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a b s t r a c t

The human fungal pathogen Candida glabrata is related to Saccharomyces cerevisiae but has devel-
oped high resistance against reactive oxygen species. We find that induction of conserved genes
encoding antioxidant functions is dependent on the transcription factors CgYap1 and CgSkn7 which
cooperate for promoter recognition. Superoxide stress resistance of C. glabrata is provided by super-
oxide dismutase CgSod1, which is not dependent on CgYap1/Skn7. Only double mutants lacking both
CgSod1 and CgYap1 were efficiently killed by primary mouse macrophages. Our results suggest that
in C. glabrata the regulation of key genes providing stress protection is adopted to meet a host–path-
ogen situation.

� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

The human fungal pathogen Candida glabrata is a common com-
mensal in gastrointestinal and genitourinary tracts, but can turn
into an opportunistic fungal pathogen in immunocompromised pa-
tients and elderly people [1–4]. C. glabrata lives mostly on mucosal
surfaces and does not penetrate tissue efficiently. It is much more
related to Saccharomyces cerevisiae than to Candida albicans [5,6].
C. glabrata is obviously adapted to a mammalian environment. In
contrast to S. cerevisiae, its optimal growth temperature is near
the human body temperature and a number of adhesins allow
C. glabrata to avidly adhere to various surfaces and to mammalian
cells. These cells have adapted to withstand host defense and the
competing microbes on mucosal surfaces. Here we investigate the
regulatory basis for the oxidative stress resistance of C. glabrata.

In the mammalian host, cell-mediated immunity, based on
phagocytic cells is crucial to counteract fungal infections [7]. In
al Societies. Published by Elsevier
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the phagolysosome of phagocytic cells, one of the key defense
mechanisms is destruction of the engulfed microorganisms by
reactive oxygen species produced by the NADPH oxidase complex
[8,9]. The complex catalyzes the production of superoxide anions
ðO��2 Þ, serving as initial source for reactive oxygen species (ROS).
For successful dissemination, pathogenic fungi have to counteract
a broad spectrum of reactive oxidants during the oxidative burst.
Therefore, commensal and pathogenic microbial fungal organisms
carry a number of antioxidant systems (reviewed in [8,10]), such as
catalases, superoxide dismutases, thioredoxins and glutathione-
dependent peroxidases and reductases. Several of these enzymes
are highly relevant for fungal pathogen virulence. The loss of thio-
redoxin proteins and superoxide dismutases decreased virulence of
Cryptococcus neoformans in mice [11,12]. Unique cell surface super-
oxide dismutases CaSod4 and CaSod5 are essential for survival of
C. albicans in macrophages [13].

Oxidative stress causes rapid changes of transcription of many
genes. In S. cerevisiae, the induction of the oxidative stress regulon
is largely under control of the conserved transcription factors Yap1
and Skn7 [14–17]. In contrast, the transcription factor Sfp1 and the
TORC1 complex are repressed by superoxide anions leading to
down-regulation of genes encoding components required for pro-
tein biosynthesis [18,19]. Activation of Yap1 involves the inhibition
B.V. Open access under CC BY-NC-ND license.

https://core.ac.uk/display/82661039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.febslet.2010.12.006
mailto:christoph.schueller@univie.ac.at
http://dx.doi.org/10.1016/j.febslet.2010.12.006
http://www.FEBSLetters.org
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Table 1
Yeast strains used in this study.

Genotype Source

C. glabrata strain
DHTU his3D trp1D ura3D [33]
DHT6 his3D trp1D [33]
ARCg skn7D his3D trp1D ura3D skn7D::ScHIS3 This study
ARCg yap1D his3D trp1D ura3D yap1D::ScURA3 This study
ARCg

skn7Dyap1D
his3D trp1D ura3D skn7D::ScHIS3
yap1D::ScURA3

This study

ARCg
sod1D

his3D trp1D ura3D sod1D::ScHIS3 This study

ARCg
sod1Dyap1D

his3D trp1D ura3D sod1D::ScHIS3
yap1D::ScURA3

This study

S. cerevisiae strain
BY4741 MATa; his3D1; leu2D0; met15D0; ura3D0 Euroscarf
BY4741 sod1D MATa; his3D1; leu2D0; met15D0;

ura3D0 YJR104c::kanMX4
Euroscarf

BY4741 yap1D MATa; his3D1; leu2D0; met15D0;
ura3D0 YML007w::kanMX4

Euroscarf

Table 2
Plasmids used in this study.

