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1. INTRODUCTION 

The nonlinear differential operator W, defined by 

was studied in [4]; Wf was called “the Wronskian of J” While [4] 
contains a few general results, the main focus of that paper is on the case 
where f is a polynomial with real zeros only. In that case Wf has no real 
zeros, as we see below, except where f has multiple zeros. However, if the 
polynomial f has nonreal zeros, then Wf may have real zeros. In this 
regard, Craven, Csordas, and Smith [3] made the following conjecture: 

Let f(z) be a real polynomial of degree n 3 2, and suppose that f(z) has 
exactly 2d nonreal zeros. Let Z,( Wf(z)) be the number of real zeros of 
Wf (z). Then 

Z,( Wf(z)) < 2d. (1.2) 

The purpose of this paper is to prove some partial results towards the 
conjecture (1.2). The main results are as follows: 

1. Any nontrivial real zero of Wf( z must lie on or inside the Jensen ) 
circle of some pair of complex zeros of f(z) (Theorem 2.4). 

2. If a pair of complex zeros off(z) is sufficiently isolated from other 
zeros off(z), then the associated closed Jensen disk contains exactly two 
real or complex zeros of Wf(z) (Theorem 4.1). This proves the conjecture 
for polynomials whose zeros are sufficiently well spaced (Corollary 4.2). 
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3. If there are real zeros off(z) sufficiently close to a pair of complex 
zeros of f(z), then the Jensen disk associated with these complex zeros 
contains no real zeros of W’(z) (Theorems 5.1 and 5.3). 

4. If in a fixed interval f(z) has sufficiently many real zeros, 
depending on the number and location of the complex zeros off(z), then 
Wf(z) has no real zeros at all (Corollaries 5.4-5.6). 

5. If the zeros off(z) lie in two circles symmetric to and sufficiently 
distant from the real axis, then WY(z) has exactly two real zeros 
(Corollary 6.5). 

6. Iff(z) has no multiple zeros, then outside the Jensen circles off(z) 
the complex zeros of W’(z) cannot lie too close to the real axis. A lower 
bound is given (Theorem 3.4). 

2. SOME GENERAL PROPERTIES 

For easier reference, we give the following two lemmas from [4]. 

LEMMA 2.1. Let f and g be polynomials, and c a constant. Then 

(a) Wfg)=f*~g+g*Wf; 
(b) W(f”) = nfZne2 Wf; 

(c) W(z-c)= -1. 

LEMMA 2.2. Iff(z) = (z - z,)~’ ... (z- z~)~~, mj E N, then 

W(z)= -WH2 (zy&1)2+ .‘. +(Zn;k)2 i I . 

Parts (a) and (c) of Lemma 2.1 follow from ( 1.1) by direct computation; 
(b) is a direct consequence of (a). Lemma 2.2 is an easy consequence of 
Lemma 2.1(a) and (c). 

For the remainder of this paper we adopt the following notations. Let 
f(z) be a real polynomial of degree n = m + 2d with m real zeros 
cr,<a,6 ... 6cr, and d pairs of complex zeros u, + iuj, 16 j< d, num- 
bered such that u1 d u2 d . . . 6 ud. If uj = uj+ , , we assume that uj < u,+ i. 

With this notation we get the next lemma which is fundamental to what 
follows. 

LEMMA 2.3. 

W(z) = -VIZ))’ f 4 { j=l @-@,I 
+2 i (z-uj)*-uyz 

j=, [(z-u,)‘+ufq2 I . (2.1) 
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This is immediate from Lemma 2.2 if we observe that 

1 1 
+ 

(z-uj)2-u; 
(z-uj-iu,)2 (z-uj+iuj)2 =2 [(z-uj)2+u;]2’ 

It is obvious from Lemma 2.3 that if f(z) has only real zeros then Wf(z) 
can have real zeros only wheref(z) has multiple zeros. The zeros of Wf(z) 
induced by multiple zeros off(z) are called “trivial zeros.” Note that trivial 
zeros occur only in even multiplicities. 

To each pair uj f iuj of complex conjugate zeros we construct a “Jensen 
circle” (see, e.g., [S, p. 25]), namely a circle whose diameter is the line 
segment joining the two zeros. Let .Jj be the corresponding closed Jensen 
disk, i.e., the union of the Jensen circle and its interior. 

THEOREM 2.4. Any nontrivial real zero of Wf(z) must lie in one of the 
closed Jensen disks off(z) or, in other words, in the set 

d 
S := u (J, n R). 

