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In this paper, we derive recursions of some RNA secondary structures with certain proper-
ties under two new representations. Furthermore, by making use of methods of asymptotic
analysis and generating functions we present asymptotic enumeration of these RNA sec-
ondary structures.
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1. Introduction

RNA molecules are single stranded nucleic acids composed of four nitrogen bases: adenine (A), guanine (G), cytosine (C)
and uracil (U). As Watson–Crick pairing rule shows, in RNA, A can pair with U , and C can pair with G . The primary structure
of a RNA is a linear sequence of bases. For the secondary structure, we have the following definition.

Definition 1.1. (See [2,3,8].) A secondary structure is a vertex-labeled graph on n vertices with an adjacency matrix A fulfill-
ing:

(i) ai,i+1 = 1 for 1 � i � n − 1;
(ii) for each i there is at most a single k �= i − 1, i + 1 such that ai,k = 1;

(iii) if ai, j = ak,l = 1 and i < k < j then i < l < j.

We call an edge (i,k), |i − k| �= 1 a bond or base pair. A vertex i connected only to i − 1 and i + 1 will be called unpaired.
A vertex i is said to be interior to the base pair (k, l) if k < i < l. If, in addition, there is no base pair (p,q) such that
k < p < i < q, we will say that i is immediately interior to the base pair (k, l).

A stack consists of subsequent base pairs (p − k,q + k), (p − k + 1,q + k − 1), . . . , (p,q) such that neither (p − k − 1,q +
k + 1) nor (p + 1,q − 1) is a base pair. k + 1 is the length of the stack and (p − k,q + k) is the terminal base pair of the
stack. The sequence i + 1, i + 2, . . . , j − 1 is a loop, if i + 1, i + 2, . . . , j − 1 are all unpaired and ai, j = 1. The pair (i, j) is said
to be the foundation of the loop. A hairpin is the longest sequence i + 1, i + 2, . . . , j − 1 containing exactly one loop such
that ai+1, j−1 = 1 and ai, j = 0. The paired points i + 1 and j − 1 will be called the foundation of the hairpin. See Fig. 1.
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Fig. 1. RNA secondary structures.

Enumeration problems of RNA secondary structures of single-stranded nucleic acids have a long history starting with the
investigations of Waterman [7,8] who gave the first formal framework for the topic [4]. Recently, there are many published
work on the asymptotic enumeration of RNA secondary structures by making use of generating functions, for example
in [3,2,6]. In the previous representation of RNA secondary structures, all bases A, U , G, C are regarded same. We call
this representation the first representation. Under this representation, some asymptotic enumeration formulae on a variety
subclasses and structural elements are derived in [2,3]. In [6], for the first time Wang et al. consider the difference between
A(U ) and G(C) bases. We call this representation the second representation. Based on the second representation, Wang et al.
obtain some asymptotic enumeration formulae on RNA secondary structures with prescribed size m for hairpin loops and
minimum stack length l.

In this paper, based on the second representation we present some recursions about some other secondary structures
with a prescribed size m (for the biological reasons, throughout this paper, m denotes the minimum number of unpaired
digits in a hairpin), for example, the structures with exactly b bases, the structures with exactly d hairpins and the struc-
tures with exactly r stacks. By means of generating functions, we derive their asymptotic enumeration. Furthermore, we
define the third representation of RNA secondary structures by considering the bases A, U , G, C are all different. Under this
representation, the number of structures with no base pairs on n vertices is 4n . The asymptotic enumeration on the above
mentioned structures are also obtained.

2. Asymptotic enumeration under the second representation

2.1. Basic recursions of secondary structure with certain properties

Let Hn(b) denote the number of structures with exactly b base pairs on n vertices. The number Hn(0) (i.e., the number of
structures on n vertices without base pair) is 2n , because each vertex is either the base A(U ) or the base G(C). The number
Hn+1(b) may be obtained from a structure on n vertices either by adding a free end A(U ) or G(C) at the right-hand end or
by inserting a base pair (1,k + 2) which is AU or GC . In the first case, we obtain 2Hn(b) structures. In the second case, the
substructure enclosed by the base pair (1,k + 2) is an arbitrary structure on k vertices with l base pairs, and the remainder
is an arbitrary structure on n − k − 1 vertices with b − l − 1 base pairs. Therefore, we obtain the following recursion:

Hn+1(b) = 2

{
Hn(b) +

n−1∑
k=m

b−1∑
l=0

Hk(l)Hn−k−1(b − l − 1)

}
for b > 0, n � m + 1;

