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A B S T R A C T

In the literature electric vehicle use is modelled using of a variety of approaches in power systems, energy and
environmental analyses as well as in travel demand analysis. This paper provides a systematic review of these
diverse approaches using a twofold classification of electric vehicle use representation, based on the time scale
and on substantive differences in the modelling techniques. For time of day analysis of demand we identify
activity-based modelling (ABM) as the most attractive because it provides a framework amenable for integrated
cross-sector analyses, required for the emerging integration of the transport and electricity network. However,
we find that the current examples of implementation of AMB simulation tools for EV-grid interaction analyses
have substantial limitations. Amongst the most critical there is the lack of realism how charging behaviour is
represented.

1. Introduction

Electric vehicles (EV)' uptake has been promoted around the globe
for the benefits EVs are expected to bring in terms of energy security,
global and local environment, and economical growth. Energy security
is potentially improved as battery electric vehicles (BEV) and plug-in
hybrid vehicles (PHEV) reduce the oil consumption of countries
traditionally relying heavily on foreign imports. Impacts on global
climate change from the transport sector can be reduced if the road
transports electrification occurs in parallel with the decarbonisation of
power generation. Local air pollution, especially in urban areas, can be
reduced as higher fraction of driven miles is carried by zero tailpipe
emissions vehicles such as BEVs. Economic growth can be stimulated
by the development of an EV production supply chain as well as by
deployment of the charging infrastructure and the development of
business to operate it.

Along with the expected benefits, large scale EV deployment poses
both a challenge and an opportunity for the operation of power grids.
On one hand electric grids capacity can be strained by an unmanaged
EV load, especially at the distribution level where the capacity bottle-
necks are most easily reached. On the other, if charging demand
flexibility can be harnessed by implementing smart charging strategies,
not only can costly grid capacity upgrades be minimised, but the
operation of grid systems can be enhanced making use of a potentially
very large responsive storage constituted by the batteries of grid-
connected EVs.

EV deployment impacts, being on the energy security, the environ-

ment, the economy or on grid system operations have been indentified,
studied and quantified mainly by means of mathematical models. Such
models are necessary essentially for two reasons. Firstly, real world
data about EV use is scarce due to the low adoption levels to date.
Secondly, and most importantly, even when data is available, models
need to be developed to assess impacts in conditions that do not
necessarily coincide with those described by the available data,
including the testing of new technological and policy scenarios. In fact,
real world EV use data, collected in most cases during demonstration
projects or trials, have been analysed mainly descriptively in few
studies [1–3]. These descriptive analyses help gain qualitative insight
into EV use and charging behaviour, but they essentially draw a picture
of the status quo. As a matter of fact, such static pictures are of limited
use in the rapidly evolving context of transport electrification which
requires tools that are sufficiently flexible to inform decisions in a
rapidly changing context. Such flexibility is enabled only by models.

Reviews of the studies into integration of EV into grid systems have
been carried out to identify system architectures, to summarise the
practical challenges for their implementation, to characterise the types
of impacts expected from EV-grid integration, as well as to highlight
the modelling methodologies applied [4,5]. The review of the methods,
however, misses an in depth analysis on how EV use and charging
demand is modelled or represented in various studies, despite the
obvious effect this necessarily have in the study outcomes. This gap is
filled by the present paper.

Here we review the approaches adopted to model electric vehicle
use and changing patterns across a variety if impacts studies published
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in transport, energy and power sector journals. Across the sectors the
modelling approaches are widely diverse. This diversity makes it
difficult to compare the analyses’ results from different studies.
Because the focus of impact studies is not demand itself, but the
impacts of EV deployment, there is a lack of critical analysis of the
approaches used to model the demand of EV use, which is in fact the
essential input of impact analyses. The diverse approaches for EV use
demand modelling are organised in the present paper by means of a
classification framework that enables to indentify the weakness and
strengths in each approach with respect to the scope of the impact
studies.

The next section outlines our classification framework. Sections 3
and 4 provide the analysis of the literature and Section 5 provides our
conclusions from this analysis.

2. Literature analysis approach

The papers analysed for this survey are broadly classified along two
dimensions: time scale at which the EV usage patterns are represented
and along substantive methodological differences in EV usage patterns
modelling.