,=I 

Proof Using Lemma 2.3 we show that Wf (z) < 0 if f (z) # 0, z E R, and 
z $ S. First we note that 

(2.2) 

Now we observe that (z-u,)“- I$? > 0 if z is real and lies outside of J,. 
Hence the second sum in (2.1) is positive if z $ S. This, with (2.2), com- 
pletes the proof. 

It is a well-known fact from the geometry of polynomials that the point 
sets of the zeros of a polynomial and the zeros of its derivative have the 
same centroid (or center of mass) if we imagine a unit mass attached to 
each zero, counting multiplicities (see, e.g., [7, p. 91). In analogy, we get 
the following result. 

THEOREM 2.5. The zeros of a polynomial of degree n > 2 and the zeros of 
its Wronskian Wf(z) haue the same centroid. 

Proof First we note that the centroid of the set {z,, z2, . . . . z,} of the 
zeros of 

f(z)=(z--1). ‘.. .(Z-zZ,)=Z~+.,Z~-‘+ ... +a, 
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is 

$z,+z,+ ... +-‘.)=-1a,. 
n 

It is easy to verify that 

Wf(z)= -nz2”~2-((2n-2)a,z2”-3- . . . 

=-n z*n-*+ ( 2n-2 
--..-a,z*~-3+ . . . . 

n > 

Hence the centroid of the zeros of Wf(z) is 

&(ya,)=;aj: 

this proves the theorem. 

The following result gives a connection between the real zeros of Wf(z) 
and the location of the complex zeros off(z). 

THEOREM 2.6. Let f(z) be a polynomial having only real coefficients and 
at least one real zero. Then to each real nontrivial zero r of Wf(z) there 
exists at least one pair of complex zeros u + iv of f(z) located in the inter- 
section of the closed disk with radius @R(r) centered at r and the angular 
region Ix - rJ < 1 yJ (z = x + iy), where h is the number of pairs of complex 
zeros whose Jensen disks contain r in its interior and R(r) := 
(CJTl (r--j)-2))“2, with the sum taken over all real zeros aj of f(z). 

Remarks. (1) If f(z) has only one real zero a, or if CI is a real zero with 
minimum distance to r, then clearly R(r) d Ir - ~1, and the radius of the 
disk in Theorem 2.6 may be replaced by ,,/% )r - (~1. 

(2) If nothing is known about the location of the complex zeros of 
f(z), we may replace h by d, the number of pairs of complex zeros off(z), 
since h < d. 

(3) Both the statement and the proof of Theorem 2.6 are analogous 
to a result by H. B. Mitchell [6] on the relationship between the complex 
zeros of a polynomial and the real zeros of its derivative. 

(4) For an application of Theorem 2.6, see Corollary 5.6 below. 

Proof of Theorem 2.6. If r is a nontrivial real zero of Wf(z), then by 
(2.1) we have, with R = R(r), 

R-‘= (2.3) 
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Let u + iv be a pair of complex zeros off corresponding to a maximum 
term in the sum on the right-hand side of (2.3). Let h ,< d be the number 
of positive terms in this sum, and note that h 3 1 since the sum itself is 
positive. Further note that a term is positive if and only if the correspond- 
ing Jensen disk contains r in its interior. Now we get from (2.3), 

&2h 
u2 - (r - 2.4)’ v2 2h 

[(r4+~21*~2h(V’,‘=7’ 

or 

v2 6 2hR2. 

From the left-hand inequality in (2.4) we get 

[(r - u)2 + v212 < 2hR2[uZ - (r - u)~], 

which is equivalent to 

[(r - u)’ + v2 + hR212 < 4hR2v2 + h2R4. 

Now with (2.5) we get 

[(r - u)’ + v2 + hR212 < 9h2R4, 

or 

(u - r)’ -t v2 < 2hR’. 

(2.4) 

(2.5) 

This proves the theorem if we note that r lies in the interior of the Jensen 
disk belonging to u f iv if and only if JU - rJ < )v). 

Finally in this section, we state a general result that is in fact a special 
case of Theorem (8.1) in [S]. It is relevant to the topic of this paper, 
although it will not be needed later on. 

THEOREM 2.7. If the zeros of f(z) 1’ le inside or on the unit circle then the 
zeros of Wf(z) lie inside or on the circle of radius fi centered at the origin. 
This result is best possible. 

3. ZERO-FREE REGIONS 

To each real zero clj off(z) define the double angular set 

Sj:={z=x+iy:~x-crj~,<~yl}, 
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and to each pair of complex zeros uj ) iui define the set 

T, := (z : jz - u, 1 < u,} u {z = x + iy : (x - u,)’ + 01’ < y’}. 