Plamid Genotype Source

pRS316 CEN6, ARSH4, ScURA3 [35]
pRS313 CEN6, ARSH4, ScHIS3 [35]
pGEM-ACT ARS, CEN and TRP1 marker from C. glabrata [40]
pCgADH1-CgMSN2-

CFP
CgADH1-CgMSN2-CFP (SphI/SacII and SacII/NsiI);
CgTRP1

[40]

pCgADH1-CgSKN7-
CFP

CgADH1-CgSKN7-CFP (SacII and NcoI); CgTRP1 This
study

pCgSCgSKN7 CgSKN7-CgSKN7 (native promoter SphI and
SacII);
CgTRP1

This
study

pGEM-ACT-CgYAP1 Native promoter inserted via SphI/NotI; CgTRP1 This
study

pCgYCgYAP1 CgYAP1-CgYAP1 (NotI and NsiI); CgTRP1 This
study

pCgADH1-GFP-
CgYAP1

CgADH1-GFP-CgYAP1 (NotII/NsiI); GFP inserted
via
NotI/NotI; CgTRP1

[40]

pCgSKN7-HA CgSKN7-CgSKN7-HA (HA tag inserted with NcoI);
CgTRP1

This
study

pHA-CgYAP1 CgYAP1-HA-CgYAP1 (HA tag inserted with NotI); This
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of a nuclear export signal (NES). Cysteine residues become oxidized
by the thiol peroxidase Hyr1/Gpx3 which leads to the formation of
disulfide bonds, causing Yap1 to accumulate in the nucleus and
activate its target genes [20–22]. The role of Yap1 in other stress
responses has been reported in several other fungi, such as Kluy-
veromyces lactis, Ustilago maydis, C. albicans and Aspergillus fumiga-
tus [23–25]. In S. cerevisiae, the presence of both Yap1 and Skn7 is
necessary for efficient induction of many oxidative stress response
genes [15,26,27]. Skn7 is a nuclear response regulator and part of a
two-component system. Mutations in the receiver domain of Skn7
reduce its oxidative stress induced phosphorylation and the
in vitro formation of a ternary complex comprising promoter se-
quences and Yap1 [27]. However, the exact interaction mechanism
between Yap1 and Sn7 is not fully understood.

C. glabrata contains genes encoding putative orthologues of Yap1
and Skn7 [28]. CgYap1 has undergone a recent mutation causing a
shift of its preferred recognition site [29]. Similar to other fungi,
CgYap1 and CgSkn7 are required for full resistance to hydrogen per-
oxide stress [28,30,39]. The role of Yap1 and Skn7 for virulence in
pathogenic fungi varies between species. In C. albicans, the lack of
CaSkn7 caused a slight attenuation of virulence [31]. In the fungal
plant pathogen U. maydis, loss of the Yap1 orthologue led to re-
duced virulence [24]. In A. fumigatus, mutant strains lacking AfYap1
or AfSkn7 retained virulence in a mouse infection model [32,33].
The importance of Yap1 and Skn7 for virulence may depend on par-
ticular host niche exploited by the pathogen. The high conservation
of these factors in fungi underlines their important role.

Here we addressed the function and regulatory interaction of
CgYap1 and CgSkn7 for the regulation of the C. glabrata oxidative
stress response. We show interdependence of CgYap1 and CgSkn7
for a set of genes which is caused by cooperative promoter recog-
nition. We show that efficient cross-protection between carbon
source starvation and oxidative stress is accompanied by parallel
regulation of key protective genes. In contrast to S. cerevisiae, the
copper–zinc superoxide dismutase CgSOD1 is not under the control
of CgYap1. This suggests why, the Cgyap1DCgsod1D double mutant
but not the single mutants had a diminished survival rate during
macrophage infection. Thus we propose that C. glabrata has
adapted transcription of oxidative stress protective genes to meet
a host–pathogen situation.
CgTRP1 study
pCgYAP1-CgSKN7 CgSKN7-CgSKN7 inserted with NsiI into