Hn(b) = 0 for b > 0, n � m + 1;
Hn(0) = 2n for n � 0. (2.1)
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Let Hn(b, c) denote the number of structures with exactly b base pairs in which there are c AU base pairs. Similarly to
the above, by observing the inserting base pair (1,k + 2) is either AU or GC , we obtain the recursion

Hn+1(b, c) = 2Hn(b, c) +
n−1∑
k=m

b−1∑
i=0

c∑
j=0

Hk(i, j)Hn−k−1(b − 1 − i, c − j)

+
n−1∑
k=m

b−1∑
i=0

c−1∑
j=0

Hk(i, j)Hn−k−1(b − 1 − i, c − 1 − j) for b > 0, n � m + 1;

Hn(b, c) = 0 for b > 0, n � m + 1;
Hn(0,0) = 2n for n � 0. (2.2)

Let An(d) denote the number of structures with exactly d hairpins. The number An+1(d) may be computed as follows.
By adding an unpaired base A(U ) or G(C) to a structure on n vertices, we obtain 2An(d) structures. By adding a base pair
(1,k + 2), we have two cases to consider: (i) the number of hairpins is unchanged by the additional base pair; (ii) the
additional base pair produces a new hairpin. So we obtain the following recursion for the number An(d):

An+1(d) = 2An(d) + 2
n−1∑
k=m

{
d∑

l=1

Ak(l)An−k−1(d − l) + 2k An−k−1(d − 1)

}
for n � m + 1;

An(d) = 0 for d > 0, n � m + 1;
An(0) = 2n for n � 0. (2.3)

Let Nn(r) denote the number of structures with exactly r stacks. In order to compute it, we need the auxiliary variable
Zn(r) counting the number of structures with exactly r stacks given that (1,n) is a base pair. The corresponding recursion
is

Nn+1(r) = 2Nn(r) + 2
n−1∑
k=m

r∑
l=0

Zk+2(l)Nn−k−1(r − l) for r > 0, n � m + 1;

Nn(r) = 0 for r > 0, n � m + 1;
Nn(0) = 2n for n � 0. (2.4)

At the same time, for the auxiliary variable Zn(r), we have

Zn(r) = 2
(

Zn−2(r) + Nn−2(r − 1) − Zn−2(r − 1)
)

for r > 0, n � 2;
Z0(r) = Z1(r) = 0 for r > 0;
Z0(0) = 1. (2.5)

2.2. Asymptotic enumeration

Based on the generating functions of the second representation, we use the simplified version of Darboux’s theorem [1]
(see also [2,3,5,6]) to give the asymptotic enumeration of the above RNA secondary structures.

Lemma 2.1. Suppose yn � 0 and y(x) = ∑∞
n=0 ynxn is of the form

y(x) = β(x) + g(x)

(
1 − x

α

)w

,

where α > 0 is real, β(x) and g(x) are analytic near α, and w is real but not a nonnegative integer. If y(x) is analytic for |x| < α and
x = α is the only singularity of y on its circle of convergence, then

yn ∼ g(α)

Γ (−w)
n−1−w

(
1

α

)n

.

Theorem 2.2. The number of structures with exactly b base pairs on n vertices, Hn(b), satisfies

Hn(b) ∼ Cbn2b2n−b

(2b)! ,

where Cb = 1 (2b), b � 0, are the famous Catalan numbers.
b+1 b
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Proof. Let hb(x) = ∑∞
n=0 Hn(b)xn be the generating function of Hn(b). From recursion (2.1) we obtain

(1 − 2x)hb(x) = 2x2hb−1(x)
(2x)m

1 − 2x
+ 2x2

b−1∑
l=1

hl(x)hb−l−1(x)

and

h0(x) =
∞∑

n=0

Hn(0)xn =
∞∑

n=0

2nxn = 1

1 − 2x
.

Suppose

hb(x) = pb(x)(2x)2b(1 − 2x)−2b−1,

then we find that pb(x) must be polynomials satisfying

pb(x) = 1

2
(2x)m pb−1(x) + 1

2

b−1∑
l=1

pl(x)pb−l−1(x) with p0(x) = 1. (2.6)

Then Lemma 2.1 indicates

Hn(b) ∼ pb(
1
2 )

Γ (2b + 1)
n2b2n.

By means of Eq. (2.6), we have

pb

(
1

2

)
= (2b)!

(b + 1)!b!2b
= 2−bCb,

which gives the result of the theorem. �
Theorem 2.3. The number of structures with exactly b base pairs in which there are c AU base pairs, Hn(b, c), satisfies

Hn(b, c) ∼ n2b2n−2b

(b + 1)!c!(b − c)! .