Note that T, consists of the hyperbola (x - u,)’ + uf = y2 and its interior, 
and of the closed disk centered at z = uj and whose boundary touches the 
hyperbola at ui + bi. Let S, be the union of all S, and all T,. 

THEOREM 3.1. With f(z) and S, defined as above, we have 

Re wf(z) < 0 
cfw)’ 

f or z$Sr. 

Proof: By Lemma 2.3 it suffices to show that 

Re(z - ai) -* > 0 for l<j<m, 

and 

Re (z-uj)‘-u; 
[(z-U,)‘+u;]2’o for l<j<d. 

(3.1) 

(3.2) 

With CY, = c( and z = x -t iy, we have 

1 (x-c+y2 
Re(z= [(x-a)‘+y2]2 

which is positive if z # Sj; this proves (3.1). 
With uj = u and vi = u, we get 

(z - u)’ - u2 [(z-u)2-u2][(z-u)2+u2] 
[(z-u)2-u*]2= ((z-u)2+u*14 ’ 

and it is easy to verify that 

Re (z-u)*-t? ((z - u14 - u4)((x - u)’ - y* + u’) + 8(x - u)’ y2u2 

[(z-u)*+uq*= ((z-u)2+u*14 

(3.3) 

By the definition of T, we see now immediately that the right-hand side of 
this last equation is positive whenever z 4 T,. This proves (3.2), and the 
proof of the theorem is complete. 

The first corollary follows immediately from Theorem 3.1. It can be 
considered an extension of Theorem 2.4. 

COROLLARY 3.2. All zeros of Wf(z) lie in the set S, 
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COROLLARY 3.3. (a) Let 01~ and txj+ I be two consecutive real zeros off(z) 
such that the open interval (a,, txj+, ) has an empty intersection with all 
Jensen disks of,f(z). Then the interior of the square that has the line segment 
[aI, aj+ , ] as a diagonal is free of zeros of Wf (z). 

(b) Part (a) is still true if aj is replaced by uk+ vk or if ctj,l is 
replaced by ukS - vk’, where uk + iv, and uk. ) iv,. , vk > 0, vkZ > 0 are complex 
zeros off(z). 

The next theorem gives a quantitative version of Theorem 2.4. It shows 
that the zeros outside of the Jensen disks cannot lie too close to the real 
axis. 

THEOREM 3.4. Let f(z) be a polynomial with real coefficients, and d the 
minimum distance between adjacent points in the set containing all real zeros 
aj, j = 1, . . . . m and the points z = uj, where u, + ivj, j= 1, . . . . d, are the 
complex zeros off(z). Then the zeros of Wf(z) are either in a Jensen disk 
or outside the strip IIm ZJ <d ,,/@/2~[. 

Proof: First we suppose that z lies in the intersection Dj of the angular 
region Ix - aj 1 6 y and the closed disk of radius d ,,,6/27r around the real 
zero aj off(z). By Lemma 2.3, Wf(z) is not zero if we can show that 

Iz-a,l-2> C (z-ai/~2 
i#r 

+ i (lz-uj-iv,l~2+(z-ui+ivi12). 
i=l 

(3.4) 

Wenotethat ~z-ai~~2<Ix-aj~~2and lz-uj&-ivil-2<l.x-ui~-2;hence 
(3.4) hold when 

IZ-cl,l-2> C lx-aiJ~2+2 C Ix-ujl-2 
i#j i= 1 

which in turn is true if 

Iz-t9-2>2C Ix-pIp2, (3.5) 
B 

where the sum extends over /I = u,, . . . . ud, a,, . . . . ak, but /I # aj. Since the 
distance between two consecutive /I is at least d, we have 
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where .? := x - aj. Without loss of generality we may assume .? < 0. Then 

llkdl-2 d (kd)--2, k = 1, 2, . . . 

and also, since II) = Ix - zj 1 < d/2, 

,i+kdlp2<( -;+kd)~2, k=1,2 ,.... 

Hence 

~lx-~I-2<d-2 f k-2+4 f (2k-1))’ 
B ( k=l k=l ! 

=,-2(!?+&)++2. 