pCgYAP1CgYAP1;
CgTRP1 marker

This
study
2. Materials and methods

2.1. Yeast strains and plasmids

Strains and plasmids are listed in Tables 1 and 2. Oligonucleo-
tides used are listed in Table S1. Additional information is available
as Supplementary data. C. glabrata strains ARCgskn7D, ARCgyap1D,
ARCgsod1D, ARCgyap1Dskn7D, and ARCgyap1Dsod1D were ob-
tained by replacing the ORFs in strain Dhtu [34] with the S. cerevi-
siae URA3 or HIS3 genes using fusion PCR [35] from the plasmids
pRS316 and pRS313 [36] with the oligonucleotides SKN7-1 to 6,
YAP1-1 to 6, and SOD1-1 to 6 and tested by southern analysis
(Fig. S1). Gradient plates were prepared as described [37]. All
PCR fragments were sequenced. Cells were grown for four genera-
tions in YPD at 30 �C to OD600 of 1 before menadione or H2O2 was
added for 20 min. The Microarray dataset has been deposited at ar-
ray express (http://www.ebi.ac.uk/arrayexpress/ E-MEXP-2915).
GFP was visualized in live cells without fixation as described [38].

2.2. Macrophage cell culture

Primary bone marrow derived macrophages (BMDMs) were ob-
tained from the femur bone marrow of 6–10 weeks old C57Bl/6
mice. Cells were cultivated in DMEM supplemented with 10% FCS
in the presence of L cell-derived CSF-1 as described C. glabrata mac-
rophage infection assays were done as described previously [38].
For infection assays, BMDMs were seeded at 5 � 105 cells/dish in
3.5-cm dishes containing medium without antibiotics.

2.3. Chromatin immunoprecipitation assay

Primer pairs: TRR2 (�639/�511) for CgTRR2 (CAGL0I01166g)
and GPX2 (�787/�617) for CgGPX2 (CAGL0C01705g). A centro-
meric region of Chromosome B was used as a negative control.

3. Results

3.1. C. glabrata reacts differently to various oxidative stress causing
agents

To explore the high oxidative stress resistance of C. glabrata
[16], we investigated the role of the transcription factors CgYap1
and CgSkn7. We generated strains lacking either CgYap1

http://www.ebi.ac.uk/arrayexpress/
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(CAGL0H04631g), CgSkn7 (CAGL0F09097g). To test the susceptibil-
ity spectrum of the mutants, we used plates with gradients of
hypochlorite, peroxynitrite, hydrogen peroxide, and the superox-
ide generating compound menadione (Fig. 1A). On plates contain-
ing menadione, we observed a small growth difference. In contrast,
growth of Cgyap1D and Cgyap1Dskn7D mutants was severely
diminished in the presence of peroxynitrite. Both Cgyap1D and
Cgyap1Dskn7D mutants had reduced survival on plates containing
hydrogen peroxide (Fig. 1A, lower left panel). The Cgskn7D mutant
was sensitive only to high level of hydrogen peroxide consistent
with an earlier report [39]. Similar to S. cerevisiae [40], we observed
that C. glabrata and Cgyap1Dskn7D mutant cells from over-night
grown cultures which had switched to fermentative metabolism
were highly resistant to hydrogen peroxide (Fig. 1A, lower panel).
This is consistent with an earlier report on high level resistance of
stationary phase C. glabrata cells [28]. Cells retained this high resis-
tance also in the presence of glucose (Fig. 1A, lower right panel).
The Cgsod1D mutant lacking the cytosolic copper–zinc superoxide
dismutase CgSOD1 (CAGL0C04741g) was highly sensitive to super-
oxide and additional deletion of CgYAP1 did not enhance its sensi-
tivity. Carbon source starvation slightly elevated the resistance
against menadione-caused oxidative stress (Fig. 1B).

3.2. The core oxidative stress response of C. glabrata is similar to
S. cerevisiae

To define the oxidative stress regulon of C. glabrata, the tran-
scriptional response to 0.4 mM hydrogen peroxide was determined
0.5mM Menadione 50mM Hypochlorite 0.8mM Peroxynitrite

