_t(u_2) \right\| = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t) = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t) = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t) = \lambda_{i_2}. \quad (A.10)
\]

This completes the second case.

The third case: \(j > i_1 \). We take \(i_2 = j \) in this case. A similar argument shows that \(u_2 \in E^{i_1}_x \oplus E^{i_2}_x \) and

\[
\lambda_{i_2} = \lim_{i \to \infty} \frac{1}{i} \log \left\| \Phi_t(u_2) \right\| = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t) = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{a_2}(t) > \lim_{i \to -\infty} \frac{1}{i} \log \left\| \Phi_t(u_2) \right\| = \lambda_{i_1}. \quad (A.11)
\]

From cases 1–3, the above assertion follows. From the assertion, \(u_2 \) has two choices in each 2-dimensional space \(E^{i_1}_x \oplus E^{i_2}_x \), while \(i_2 \) is chosen from \(\{1, \ldots, n\} \setminus \{i_1\} \). So the maximal choices of \(u_2 \) are \(2(n-1) \).

By induction, there exists \(i_j \in \{1, \ldots, n\} \setminus \{i_1, \ldots, i_{j-1}\} \) such that

\[
u_j \in E^{i_{j-1}}_x \oplus E^{i_{j}}_x
\]

and

\[
\lim_{i \to \infty} \frac{1}{i} \log \zeta_{ai_j} = \lim_{i \to \infty} \frac{1}{i} \log \zeta_{ai_j}(t) = \lambda_{i_j}, \quad j = 1, \ldots, n.
\]

This implies that the maximal choices of \(u_j \) are \(2(n-j), j = 1, \ldots, n \). Therefore the maximal choices of \(\alpha \) are \(2^n n! \), namely, the cardinality of \(\rho^{-1}(x) \) is no greater than \(2^n n! \). So the claim follows. \(\square \)

Acknowledgements

The authors thank very much IMPA/TWAS and IME-USP and the referee.
References