On the other hand, 

since z E D,; hence (3.5) and therefore (3.4) hold. 
Next we suppose that z lies in the set Dj, where 0~~ is replaced by some 

UJ* If uJ 3 d $/2n, then the Jensen disk belonging to the complex zeros 
uj If: ivj covers all of Dj, and nothing remains to prove. Hence we assume 
that vi < d ,,6/27c. By Corollary 3.2 we may restrict our attention to those 
z = x + iy satisfying 

(x - 24,)’ + u; < y2. (3.6) 

To simplify notationset U= uj and u = vi. By Corollary 2.3, WY(z) is not 
zero if we can show that 

2 l(z-u)2-u21 
> f Iz-cq-2 

I(z--u)2+u212 j=] 
d 

+ C ((Z-~j-iioi(-2+(Z-Ui+iuil~2). (3.7) 
i= 1 
i#J 

To estimate the left-hand side of (3.7), we first note that 

I(z-u)2-u21 = lz-u~4-u2{(z-u)2+(z-u)2)+u4 

= lz-u~4+2u2[y2-(x-u)2]+u4 

> (z-u14 
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since z lies in the angular region Ix - ~1 < y. Hence 

I(z-u)2-u2/ > Iz-uJ2. (3.8) 

Furthermore, taking (3.6) into account, we get 

l(z-u)2+v2~2= [(x-u)2+u2-y2]2+4y2(x-u)2 

< [(x - uy - y2y + 4$(x - u)’ 

= Jz-u14. 

Hence, with (3.8) we have 

I(z-u)2-u21 1 
)(z-u)2+u2~2’(z-- 

So (3.7) is certainly true if (3.5) holds, with !xj replaced by U. But (3.5) has 
already been verified. 

Finally, we note that the union of the sets 0, and the complement of S, 
cover the part of the strip 1Im zI < dm/2n that lies outside of any 
Jensen disk. This completes the proof. 

Remarks. (1) Theorem 3.4 can be extended, without change, to polyno- 
mials f(z) with real zeros of multiplicity two. Indeed, we may simply 
consider a real double zero as a pair u f iv of complex zeros with v = 0. 
The proof is still valid in this case. 

(2) An analogue of Theorem 3.4 for the case wheref(z) has only real 
zeros was proved in [4]. 

4. THE NUMBER OF ZEROS ON A JENSEN DISK 

By Theorem 2.4, the real zeros of Wf(z) lie on the closed Jensen disks 
associated with the complex zeros of f(z). If it could be shown that each 
such Jensen disk contains at most two zeros of W’(z), this would prove the 
conjecture (1.2). The following theorem is a partial result in this direction, 
for the case where the zeros off(z) are sufficiently isolated. 

THEOREM 4.1. Let u $- iv be a pair of simple complex zeros off(z) such 
that its closed Jensen disk J has no points in common with the Jensen disks 
of any other zeros off(z), and that no real zero of f(z) and no center of any 
other Jensen disk lies in the interval [u - v 4, u + v ,/‘?I. Then Wf(z) has 
exactly two zeros in J. 
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Proof: Without loss of generality we may assume that the zeros u f iv 
lie on the imaginary axis, i.e., u = 0. 

For E > 0, let C, be the circle of radius fi centered at the origin. We 
show that 

F(z) := - wT(zw”(z))2 

goes around the origin twice in the negative direction as z traverses C, once 
in the positive direction, if E is sufficiently small. Then by the argument 
principle we have 

z,-P,= -2, 

where Z, and P, are the numbers of zeros, resp. poles of F(z) in the 
interior of C,. But F(z) has exactly four poles (counting multiplicities) in 
the interior of C,, namely the zeros z = &iv off(z). Hence Z, = 2, which 
was to be shown. 

Next we note that the hypotheses ensure that if E is sufficiently small, the 
contour C, has no point in common with any of the sets S, associated with 
the real zeros off(z), nor with any of the sets T, associated with the com- 
plex zeros off(z) distinct from + io. Hence the terms on the right-hand side 
of (2.1) associated with these zeros all have positive real parts for z E C,, 
by (3.1) and (3.2). With (2.1) we can therefore write 

where Re G(z) > 0 for z E C, if E is sufficiently small. It is also clear that 
Im G(z) = 0 if z is real, and that G(z) remains bounded for z E C,. It is easy 
to verify that 

Re F(z) = 2 (1~1~ - v”)(x’ - Y’ + 0’) + 8x2y2u2 + Re G(z) 

1z2 + u214 
(4.1) 

and 

Im F(z) = 4xy 2u2(x2 - Y2 + 02) - (14” - u”) + Im G(z) 
Iz2 + u214 (4.2) 

We subdivide the upper semicircle of C, into five sections. Let z1 := 

P-- v +sandz,:=- fi. Let z2 and z5 be the two points in the first, 
resp. second, quadrant where C, intersects the hyperbola x2 - y2 + u2 = 0; 
their real parts satisfy x2 = s/2, which can be seen by adding the equations 
x2- y2+u2=0 and x2+ y2=u2+s. Finally, let z3 and z4 be the two 
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points on C, in the first, resp. second, quadrant whose real parts satisfy 
x2 = s2/8v2. For i = 1, . . . . 5, let C, be the sections of C, joining 2, with zj+ , 