O/N

YPD YPGE

wt

skn7Δ

yap1Δ

yap1Δskn7Δ

wt

skn7Δ

yap1Δ

yap1Δskn7Δ

YPD

A

B

0.4mM H2O2
0.4mM H2O210mM H2O2

5x102

5x10

wt

skn7Δ

sod1Δ

yap1Δ

yap1Δskn7Δ

yap1Δsod1Δ

wt

skn7Δ

sod1Δ

yap1Δ

yap1Δskn7Δ

yap1Δsod1Δ

20.1mM Menadione

0.1mM Menadione
YPD

YPD

1h Glucose starvation

Fig. 1. C. glabrata survival during different chronic oxidative stress types. (A) C.
glabrata resistance against oxidative stress causing agents. C. glabrata wild type,
Cgsod1D, Cgyap1D, Cgyap1Dsod1D, Cgskn7D, and Cgyap1Dskn7D mutant cells were
grown to an OD600 of 1 in YPD. 5 � 102 cells were dropped on gradient plates
containing menadione, hypochlorite, peroxynitrite and hydrogen peroxide. In
addition 5 � 102 cells from stationary over-night cultures were dropped on plates
containing hydrogen peroxide (lower right panels).
by microarray analysis (Fig. 2A). cDNAs from stressed Cgyap1D and
Cgskn7D mutants were co-hybridized with the stressed wild type.
Genes dependent on CgYap1, CgSkn7 or both were classified into
three groups. Group 1 comprised genes dependent on both CgSkn7
and CgYap1 and included many generic oxidative stress response
genes similarly regulated in S. cerevisiae (CgTRR1/2, CgTRX2,
CgTSA1/2, CgGPX2, and CgCTA1) [14,41]. Based on this congruence,
we designated this group of genes as ‘‘core oxidative stress re-
sponse’’ (COR; Table 3a). Furthermore, a group of genes was largely
dependent on CgYap1 (Fig. 2A, Group 3). We identified enrichment
of Yap1 and Skn7 consensus sites in the promoters of the C. glabra-
ta induced genes of the different groups (Fig. 2E). A group of 18 in-
duced genes was not dependent on either CgYap1 or CgSkn7
(Fig. 2A, Group 2). Group 2 contained genes associated to mito-
chondrial processes (CgACP1, CgOPI3, CgHSP10 and CgMRP10). Tran-
scription of these genes might be redundantly regulated by CgYap1
or CgSkn7. However, most genes of Group 2 were highly induced in
the Cgyap1Dskn7D double mutant (Fig. 2A), suggesting the
involvement of additional oxidative stress responsive factors. We
found an overlap of 26 genes induced by oxidative stress to glucose
starvation [42] (Fig. 2A, right panel). The majority of these be-
longed to Group 2, but also included core oxidative stress genes
CgCTA1, CgGPX2 and CgTRX2.

The sensitivity tests suggested differences between the re-
sponse to peroxide and superoxide stress. Therefore, we deter-
mined the transcriptional profile to 0.1 mM menadione (Fig. 2B).
In wild type cells we observed 29 genes up-regulated more than
4-fold upon menadione stress. The comparison of at least 2-fold in-
duced genes after hydrogen peroxide and superoxide stress re-
vealed an overlap of 41 genes (Fig. 2C). The expression level of
only 11 genes was dependent on CgYap1/CgSkn7 during both
stresses (Table 3b). We compared genes upregulated by starvation,
hydrogen peroxide or menadione stress and found two rather inde-
pendent groups (Fig. 2D, Groups a and b). These data suggested a
separation of specific oxidative stress regulons in C. glabrata.

3.3. Expression of important key enzymes to overcome oxidative stress
is dependent on CgYap1 and CgSkn7

To confirm the functions of CgYap1 and CgSkn7 for C. glabrata,
we measured the expression levels of exemplary genes of the de-
fined groups (Fig. 3A and B). For genes dependent both on CgYap1
and CgSkn7, we chose CgCTA1, CgTRR2, and CgTSA1 (Fig. 3A). In C.
glabrata wild type cells, expression levels were rapidly and
strongly induced upon treatment with 0.4 mM hydrogen peroxide
and highly dependent on CgSKN7 and CgYAP1. To confirm the mu-
tant data we included strains complementing the mutations with
plasmids carrying the CgYAP1 and CgSKN7 genes regulated by their
own promoters. We investigated if the expression of the superox-
ide dismutases CgSOD1 and CgSOD2 is dependent on the CgSKN7
and CgYAP1. We found that CgSOD1 and was constitutively ex-
pressed, and levels of both CgSOD1 and CgSOD2 were not changed
during peroxide stress in the CgYap1 and CgSkn7 mutant strains
(Fig. 3A).