Proof. Let hb,c(x) = ∑∞
n=0 Hn(b, c)xn be the generating function of Hn(b, c). From recursion (2.2), we have

(1 − 2x)hb,c(x) = −x2 1 − (2x)m

1 − 2x

(
hb−1,c(x) + hb−1,c−1(x)

)

+ x2
b−1∑
i=0

c∑
j=0

hi, j(x)hb−1−i,c− j(x) + x2
b−1∑
i=0

c−1∑
j=0

hi, j(x)hb−1−i,c−1− j(x)

and

h0,0(x) = 1

1 − 2x
.

With the assumption

hb,c(x) = fb,c(x)(2x)2b(1 − 2x)−2b−1 and f0,0(x) = 1,

it can be found that fb,c(x) are polynomials fulfilling

fb,c(x) = −1

4

(
1 − (2x)m)(

fb−1,c(x) + fb−1,c−1(x)
)

+ 1

4

b−1∑
i=0

c∑
j=0

f i, j(x) fb−1−i,c− j(x) + 1

4

b−1∑
i=0

c−1∑
j=0

f i, j(x) fb−1−i,c−1− j(x). (2.7)

Then Lemma 2.1 gives

Hn(b, c) ∼ fb,c(
1
2 )

n2b2n. (2.8)

Γ (2b + 1)
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Let f̂n,m = fn,m( 1
2 ). From Eq. (2.7), we obtain the following recursion:

4 f̂n+1,m =
n∑

i=0

m∑
j=0

f̂ i, j f̂n−i,m− j +
n∑

i=0

m−1∑
j=0

f̂ i, j f̂n−i,m−1− j. (2.9)

Define

f̂ (x, y) =
∞∑

n=0

∞∑
m=0

f̂n,mxn ym;

then Eq. (2.9) reduces to

4

x

(
f̂ (x, y) − 1

) = f̂ 2(x, y) + y f̂ 2(x, y),

which yields

f̂ (x, y) = 2
∞∑

n=0

n∑
m=0

(−1)n
( 1

2
n + 1

)(
n

m

)
xn ym.

Therefore f̂n,m = 2(−1)n
( 1

2
n+1

)(n
m

)
and the final result of the theorem can be derived from (2.8). �

Theorem 2.4. The number of structures with exactly d hairpins, An(d), satisfies

An(d) ∼ (2 − √
2 )dm(3 − 2

√
2 )d−1

2d!(d − 1)! (n/2)2d−2(2 + √
2 )n.

Proof. Let ad(x) = ∑∞
n=0 An(d)xn be the generating function of An(d). From recursion (2.3) we obtain the functional equation

(
1 − 4x + 2x2)ad(x) = 1

2
(2x)2+mad−1(x) + 2x2(1 − 2x)

d−1∑
i=1

ai(x)ad−i(x)

and

a0(x) = 1

1 − 2x
.

Suppose

ad(x) =
(

(2x)m+2

1 − 2x

)d 1

(1 − 4x + 2x2)2d−1
qd(x)

= (2x)md+2d(1 − 2x)−d(1 − (2 − √
2 )x

)−2d+1
qd(x)

(
1 − x

2−√
2

2

)−2d+1

.

It can be verified that qd(x) are polynomials satisfying the recursion

qd(x) = 2x2(1 − 2x)
d−1∑
i=1

qi(x)qd−i(x) + 1

2
(1 − 2x)

(
1 − 4x + 2x2)qd−1(x),

q1(x) = 1

2
. (2.10)

According to Lemma 2.1, we have

An(d) ∼ (2α)dm+2d(1 − 2α)−d(1 − (2 − √
2 )α)−2d+1qd(α)

Γ (2d − 1)
n2d−2α−n, (2.11)

where α = 2−√
2

2 . Next, from Eq. (2.10), we find

qd(α) =
( 1

2
d

)
(−2)d−1(5

√
2 − 7)d−1,

which, combined with (2.11), gives the desired result. �
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Theorem 2.5. The number of structures with exactly r stacks, Nn(r), satisfies

Nn(r) ∼ Crnr−12r+n

(r − 1)! .

Proof. Let the generating functions of Nn(r) and Zn(r) be vr(x) = ∑∞
n=0 Nn(r)xn and ur(x) = ∑∞

n=0 Zn(r)xn , respectively.
From recursions (2.4) and (2.5) we obtain

vr(x) = 2

1 − 2x

r∑
l=1

ul(x)vr−l(x),

ur(x) = 2x2

1 − 2x2

(
vr−1(x) − ur−1(x)

)
.