To estimate the denominator in (4.1) and (4.2), we use the relationship 
y2=u2+~-x2 to get 

lz2 + u212 = (x2 - y2 + 112)2 + 4x2$ 

= (2x” - &)Z + 4x2( 02 + & - x2) 

= 4x2v2 + E2; 

hence 

)z2 + u214 = (4x%2 + E2)2. (4.3) 

We also note that 

x2-y2+&2X2-E (4.4) 

and 

1214 - ?I4 = &(2l? + E); (4.5) 

all, of course, under the condition Jz12 = u2 + E. 
Now we let z traverse the upper half of C, in the positive direction, 

starting at z=zlr where ImF(z,)=O and ReF(z,)>ReG(z,)BO. 

(i) For ZE C,, it is clear from (4.4) and (4.1) that Re F(z) >O. 
(ii) z E C,. First we note that with (4.3), (4.4), and (4.5) we get 

I .= 4xy 2uZ(x2 - y2 + u’) - ( /z14 - u”) = 4xv 4v2(x2 - F) - E2 
lz2 + u214 . (4x%2+ &2)2 . 

on c2 we have ~~18~~ 6 x2 < ~12; hence 

(4X20’ + E2)2 < (4X2U2 $ 

Aho ~u’(x’ - E) - .z~ < 4u2(x2 -E), and 

8x2u2)2 = 144~~0~. 

so that 

X=-E 
I<--- 

9x’u 
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(note that x2 --E<O). It is easy to verify that the right-hand side is 
increasing with x if x2 < 3s; hence 

I< 
E/2 - E Jz 

9(~/2)“’ u = - ?k 

for s*/80* < x2 < E/2. Hence by (4.2) Im F(z) < 0 for z E C2 if E is dficiently 
small. 

(iii) On C3, we have x2 < s2/8u2. Now with (4.5) and (4.4), 

( (z14 - 04)(x2 - y* + 2) + 8x2yV 

= &(2u* + &)(2x* - E) + 8x2u2(u2 + E -x2) 

bE(2u2+4($--E)+E*(U*+E-3 

With (4.3) we get 

1z*+ u2146 (i&2 + &*)* = $E4, 

and therefore, with (4.1) 

ReF(z)< -$(u*-t-$)-j+ReG(z) 

for z E C,. Hence Re J’(z) < 0 for z E C, if E is sufliciently small. 
(iv) On C4 we have the same situation as on C2, with the only 

difference being that x < 0. Hence Im F(z) > 0 for z E C, if E is sufkiently 
small. 

(v) On C, we clearly have Re F(z) > 0 again, as on C,. For z = 
-,/%%k we have Im F(z) = 0 and Re F(z) > Re G(z) > 0. 

Finally, as z traverses the lower semicircle of C,, F(z) goes around the 
origin once more: this can be seen in essentially the same way as in (i)-(v). 
The proof is now complete. 

As an immediate consequence of Theorem 4.1, and with Theorem 2.4, we 
get the following result which is relevant to the conjecture (1.2). 

COROLLARY 4.2. Let f(z) have d pairs of simple nonreal zeros uj f iv,, 
j = 1, . . . . d, such that the Jensen disk J, of each pair has no point in common 
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with any other Jensen disk, and that no real zero off(z) and no center of any 
other Jensen disk lies in the interval [uj - v, $, u, + vj ,/‘?I. Then Wf(z) 
has at most 2d real zeros. 

5. POLYNOMIALS WITHOUT REAL WRONSKIAN ZEROS 

In this section we see that the presence of real zeros off(z) in proximity 
of a pair of complex zeros u f iv of f(z) can prevent the existence of real 
zeros of Wf(z) in the interval [u-v, u + v]. As consequences, we find 
conditions on f under which Wf(z) has no real zeros at all. 

THEOREM 5.1. Let u f iv be a pair of complex zeros off(z). Zf there is a 
real zero a off(z) such that Iu - CI/ < c, v, where 

c, :=,/@[(16,/Z+13)1’3-(16&-13)“3r0.4947092, 

then Wf (z) has no real zero in the interval Z := [u - v, u + v] - (S n R); here 
S is the union of the closed Jensen disks belonging to all the other complex 
zeros of f(z). 

Proof: Without loss of generality we may assume that u = 0. From the 
proof of Theorem 2.4 we know that all the terms of the right-hand side of 
(2.1), except for the one belonging to + iu, are positive if z E I. Hence we 
are done if we can show that 

1 2 2 

7+2 (;2$2>0 
(z-co 

for ZE [ -21, v]. 