The classification along the time dimension distinguishes between
models of car ownership and annual vehicle use models of daily
vehicles' patterns. In car ownership and annual vehicle use models,
vehicle holdings are typically modelled at the household level; vehicle
use is typically modelled as vehicle annual mileage (VAM). Therefore
these models are disaggregate with respect to observation unit of the
vehicle usage level, but the frequency of observation is of the order of
the year. In models of daily vehicle patterns the usage metrics are trips,
the daily mileage, or daily activity-travel schedules (i.e. trip chains
interspersed by drivers’ non-travel activities). For ease of reference
refer to the class of models of daily vehicle patterns with the label
Short-period models (SPM). This label is intended to highlight that
vehicle usage is modelled typically as it evolves over a single day or few
days and not in as a single summary metric covering a longer periods
of time (e.g. a year). Incidentally, the label short-period should not be
confused with short-term, a label more often used in demand model-
ling/forecasting. While the latter refer to predictions of future demand,
in a not far future with respect to a typical time scale of the quantity
analysed, the label short-period used here refers purely to the time
resolution of vehicle usage metric, with no reference to how far in the
future the vehicle use is modelled. Indeed most EV studies based on
either VAM models or SPMs, could be considered long-term as they
assume large EV deployment scenarios rather far from the current
levels of EV market penetration, thus often several years far from the
present.

A systematisation of the literature also along a methodological
dimension of EV patterns models is necessary essentially because in
SPMs a wide variation of approaches has been adopted. The appro-
priateness of a methodological approach for the analyses of the impacts
mentioned in the introduction are discussed in details throughout the
critical review of the literature presented in Sections 3 and 4, but the
main characteristics affecting method appropriateness are summarised
in Fig. 1 and are related to the time resolution and the output
disaggregation level required. In particular, the output disaggregation
level achievable varies across SPMs, (Fig. 2).

Figure 2 provides an overview of the classification of the EV use
modelling approaches adopted in this paper. Vehicle ownership and
annual mileage models (VOAMM) constitute a single class. For SPMs
methods we identified classes and subclasses:

• Summary travel statistics models (STSM)

• Models based on entire activity travel schedules: (Direct use of
observed activity travel schedules, DUOATS; and proper activity
based models, ABM).

• Markov chain models (MCM) of vehicle state.

The structure of Sections 3 and 4 of this paper reflects Fig. 2: these
two sections discuss the strengths and weaknesses for each model class
relative to the typical application contexts of EV use models. The paper
will conclude by summarising the main research gaps and suggest
avenues for further work. The highlights of our analysis of the literature
are presented in Table 1 below. The table compares advantages,
disadvantages and application areas for each of the modelling solutions
discussed in details throughout the paper.

3. Vehicle ownership and annual mileage models

VOAMMs have traditionally been developed and improved by
transport demand researchers for variety of planning purposes of
interest to a diverse stakeholder community [6,7]. Stakeholders and
purposes include:

• Car manufacturers: to measure consumer valuation of car attributes;

• Energy companies, oil companies specifically: to forecast the use of
their product, therefore are interested in forecasting both car
ownership and use;

• Financial institutions and international organisations: to guide
investment decision making assistance;

• Governments: to forecast impacts of changes in taxation levels, but
also to forecast tax revenues;

• Governmental and non-governmental organisations from national
to local level: to forecast transport demand (in which case these
models are integrated with traditional four-step models for trans-
port demand), energy demand and emission levels, and to simulate
policy impacts on the demand.

EV ownership and mileage demand models have some obvious
applications. For example utilities are interested in, forecasting EV
ownership to estimate the future size of the EV stock on the road to
estimate the potential additional demand for electricity for investment
planning purposes. Governments striving to foster EVs’ uptake make
use of these models to testing the effectiveness of incentives (e.g. direct
subsidies on the capital costs, tax rebates or exemptions, deployment of
public charging infrastructure). Vehicle manufactures are interested in
analysing market potentials of EVs to devise their production strate-
gies. However, if properly applied, EV ownership and mileage demand
models can provide less obvious insights. For example, investments in
public charging infrastructure deployment can be viewed on the one
hand as a strategy to incentivise EV adoption. On the other hand, the
infrastructure location is not irrelevant for the effectiveness of these
investments. These two aspects can be jointly analysed with appro-
priate vehicle ownership models, provided that the model can account
for spatial heterogeneity in car buying households. For instance spatial
heterogeneity in the availability of private parking spaces (driveways
and garages) and in income may have important effects, regarding how
to direct investments incentivising EV uptake. In some areas, reducing
the charging infrastructure barrier may be more effective than provid-
ing incentives on capital costs, whereas in other areas, where private
driveways or garages are more common, capital incentives rather than
investment in charging infrastructures may be more effective. A further
example of less direct application of disaggregate EV adoptions model
is long term spatial analysis of electricty demand, which is of interest
for electric infrastructure planning.