Group 2 comprised genes independent from CgYap1 and
CgSkn7. The reason for this could also be a redundant function of
CgYap1 and CgSkn7. Expression of CgHSP78 was not dependent
on CgYap1 and CgSkn7 or both (Fig. 3B). Therefore, other factors
are involved in the regulation of Group 2 genes. Finally, Group 3
predicted a group of genes solely dependent on CgYap1 and we ob-
served a high dependency of CgHSP31 on CgYap1.

Carbon source starvation induces resistance to oxidative stress.
In addition, genes induced by carbon source starvation are up-reg-
ulated during phagocytosis [43]. Therefore, we investigated
expression levels of oxidative stress genes during glucose deple-
tion (Fig. 3C). After 1 h growth in medium lacking glucose CgCTA1
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Fig. 2. Comparison of genome-wide expression levels in response to oxidative stress. (A) Transcript sets represent average inductions and comparison of wild type strain
versus Cgyap1D and Cgskn7D mutant strains, and the Cgyap1Dskn7D double mutant strain. All treatments were done at 30 �C for 20 min. Genes were clustered after selection
(at least once >3-fold induction). Group 1: dependent on CgSkn7 and CgYap1; Group 2: independent of CgSkn7 or CgYap1; Group 3: dependent on CgYap1. Genes found to be
upregulated in S. cerevisiae upon oxidative stress are highlighted in red, asterisk indicates those dependent on Skn7/Yap1 or Yap1 alone in S. cerevisiae. Profile of C. glabrata
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was strongly up-regulated in a CgSkn7 and CgYap1 and also
CgMsn2/4 (not shown) independent manner. Furthermore, expres-
sion of the superoxide dismutases CgSOD1 and CgSOD2 was similar
in Cgyap1Dskn7D mutant cells (Fig. 3C).
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We compared susceptibility of C. glabrata and S. cerevisiae
strains to menadione (Fig. 3D). In S. cerevisiae, expression of ScSOD1
is regulated by ScYap1 during oxidative stress [14]. Correspond-
ingly, we observe increased sensitivity of S. cerevisiae Scyap1D
mutants. In contrast, C. glabrata Cgyap1D mutants had similar
sensitivity to menadione as the wild type. C. glabrata and
S. cerevisiae sod1D mutants were both highly sensitive. We
conclude that protection against superoxide by superoxide dismu-
tase seems to be uncoupled from CgYap1 control in C. glabrata.

3.4. CgYap1 and CgSkn7 are interdependent for activation of
expression of oxidative stress genes

Genes comprising Group 1 were dependent on both CgYap1 and
CgSkn7 for full expression. We tested recruitment of CgYap1 and
CgSkn7 to oxidative stress gene promoters. In silico analyses of
promoter regions of Group 1 genes revealed that Yap1/Skn7 bind-
ing site pairs located in close proximity (10–20 nucleotides from
centre to centre of each binding site) were significantly enriched
(Fischer exact test P < 0.01). Moreover, inter-motif distances in
these pairs were not evenly distributed but presented peaks at
10, 14, and 19 nucleotide distances, which correspond to roughly,
1, 1.5 and 2 turns of the DNA double helix (Fig. 4A). CgSkn7-CFP
localized constitutively to the nucleus and GFP-Yap1 regulated
localization was not dependent on CgSkn7. Fluorescent protein fu-
sions were over expressed (Fig. 4B).

To elucidate the binding of these factors to the respective pro-
moters, we performed chromatin immune-precipitations. To pre-
serve the nuclear localization signal CgSkn7 was tagged with
three HA epitopes at the C-terminus (Fig. 4C), whereas CgYap1
was tagged at the N-terminus. Both constructs were expressed
from centromeric plasmids under the control of their native pro-
moter and complemented the respective deletion mutation for
hydrogen peroxide induction using catalase activity as a reporter
(not shown). As target gene promoters for ChIP we chose CgTRR2
Table 3a
Genes of the core response to H2O2-associated oxidative stress (COR).

Gene name Systematic name Function wta DyDsa

CgTRR1 CAGL0A02530g Thioredoxin reductase 22.8 1.1
CgTRR2 CAGL0I01166g Thioredoxin reductase 30.2 0.0
CgTRX2 CAGL0K00803g Thioredoxin 16.6 1.7
CgTSA1 CAGL0G07271g Thioredoxin peroxidase 11.4 0.0
CgTSA2 CAGL0K06259g Thioredoxin peroxidase 22.3 1.6
CgGPX2 CAGL0C01705g Glutathione peroxidase 22.4 2.1
CgCTA1 CAGL0K10868g Catalase 17.2 1.3

a Fold induction.