For a given v we want to find those c1 for which the numerator N(z) of 

1 2 2 

(z-1)2+2(:21&= 
(z’ + uq2 + 2(z - c# (z’ - v’) 

(z - a)2 (z’ + v2)2 

is positive for all z. First we note that 

N(z) = 3z4 - 4crz3 + 2ci2z2 + 4au2z - 2ff2v2 + Y4 

=3v4[(~)“-3%(t~+~(~~(~) 

4az 2 u 0 2 1 

+j--;-5 
0 +j. 1 

Now let z” := z/v and E := u/u, and denote the term in square brackets by 
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M(Z). Then we must find those L? for which M(Z) > 0 for all Z. It is easy to 
see that we can write 

&f(2) = (2 - fq” + ($3 + $)T - &p - $2 + 3 

= & { (32 -a)” + 12(E3 + 9E)Z - a4 - 54E2 + 27). 

Let K(Z) := 81 M(?). We differentiate K(Z) with respect to Z, and find that 
K(Z) is minimal when z” = Z,, where 

3Zo=d-(E3+ 941'3; 

we get 

This increases as Z2 increases; it is zero when 

2E6 + 9E4 + 1081Z* - 27 = 0, 

or when 

t3+21t-26=0, where E’=;(t-1). 

Hence by Cardano’s formula we see that K(Z) > 0 whenever 

l~~<~[(16~+13)1’3-(16&13)1’3-1]1’2, 

which completes the proof. 

COROLLARY 5.2. Let uj + iv,, j= 1, . . . . d be the complex zeros of f(z). If 
there are m > d real zeros ~1~) . . . . CI,, and they can be numbered in such a way 
that Iuj--ajI<clvjfor j=l,..., d (with c1 as in Theorem 5.1), then Wf(z) 
has no real zeros. 

Proof For uj &- ivj and aj, j = 1, . . . . d we have (5.1). For ad+, , . . . . a,,, , 
(2.2) holds. The result now follow from (2.1) and Theorem 2.4. 

The next result is an extension of Theorem 5.1 to the case where a larger 
number of real zeros off(z) are located at a greater distance from z = u. 

THEOREM 5.3. Let u f iv be a pair of complex zeros off(z). If there are 
k > 1 real zeros aI, . . . . 
&,“=-k) , 

a,such that Iu-ajI<c,vforj=l,...,k, wherec,:= 
I/* then Wf(z) has no real zero in the interval I (I as in 

Theorem 5.1). 
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Proof: We may assume that u = 0. We are done if we can show that 

k 1 
+,g, (z-x)2’o 

(5.1) 

for z E [ -v, v]. This inequality was dealt with by Conrey and Rubel [2] 
in a somewhat different setting. For convenience, we repeat their argument 
which yields the bounds ck. Let F= F(z, cr,, . . . . x~) denote the left-hand side 
of (5.1). To find the minimum M of F, we first observe that the terms 
(z - txj))’ are minimal when the xj have the greatest distance from z. By 
symmetry, a minimum value for F occurs in z 2 0; here we must take 
E., = -cckv. Therefore we must find the minimum of 

2 2 

M(z) := 2 

k 
(Z2 +;2)2 + (z + CkV)2 

2(Z2 - V’)(Z + ckV)2 + k(z2 + U2)2 = 
(z2 + v2y (z + Ck?J)2 

If we set Z := z/v, we see that M(z) > 0 for 0 d z < v if 

g(Z) := 2(T2 - l)(? + cJ2 + k(Z2 + 1)2 > 0 

for O<i< 1. We have 

g(T) = (k + 2)24 + 4ckZ3 + 2(k - 1 + c;)?’ - 4c,? + (k - 253 

2 2(k - 1 + ~$5~ - 4c,z + (k - 2c;) 

for z” Z 0 and ck 3 0. The last expression is positive for all 2 if 

0 > 16~; - 8(k - 1 + c:)(k - 2~:) = 8(2c; + kc: - k(k - 1)) 

which holds if 
c:< [-k+Jk2+8k(k-1)]/4. 

This proves Theorem 5.3. 

The following corollary is derived from Theorems 5.3 and 5.1 just as 
Corollary 5.2 follows from Theorem 5.1 alone. 

COROLLARY 5.4. Let uj rt ivj, j= 1, . . . . d be the complex zeros of f(z), 
and let a sequence m, , ..,, md of positive integers with m, + . . . + md < m be 
given. If to each pair of complex zeros uj &- ivj one can associate mj real zeros 
of f(z) which lie at a distance of less than cmjvj from uj and such that none 
of the real zeros are associated with two pairs of complex zeros, then Wf(z) 
has no real zeros. 
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We conclude this section with two more general (but generally weaker) 
criteria for the nonexistence of real zeros of Wf(z). 