The nature of the applications described above suggests that a
considerable level of model disaggregation is desirable along several
dimensions: vehicle characteristics, household characteristics, and in
space to analyse local effects. In EV market studies both aggregate and
disaggregate modelling methodologies have been used, which include
agent based modelling, diffusion rate and time series models, discrete
choice models [8]. The first and the last disaggregate methods and thus
offer the possibility, at least in theory, to achieve disaggregation along
the highest number of dimensions. Agent based models are mainly
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based on theoretical formulation of consumers behaviour or when their
parameter are estimated empirically, consumer behaviour is often
modelled making use of discrete choice models. In the next subsection,
we will focus on reviewing application of discrete choice models for EV
adoption, because due to their disaggregated nature they are better
suited for the application context described. The subsection following
the next will review studies where such models have been integrated
with vehicle use models to forecast jointly vehicle ownership and
annual use.

3.1. Discrete choice models in vehicle adoption models

In discrete choice models individual chooses between a complete
set of exclusive alternatives (e.g. the vehicle type to own or the number
of vehicles to own), from each of which the individual consumer or the
household would derive some utility, if the alternative is chosen.

According to classical microeconomic theory, the individual will choose
the alternative that maximizes his utility. The utility of each alternative
depends on the characteristics of the alternatives and the values that
each individual places on these characteristics. Because the analyst
cannot observe the utility directly, he cannot specify a model providing
the choice outcome with invariable success. Thus the concept of
Random Utility becomes necessary [9]. This means that the utilities
are actually random variables; therefore the analyst can only identify
the choice probability for each alternative, but not the choice outcome.

The general structure for the utility an individual n places into the
alternative i belonging to the choice set Jn can be written as:

U V ε i J= + ∀ ∈ni ni ni n

whereVni is the observable (or systematic) component of the utility, that
the analyst can describe as a function of the alternative's attributes and
the decision maker's characteristics, while εni is the random error

Fig. 1. Spatial aggregation levels and time resolution in EV use models required by the analysis purpose.

Fig. 2. Classification of EV use modelling approaches.
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component. The distinct sources of randomness that are typically
found are: unobserved attributes, unobserved taste variations, mea-
surement errors and imperfect information, instrumental variables, i.e.
variables that are related to actual attributes that are though unob-
served [10].

The choice probability for alternative i is thus:

∫ γ γ

P iJ Pr V ε V ε

j i J j i g d

( ) = [ + > + ,

∀ ≠ ∈ ] = I(ε − ε < V − V ∀ ≠ ) ( )
γ

ni ni

n ni ni nj nj

n nj ni ni nj

where I is an indicator function equal to 1 when its argument is true;
γ ε ε ε ε ε ε ε ε ε ε={ − , − ,…, − , − ,…, − }ni

T
n ni n ni n i ni n i ni nJ ni1 2 ( −1) ( +1) n is a

J −1n dimensional vector of the difference in errors for alternatives j
and alternative i j i J∀ ≠ ∈ n; g (.) is the density of the error differences
(which can be derived from the density of ε ε{ ,,…, }n nJ

T
1 n ); and γ the

support of g (.). Once choice probabilities for individuals are known,
then several aggregation techniques are available to estimate aggregate
demand [9,11].

Traditionally in car ownership models discrete choice models have
been used to model: number of cars owned by a household [12,13];
vehicle transactions type (addition versus replacement of vehicle to
holding); and vehicle type choice (class, power-train, brand etc...).
Clearly the latter dimension is the most relevant for EV adoption
models.