Suppose

vr(x) = μr(x)
(
1 − 2x2)−r

(1 − 2x)−r,

ur(x) = ξr(x)
(
1 − 2x2)−r

(1 − 2x)−r+1,

then μr(x) and ξr(x) are polynomials satisfying

μr(x) = 2
r∑

l=1

ξl(x)μr−l(x), (2.12)

ξr(x) = 2x2(μr−1(x) − (1 − 2x)ξr−1(x)
)
. (2.13)

By Eq. (2.13), we have

ξr

(
1

2

)
= 1

2
μr−1

(
1

2

)
.

Inserting the above formula into Eq. (2.12) yields

μr

(
1

2

)
=

r−1∑
l=0

μl

(
1

2

)
μr−1−l

(
1

2

)
,

which indicates that μr(
1
2 ) are just the Catalan numbers Cr . Now Lemma 2.1 shows that

Nn(r) ∼ μr(
1
2 )( 1

2 )−rnr−1

Γ (r)
2n = Crnr−12r+n

(r − 1)! .

This completes the proof. �
3. Asymptotic enumeration under the third representation

In this section, the asymptotic enumeration of all structures is under the third representation.
Let H̃n(b) denote the number of structures with exactly b base pairs on n vertices based on the third representation.

Then the following recursion holds:

H̃n+1(b) = 4

{
H̃n(b) +

n−1∑
k=m

b−1∑
l=0

H̃k(l)H̃n−k−1(b − l − 1)

}
for b > 0, n � m + 1;

H̃n(b) = 0 for b > 0, n � m + 1;
H̃n(0) = 4n for n � 0.

Similarly to Theorem 2.2, we obtain the asymptotic enumeration

H̃n(b) ∼ Cbn2b4n−b

(2b)! .

Let H̃n(b, c) denote the number of structures with exactly b base pairs in which there exist c AU base pairs. The
corresponding recursion is
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H̃n+1(b, c) = 4H̃n(b, c) + 2
n−1∑
k=m

b−1∑
i=0

c∑
j=0

H̃k(i, j)H̃n−k−1(b − 1 − i, c − j)

+ 2
n−1∑
k=m

b−1∑
i=0

c−1∑
j=0

H̃k(i, j)H̃n−k−1(b − 1 − i, c − 1 − j) for b > 0, n � m + 1;

H̃n(b, c) = 0 for b > 0, n � m + 1;
H̃n(0,0) = 4n for n � 0.

Similarly to Theorem 2.3, we have

H̃n(b, c) ∼ n2b22n−3b

(b + 1)!c!(b − c)! .

Let Ãn(d) denote the number of structures with exactly d hairpins. The corresponding recursion is

Ãn+1(d) = 4 Ãn(d) + 4
n−1∑
k=m

{
d∑

l=1

Ãk(l) Ãn−k−1(d − l) + 4k Ãn−k−1(d − 1)

}
for n � m + 1;

Ãn(d) = 0 for d > 0, n � m + 1;
Ãn(0) = 4n for n � 0.

Similarly to Theorem 2.4, we can obtain the following asymptotic enumeration:

Ãn(d) ∼ n2d−22dm6n−2d+1

3dm−1d!(d − 1)! .

Finally, based on the third representation let Ñn(r) denote the number of structures with exactly r stacks and let the
auxiliary variable Z̃n(r) denote the number of structures with exactly r stacks given that (1,n) is a base pair. The recursion
for Ñn(r) is

Ñn+1(r) = 4Ñn(r) + 4
n−1∑
k=m

r∑
l=0

Z̃k+2(l)Ñn−k−1(r − l) for r > 0, n � m + 1;

Ñn(r) = 0 for r > 0, n � m + 1;
Ñn(0) = 4n for n � 0.

The recursion for Z̃n(r) is

Z̃n(r) = 4
(

Z̃n−2(r) + Ñn−2(r − 1) − Z̃n−2(r − 1)
)

for r > 0, n � 2;
Z̃0(r) = Z̃1(r) = 0 for r > 0;
Z̃0(0) = 1.

Similarly to Theorem 2.5, we can find

Ñn(r) ∼ Crnr−14n+r

3r(r − 1)! .

4. Conclusions

In this paper, inspired by the representation in Wang et al. [6], we give recursions of some other RNA secondary struc-
tures, and derive the asymptotic formulae of these structures. In addition, we present a new representation about RNA
secondary structures, i.e., the bases A, U , G, C are all considered different. From the biological point of view, this represen-
tation is more attractive. Under this representation, the asymptotic formulae of the above-mentioned structures are also
derived.

Based on the new representation, the structures involved in Wang et al. [6] and some structures involved in Hofacker
et al. [2] are not considered in this paper. So in the near future, we can investigate them under this representation.
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