COROLLARY 5.5. Let ui k iu,, j= 1, . . . . d be the complex zeros of f(z), 
and let u := min( Ivj 1 j = 1, . . . . d}. Suppose that f(z) has m > d real zeros, and 
denote k := [m/d] (the greatest integer less than or equal to m/d). Let D be 
the smallest number such that all the zeros of f(z) satisfy a < Re(z) <a + D 
for some a. [f 

D<vc,, 

Mith ck as in Theorems 5.1 and 5.3, then Wf(z) has no real zeros. 

(5.2) 

Proof We use Corollary 5.4 with m, = . . = md = k; then m, + . + 
md= d[m/d] f m. By definition of D, the distance between any ui and 
any real zero of f(z) is at most D. On the other hand, we have v < uj for 
j=l 9 ...> d. Hence (5.2) guarantees that the hypotheses of Corollary 5.4 are 
satisfied. It follows that Wf(z) cannot have any real zeros. 

A result very similar to Corollary 5.5 and stronger in certain cases can be 
derived as a direct consequence of Theorem 2.6. 

COROLLARY 5.6. Let uj k iv, and v be as in Corollary 5.5. Let b be the 
smallest number such that all m real zeros and all d Jensen circles off(z) lie 
in the region b d Re(z) 6 b + b for some b. If 

div,l;ni2rl, (5.3) 

then Wf(z) has no real zeros. 

Proof By the definition of d and by Theorem 2.4, the distance between 
a possible real zero r of Wf(z) and any real zero c(, of f(z) is at most a. 
If Wf(z) had a real zero r, we would get 

R(r)-2= f (r--o4/)-2> f 2,-2=mDp2, 

j=l j=l 

or 

Hence by Theorem 2.6 and Remark (2) following it, at least one complex 
zero off(z) would be no further than J2d R(r) < B Jdlm from the real 
axis. But this is a contradiction to (5.3). Hence such a real zero r of Wf(z) 
cannot exist. 
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Remarks. (1) Iff(z) has a real zero located “to the left” and one “to the 
right” of all Jensen circles off(z), then b = D. In this case it is obvious that 
Corollary 5.6 is stronger than Corollary 5.5 since 

However, for large k= [m/d], the left and the right term of the above 
inequalities are asymptotically equal. 

(2) Since B 3 2 lo,1 for all nonreal zeros uj + iuj off(z), (5.3) cannot 
hold unless @> 2. Hence Corollary 5.6 is vacuous unless the number 
of real zeros off(z) is more than four times the number of complex zeros. 
Corollary 5.5, on the other hand, requires only half that number, namely 
m 2 d. 

6. AN ANALOGUE OF WALSH'S TWO-CIRCLE THEOREM 

The polynomial f(z) := (~-a)~ (z-b)“, a, bc C, has critical points at 
z = a and z = b (of order m - 1 and n - 1, respectively) and a simple critical 
point at z0 := (mb + na)/(m + n), i.e., located on the straight line segment 
between a and b. The Two-Circle Theorem of Walsh (see, e.g., [S, p. 891 
or [7, p. 131) now states that iff(z) h as m zeros in the closed interior of 
a circle C, with center a and n zeros in the closed interior of a circle C, 
with center b, then each of the m + n - 1 critical points of f(z) lies either 
in the closed interiors of C, or C,, or inside or on a circle around z0 with 
radius a simple function of m, n, and the radii of Ci and CZ. 

In this section we see that the Wronskian zeros have very similar proper- 
ties. We begin with an example which is generalized by the following 
theorem. 

EXAMPLE 6.1. Let f(z) := (z-a)* (z-b)“, a, bE C. Then Lemma 2.1 
gives 

Wf(z)= -(z-a)2m~2 (z - b)2np2 [m(z - b)2 + n(z - a)2]. 

The nontrivial zeros of W’(z) are the zeros of the term in brackets, i.e., the 
roots of 

z* - 2 
mb+na mb2 + na2 
-z+ = 0, 

m+n m+n 

namely 

zo=&[mb+na?(a-b)v/;;;;;]. (6.1) 
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Note that for all choices of m and n, the zeros z,, lie on the circle 
Iz - (a + b)/2) = I(h - a)/2/, i.e., the circle that has the straight line segment 
connecting a and h as a diameter. 

The following result is the Wronskian analogue to Walsh’s Two-Circle 
Theorem. 