Alternative fuel vehicle adoption studies using discrete choice
modelling show an evolution of the modelling technique along three
main lines: (1) in the explanatory power of the systematic utility; (2) in
the characterisation of the error structure to capture more realistic
substitution patterns; and (3) in the overall modelling framework, to
explicitly capture latent construct that qualitative studies have demon-
strated play a major role in vehicle adoption behaviour (such as
attitudes and symbolic values; or multidimensional attributes not apt
to direct measurement).

3.1.1. Systematic utility specification
Around thirty years of discrete choice modelling studies carried out

mainly using stated choice experiment data have identified several
significant vehicle attributes affecting car buyers purchase decision

when electric vehicles are amongst the alternatives in their choice sets.
These include: purchase price, operating costs, driving range, rechar-
ging times, recharging/refuelling network density, power and emis-
sions [14]. Heterogeneity in taste for such attributes have been
partially explained by drivers’ socio-demographics especially gender
and education level [14].

3.1.2. Error structure specification
The workhorse of discrete choice modelling has been Multinomial

logit model (MNL). This model is characterised by closed-form choice
probabilities and is derived by assuming that the error terms in the
expression of the utility for an alternative are iid Gumbel distributed.
The expression for the choice probabilities is [15]:

P e
e

=
∑ni

V

j J
V

∈

ni

n
nj

The MNL model thanks to its simple form has been widely used in
vehicle adoption studies [16–21]. However the advantage of closed-
forms choice probabilities comes at the cost of realistic substitution
patterns amongst the alternatives, which are constrained by the so
called independence from irrelevant alternative property of the MNL.
This property consists in the fact that the ratio between the MNL
probabilities of two distinct alternatives i and k in one's choice Jn set
does not depend on any other alternative available in Jn, nor on the
attributes of the other alternatives. As a result, MNL models predict
that the introduction of a new alternative, the elimination of an existing
one, or changes in the attributes of one of the alternative lead to a
change in the probability of the other alternatives such that the ratios of
probabilities remain the same. This has a serious implication in the
substitution patterns amongst alternatives in vehicle type choices when
EVs are part of the choice set. An example of the effect of using an MNL
for forecasting the uptake of EVs is provided by Brownstone and Train
[22]. Suppose that a small size EV becomes available in the choice of
individuals from a population whose choice set was originally char-
acterised by conventional vehicles only. The IIA property fixes the ratio
between, for example, the share of small gasoline cars and large
gasoline cars, therefore the share of the newly introduced small EV
must draw proportionally from both the share of small and large

Table 1
Synopsis of advantages, disadvantages and applicability of EV use modelling approaches.

Modelling
approach

Advantages Disadvantages Applicability

VOAMM • Disaggregate outputs (can be
aggregated if necessary)

• Vehicle usage is in terms of annual mileage
whereas time of day time scales are required
for most e-mobility analyses

• High data requirements for model estimation

• Vehicle ownership sub model vehicle penetration (first step
in any EV deployment impact analysis)

• Long term air quality analyses

• Long term energy demand may make use of
STSM • Disaggregate outputs (can be

aggregated if necessary)
• Time scale of EV usage compatible with most

e-mobility analyses

• Do not represent daily travel patterns
consistently

• Travel patterns are fixed, i.e. they lack
responsiveness is policy tests (policy
analyses are carried out via scenarios)

• All EV impact analyses requiring time of day time scales (see
right quadrants in Fig. 1) , except policy tests for smart
charging/charging demand management/demand response

DUOATS • Disaggregate outputs (can be
aggregated if necessary)

• Represent daily travel patterns
consistently

• Travel patterns are fixed, i.e. they lack
responsiveness is policy tests (policy
analyses are carried out via scenarios)

• All EV impact analyses requiring time of day time scales (see
right quadrants in Fig. 1) , except policy tests for smart
charging/charging demand management/demand response

ABM • Disaggregate outputs (can be
aggregated if necessary)

• Represent daily travel patterns
consistently

• Responsiveness to policies (if
charging behaviour is modelled
explicitly)

• Higher complexity than STSM or DOATS

• High data requirements for model estimation
• All EV impact analyses requiring time of day time scales (see

right quadrants in Fig. 1) , including policy tests for smart
charging/charging demand management/demand response
if charging behaviour is explicitly modelled