Table 3b
Genes dependent on CgYap1 and CgSkn7 during H2O2 and O��2 stress.

Gene name Systematic name Function

CgYAH1 CAGL0H00660g Ferredoxin
CgGPX2 CAGL0C01705g Glutathione peroxidase
CgADH6 CAGL0M14047g NADPH dehydrogenase
CgPYC1 CAGL0M14047g Pyruvate carboxylase
CgSMD2 CAGL0F04961g Core Sm protein
CgTSA2 CAGL0K06259g Thioredoxin peroxidase
CgGRX7 CAGL0I04554g Monothiol glutaredoxin
YOR111W CAGL0I02882g Unknown function
CgTRR2 CAGL0I01166g Thioredoxin reductase
YJR111c CAGL0C04873g Unknown function
CgOAZ1 CAGL0M07403g Regulator of Spe1p

a Fold induction.
and CgGPX2. HA-CgYap1, expressed in the yap1D mutant, was de-
tected at the CgTRR2 promoter within 3 min upon stress induction
by treatment with 0.4 mM H2O2 (Fig. 4C, left panel). After initial
recruitment, HA-CgYap1 dissociated gradually. Importantly, HA-
CgYap1 expressed in absence of CgSkn7 in the Cgskn7Dyap1D dou-
ble mutant, was not detectably recruited to the CgTRR2 promoter
(Fig. 4C, left panel).

CgSkn7-HA, similar to HA-CgYap1, was recruited within 3 min
to the CgTRR2 promoter. Notably, CgSkn7-HA stayed slightly longer
at the CgTRR2 promoter than HA-CgYap1 (Fig. 4D, left panel).
CgSkn7-HA was not detectable in the promoter regions in the dou-
ble mutant Cgskn7Dyap1D (Fig. 4, lower panel). CgYap1 and
CgSkn7 had very similar binding characteristics to the CgGPX2 pro-
moter (Fig. 4C and D, right panels). Taken together, binding of
CgYap1 and CgSkn7 to certain promoters is strongly interdepen-
dent upon induction by oxidative stress. These results show that
CgYap1 and CgSkn7 cooperate to achieve rapid promoter recruit-
ment and explain why some genes require presence of both
factors.

3.5. Both CgYap1 and CgSod1 are required for sustained C. glabrata
survival in a primary mouse macrophage infection model

The oxidative burst is part of the strategy of phagocytic cells to
erase engulfed cells. Consequently, we analyzed the importance of
CgYap1, CgSkn7 and CgSod1 during phagocytosis. We infected
murine bone marrow derived macrophages (BMDM) with
Cgyap1D, Cgyap1Dskn7D, Cgsod1D and Cgyap1Dsod1D mutant cells
(Fig. 5). C. glabrata cells were added to macrophages in a 1:1 ratio.
After 24 h, engulfed C. glabrata cells were recovered on YPD plates.
Cgyap1D, Cgsod1D and Cgskn7Dyap1D mutant cells displayed no
diminished survival rate. However, the loss of both Cgsod1D and
Cgyap1D had a major and significant effect on surviving
phagocytosis.

4. Discussion

The preferred environments of C. glabrata and S. cerevisiae differ
radically. C. glabrata lives preferably on mucosal surfaces compet-
ing with the microbial flora and may also encounter phagocytic
cells of the innate immune system. These environments may have
selected its high resistance against starvation, oxidative and chem-
ical stress. We found that in C. glabrata, like in S. cerevisiae, Yap1
and Skn7 regulate core peroxide stress resistance genes. Different
to S. cerevisiae, expression of C. glabrata superoxide dismutases
was not regulated by CgYap1 but dependent on carbon source.
Both CgYap1 and CgSod1 were required for optimal survival during
macrophage phagocytosis.
H2O2 O��2

wta DyDsa wta DyDsa

2.4 1.3 2.4 1.3
22.4 2.1 2.3 1.3

2.1 0.0 3.8 1.5
2.7 1.2 4.9 1.7
2.8 0.0 2.2 1.3

22.3 1.6 8.8 2.2
3.0 1.3 2.1 1.4
2.2 1.1 2.2 0.0

30.2 0.0 3.4 0.0
2.4 1.4 2.3 0.0
2.0 0.0 2.9 0.0
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4.1. The C. glabrata core peroxide stress response is related to
S. cerevisiae