THEOREM 6.2. Suppose that the polynomial f of degree m + n has m zeros 
in the closed disk D, with center a E @ and radius r and n zeros in the closed 
disk Dz with center b E C and radius s. Then each zero of Wf lies in the 
closed disk 0; with center a and radius 2r, or in 0; with center h and radius 
2s, or in the disks D, or D4 with centers c, d given by the right-hand side of 
(6.1) and common radius 

Before proving this result, we derive several corollaries. The first one is 
an obvious special case. 

COROLLARY 6.3. If in Theorem 6.2 we have m = n, then 

a+b .a-b a+b a-b 
c=2+z- 2 ’ 

d= - --i 2 5 
2 

and 

R=i$(r+s). 

The next corollary and its proof are analogous to the statement and proof 
of Corollary (19, 1) in [S]. 

COROLLARY 6.4. If the closed disks D, , D,, D,, and D, of Theorem 6.2 
are pairwise disjoint then they contain 2m - 2, 2n - 2, 1, and 1 zeros of 
Wf (z), respectively. 

ProoJ: We let the m zeros off(z) in D, approach a single point in D, 
(say, a) along regular paths entirely in D, , and similarly we let the n zeros 
in D, approach a point in D, (say, b). Now by Example 6.1, a and b are 
zeros of Wf(z) of multiplicities 2m - 2 and 2n - 2, respectively, and the 
remaining two zeros are located at c and d, given by (6.1). By Theorem 6.2 
no zero of Wf(z) can leave the disks D,, . . . . D4 during this process since the 
disks are pairwise disjoint. Hence the number of zeros in D,, . . . . D, was 
also originally 2m - 2, 2n - 2, 1, and 1. 

We apply now the preceding corollaries to the main topic of this paper. 
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COROLLARY 6.5. Let f be a polynomial of degree 2n with real coefficients 
and such that n zeros lie on a closed disk centered at u + iv (u, v E Iw) with 
radius r < Ivl/2. Then Wf(z) has exactly two real zeros. They are located 
in the intervals [u-lvl-r~~,u-~vl+r~], resp. [u+Ivl-r&, 
u+ (VI +r$]. 

Proof By Corollary 6.3 with a:=u+ijv(, b:=u-ijvl, and r=s we 
have c= u- 1~1, d= u + (VI and R= r 4. It is now easy to verify that 
D,, . . . . D, are pairwise disjoint. Since f(z) has only real coefficients then so 
does Wf(z), and therefore the single zeros in the disks D, and D, must be 
real and consequently lie in the intervals of the statement. 

The Two-Circle Theorem mentioned earlier in this section is usually 
proved by way of the Coincidence Lemma of J. L. Walsh (see, e.g., [S, 
p, 621). Similarly, we use here a generalization of the Coincidence Lemma 
due to Boese [ 11; the following is a special case of the much more general 
result in [l]. 

LEMMA 6.6. Let ak E @ and A, > 0, 1 < k < n, be such that 
A I+ . . . + A,, = 1 and /a,[ < r for 1 d k d n. Then among the a = a(z) 
satisfying 

kT, A,(z-a,)~2=(z-a)~2 

,for IzJ > 2r there is one for which la(z)1 6 r. 

Proof of Theorem 6.2. Let a,, . . . . a, be the zeros off located in D,, and 
b,, . . . . b, be those in D,. Consider 

F(z):= f (z-ai)-‘+ f (z-bj)-2; 
j=l j= I 

note that by Lemma 2.2 we have F(z) = - Wf(z)/(f(z))2, so that it suffices 
to consider the zeros of F(z). If z lies outside the union of 0; and 0; then 
by Lemma 6.6 (with Aj = l/m, resp. l/n) there is an a’= a’(z) ED, and 
b’ = b’(z) ED, such that 

w)=(z_mn!,2+&7= 
m(z - b’)’ + n(z - a’)’ 

(z-a’)2 (z-b’)2 ’ 

In Example 6.1 we already saw that F(z) = 0 only when z is as in (6.1), 
with a and b replaced by a’ and b’, or 

;= n*iJSG 
a’ + 

rnFiJGKb, 
m+n mfn ’ 
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where it is understood that a’ and b’ vary over the disks D, and D,, respec- 
tively. Then by Lemma (17, 2a) of [S], z lies in one of the disks with 
centers given by (6.1) and radius 

this proves the theorem 

Remark. The Wronskian zeros of polynomials with real coefficients and 
three or four (or in special cases more) distinct zeros are still relatively easy 
to determine explicitly. Hence Lemma 6.6 can be used to prove results 
analogous to Theorem 6.2 and Corollary 6.5, for polynomials whose zeros 
lie in three, four, or more circular disks. In this way the conjecture (1.2) 
can be verified for further classes of polynomials. 
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