MCM • Fully disaggregate year long EV
patterns

• Consistent vehicle patterns

• Lack of behavioural realism make
questionable the policy sensitivity

• All EV impact analyses requiring time of day time scales (see
right quadrants in Fig. 1) , except policy tests for smart
charging/charging demand management/demand response
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gasoline cars, so that the ratio above remains constant. Intuition,
however, would suggest that the unobserved utilities of small gasoline
cars and the small EV would be more correlated than the utility of the
EV and large gasoline cars: this would realistically lead to a higher
substitution rate between the small EV and small gasoline cars than
between the small EV and large gasoline cars. IIA makes the MNL unfit
to represent this phenomenon. More flexible substitution patterns can
be achieved by the use of error term specifications other than MNL that
relax the IIA property.

The Generalised Extreme Value (GEV) framework, (of which the
MNL is a special case) provides the means to model various substitu-
tion patterns. Apart from MNL the most common GEV model,
especially in transport research, is the Nested Logit (NL) model. The
NL has been used to model alternative fuels vehicle choices [23,24],
allowing to capture correlations within “nests “of vehicles types sharing
unobserved common attributes. GEV models with more complex
correlation structure have been also proposed in EV adoption studies.
In particular, Hess, et al. [25] hypothesised a heightened substitution
rate between cars either having the same body class or using the same
type of fuel. To account for this in the correlation structure of the
unobserved utility, they adopt a cross nested logit (CNL) model [26].

Because any type of random utility discrete DCM error specification
can be approximated by the Mixed multinomial logit model (MMNL)
[27], such DCM specification has been widely applied to model flexible
substitution patterns and in electric/alternative fuel vehicles demand
modelling [21,22,28–30]. In the MMNL, the error term is specified as
the sum of a zero mean type I extreme value term IID and another term
with a zero mean whose distribution over individuals and over the
alternatives depends in general on observed data, and the underlying
parameters of the distribution. Therefore, unlike the MNL, the MMNL
does not have closed-form choice probabilities and require the solution
of multiple integrals over the mixing distributions numerically, which
however is currently not a problem due today's computational cap-
abilities. These have also allowed the use also of the multinomial probit
model [22,31]. In this model, flexible substitution patterns are
obtained by specifying the full error terms as multivariate normally
distributed, with a covariance matrix specified to reflect the hypothe-
sised correlation structure.

3.1.3. Hybrid choice model framework
It has been acknowledged that there is a wide range of evidence that

alternative fuel vehicle adoption decisions are also determined by
symbolic values and attitudes such as social status concerns, environ-
mental attitudes, innovativeness and other meanings that individuals
choosing a certain vehicle communicates to themselves and others
[32–34]. These are latent quantities, i.e. unobserved. In addition, there
are also car attributes that, due to their multidimensionality, are not
measurable objectively (e.g. safety and comfort). Psychometric indica-
tors are one way of revealing these underlying latent attitudes.
However, their direct use as explanatory variables in the systematic
utility of an alternative in a choice model is not advisable for several
reasons, such as [35]:

• Attitudinal statements may not translate into a causal relationship
with choice;

• Future attitudinal indicator values cannot be predicted for future
populations, thus cannot be used as exploratory variable in fore-
casting choices;

• Attitudinal statements may be characterised by measurement errors,
leading to inconsistent estimates;

• The likely correlation between the error term and the indicators
might cause endogeneity bias.

Similarly, using a single proxy variable to account for complex
multidimensional attributes such safety would lead to biased para-
meter estimates [14].

The Hybrid Choice Models (HCM) modelling framework extends
random utility DCM to enable to make use of latent constructs
information to be accounted for in choice models [36–39]. In the
alternative fuel vehicle choices literature HCMs have been mainly used
for the following purposes: to identify a latent class of potential vehicle
adopters more inclined towards EVs [40]; to account for environmental
preferences in vehicle adoption behaviour [40–43]; and to model the
effect of safety in vehicle choice [44].

The rich behavioural insights captured by HCMs come at the cost of
increased data requirement (e.g. collection of psychometric informa-
tion together with more traditional vehicle type choice data). Moreover,
it remains unclear whether the heavier data requirements and model
complexity are paid off by the real benefits in practical applications of
these models in real-world problems [45].