In S. cerevisiae, expression of more than 70 genes is increased
within minutes upon exposure to hydrogen peroxide [44]. ScYap1
controls about thirty genes of the S. cerevisiae oxidative stress reg-
ulon [14,41]. Fifteen of these proteins required both Skn7 and Yap1
for induction. This is in agreement with an earlier report on CgSkn7
regulated genes [39]. Two distinct Yap1 regulons were defined in S.
cerevisiae, covering oxidative stress response, the second involved
in the metabolic pathways regenerating the main cellular reducing
power, GSH and NADPH [14]. In C. glabrata the core response to
oxidative stress included thioredoxin peroxidases (CgTsa1,
CgTsa2), thioredoxin reductases (CgTrr1, CgTrr2), the thioredoxin
cofactor CgTrx2, the glutathione peroxidase CgGpx2, and the cata-
lase CgCta1. Cgyap1D mutant cells displayed higher susceptibility
to hydrogen peroxide. In contrast to S. cerevisiae, CgYap1 had only
a small effect on the susceptibility to superoxide anions [45]. This
is in line with the observation that the DNA recognition pattern
recognized CgYap1 in C. glabrata is changed due to a point muta-
tion from ScYap1 [29]. Similar to our results, CgSkn7 has been
shown recently to be important for peroxide stress protection
and for the induction of CgTRX2, CgTRR1, CgTSA1 and CgCTA1 [39].

4.2. CgYap1 and CgSkn7 cooperate for promoter binding

In S. cerevisiae, genetic and in vitro evidence suggested that a di-
rect interaction between Yap1 and Skn7 is necessary for induction
of a number of oxidative stress response genes [15,27]. Our ChIP
data for two genes showed that cooperation occurs at the level of
promoter recognition. This kind of interdependence was previously
observed in vitro. Electrophoretic mobility shift assays demon-
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strated the presence of a Skn7–Yap1 complex with the promoter
DNA of TSA1 [14]. Here, we showed the first time in vivo, that
Yap1 and Skn7 cooperatively bind to the upstream region of core
oxidative stress genes.
4.3. Dual control by oxidative stress and carbon source

Twenty seven genes of the oxidative stress regulon are upregu-
lated during glucose starvation [42]. C. albicans, S. cerevisiae and
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C. glabrata cells grown to stationary phase exhibit increased resis-
tance against menadione and hydrogen peroxide [28,40,46]. Thus,
adaptation to these environmental changes causes a simultaneous
upregulation of a set of genes, beneficial for both oxidative stress
and glucose starvation. The transcription factor mediating this activa-
tion in C. glabrata remains to be uncovered. CgMsn2/4 are most prob-
ably not involved since carbon source control of CgCTA1 is also
observed in the double mutant (Roetzer and Schüller, unpublished
observation). Interestingly, nutrient limitation can also increase resis-
tance to oxidative stress and to pH stress in bacteria such as Staphylo-
coccus aureus and Salmonella typhimurium. An Afsod1D/Afsod2D/
Afsod3D triple mutant and AfSkn7 and AfYap1 mutant strains showed
no defect in pathogenicity in murine infection models despite being
sensitive against menadione and peroxide [47]. This might point to
a comparable additive protection mechanism in A. fumigatus.

4.4. The distinct oxidative stress regulons have a synergistic impact on
virulence

In a primary mouse BMDM macrophage model Cgyap1D and
Cgyap1Dskn7D mutant cells were similar resistant as the wild type.
Accordingly, Cgyap1Dskn7D cells can easily overcome 0.4 mM
H2O2 stress, the concentration that C. glabrata cells most probably
experience inside the mammalian host [28,48]. Cgsod1D mutants
had no severe decrease of survival upon phagocytosis. However,
the combined loss of superoxide protection with loss of hydrogen
peroxide response (Cgyap1Dsod1D) made cells much more sensi-
tive to BMDM internalization. We suggest that the production of
superoxides inside the phagolysosome is intercepted by CgSod1.
Only if both CgSod1 and CgYap1 are absent, C. glabrata cells are
more sensitive to the oxidative burst. It will be interesting to test
whether this relates to the mechanism how C. glabrata cells can
suppress ROS production upon internalization by macrophages
[49]. In summary, in C. glabrata regulation of oxidative stress pro-
tective factors supports survival of phagocytosis conditions.
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