3.2. Modelling annual vehicle use

The vehicle use component in long period models is as mentioned
in the introduction to this section typically characterised in terms of the
annual mileage metric. Vehicle annual mileage is typically modelled
jointly with the discrete vehicle adoption component.

The reason why mileage and vehicle adoption tend to be modelled
jointly is that it is recognised a household’s choice of how many cars to
own and of which types to is interrelated with the how much the
household drives. In turn, preference for vehicles attributes and
mileage driven will depend inter alia also on households’ character-
istics.

An influential approach to modelling joint car ownership and use
rigorously based on microeconomic theory was proposed by Kenneth
Train [6]. While it consists of separate sub-models for the choice of
number of cars owned by a household, for class and vintage of each cars
and the annual mileage travelled by each of them, it is in effect a joint
model of vehicle adoption ad use. Indeed, the modelling structure is
derived from the theory of choice in which individual households
makes those choices jointly. Only for practical reasons the vehicle
adoption and use are estimated separately (sequentially), though could
be potentially estimated jointly. The interdependence of vehicle adop-
tion and use is recognised and preserved in the derivation of the
demand function for annual mileage. The demand continuous function
for the annual mileage driven is obtained from the conditional indirect
utility function, using Roy's identity, given that the discrete choice of a
specific vehicle.

Building on Train's approach, Brownstone, et al. [46] developed an
integrated modelling system to forecast demand for new and used
vehicles, annual vehicle mileage and EVs charging demand. The vehicle
use sub-model is based on structural equation modelling [47]. The
endogenous variables are vehicle annual mileage and main driver's age,
gender and employment status whereas; vehicle and household char-
acteristics are exogenous. This formulation recognises the influence of
the effect of the main drivers’ characteristics on vehicle use which was
ignored in Train's discrete continuous formulation. However, as the
authors acknowledge, it neglects the endogeneity of vehicle type choice
and vehicle use. The endogenous estimation of the main drivers
characteristics is appealing for the model application in forecasting,
when multiple vehicles are owned by a household. Indeed, exogenous
forecasts of households’ characteristics and their vehicle holdings as
inputs to the vehicle use models are easier to obtain than principal
drivers characteristics. Endogenous estimation of the latter enables
skipping this step, while still accounting for their effect on the
prediction of vehicle use.

A recent formulation of discrete-continuous models takes into
account that in household vehicles holdings, different vehicles are
driven with different annual mileages depending on their character-
istics, and that a the choice of a holding is affected by how the various
vehicles are driven. Such model is the so called multiple discrete-
continuous extreme value model (MDCEV) [48,49]. The MDCEV
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formulation accounts for the multiple discreteness of in the choice of
acquiring a vehicle holding as well as the fact that the “annual driving
miles budget” of a household is not distributed evenly distributed
amongst vehicles in the holding.

Further discrete-continuous models evolutions account for the
dynamic nature of vehicle transactions in an integrated fashion using
dynamic a discrete-continuous choice model. This embeds discrete-
continuous choice of vehicle ownership and use into a dynamic
programming framework [50]. This methodology allows vehicle trans-
action type over time, fuel type of the vehicle, ownership status over
time and annual vehicle use to be modelling jointly. Because vehicle
fuel type choice is modelled, the model has potential applications in
analysing the demand for alternative fuel vehicles, including EVs.

3.3. Applicability and limitations os VOAMMs

The adoption of VOAMMs for electric vehicle use modelling is
suited when yearly time scales are of interest. That is for the type of
analyses that feature in the left quadrant of Fig. 1: (e.g. annual energy
consumption, or yearly air quality impact of electric vehicle deploy-
ment). The vehicle demand modelling subsystem is also important in
any analysis of electric vehicles deployment to generate penetration
scenarios that are sensitive to various policies potentially implemented
to forster EV uptake and their evolution as well as other exogenous
context variables (e.g. to capture the effect on EV penetration of
plummeting oil prices).

The annual mileage metric indeed strongly limits the applicability
of the forecasted EV usage from VOAMMS. VOAMMS are not suited for
the direct study of charging patterns in time and space and the impact
of charging demand peaks on power grids or accurately estimate the
emission associated with EV charging, given the scales of the time-
dependence of relevant electric load dynamics and marginal emission
factors of the electricity generation mix of a grid systems.

Therefore, the use of VOAMMS in electric mobility analysis should
be mainly focused on forecasting the EV stock on the road and their
spatial distribution. Apart for the application mentioned, the annual
mileage should be considered a useful endogenous quantity to improve
EV ownership prediction. Using forecasts of annual use for short period
analyses would require a further downscaling step, for which the short
period models described below are necessary, to avoid arbitrary
assumptions with regard daily use and charging patterns.

4. Short-period models

While transport modellers have traditionally mainly focused on
modelling EV adoption and annual use, power system, energy and
environmental analysts tended to be more interested in treating EV use
and charging at a finer grained time resolution (typically of the order of
the hour or fraction of the hour). However, the approaches for short
period EV use patterns modelling by transport planners and demand
modellers and those of power systems/energy and environment analyst
are currently converging with the adoption of activity-based approach
originally developed for transport policy analyses. Nevertheless, the
largest body of analyses carried out making use of short period models
is still within the power systems and energy/environmental domains.
The purposes of studies undertaken can be summarised as follow:

• To verify that electricity generation capacity can provide for the
additional load caused by EV;

• To evaluate the costs of the electricity generation for EV charging,
(as marginal costs are time dependent);

• To assess whether EV associated load will generate congestion at
bottlenecks in the distribution network;

• To appraise the effectiveness of demand side management or
demand response strategies in shaping EV charging load profiles,
so that costly investment for grid upgrades can be minimised and

grid power system operations can be enhanced, by for example
contributing to ensure supply reliability when an increased share of
wind power (or other variable renewable energy sources) is added to
a grid system.

• To estimate with more precision than with models based on annual
usage the extent of liquid fuel displacement in favour of electricity by
PHEV, by taking into account the actual recharging opportunities
during the course of the day;

• To obtain more precise estimates of greenhouse gases (GHGs) and
pollutant emissions, taking into account the time dependence of the
(marginal) emission factor.

It should be pointed out, however, that, as short period models of
EV use can be used as planning tools to optimise the location public
parking spaces with charging facilities, also the transport and city
planners can benefit from them. Moreover, if such tool are developed
within simulation framework that allow also more traditional analyses
of travel demand, as it is the case for activity based models, integrated
cross-sector analyses of multilayered networks (e.g. energy and trans-
port networks) become possible.

Apart from a few notable exceptions [51–56], in SPMs, charging
behaviour is not explicitly modelled, but fixed by scenario. These
scenarios are typically based on actual policy variables, such as
charging infrastructure availability and characteristics of the charging
facilities (installed charging power) and predetermined charging
behaviours, or charging strategies, to simulate a boundary conditions
demand response to electricity tariff structures. Typical charging
behaviour scenarios found in the literature include:

• Uncontrolled charging - also referred to as “uncoordinated char-
ging”. This implies that the charging operation starts as soon as
vehicles reach locations with charging opportunities (defined by
charging infrastructure scenarios) and is carried out until the vehicle
is fully charged or leaves to reach the next destination. While in
disaggregate models, and activity based approaches specifically,
charging terminates with vehicle departure, even if the battery is
not full, aggregate models often assume that vehicles are always
charged fully.

• Delayed charging (or night charging) – vehicles are assumed to
delay charging for a number of hours, so that charging starts in the
evening, to ensure electricity costs are minimised. This scenario is
intended to simulate the demand response effect to lower night-time
prices of electricity, on assumption that the price difference is high
enough to induce the large majority of EV users to charge during low
price hours.

• Off-peak charging – vehicles are assumed to charge only in off-peak
hours. This scenario requires direct control by the system operator.
The underlying behavioural assumption is that users accept this type
of direct control. Clearly this type of control could also be imple-
mented in a decentralised way by on-board ICT systems, receiving
signals from the system controller, although these could potentially
be overruled by the user. With this alternative implementation
method the validity of the scenario rests on the extent users allow
only off-peak charging. In fact, the off-peak charging scenario may
be thought of as simulating the ideal effect of electricity tariffs
designed to discourage charging in peak hours.

Apart from the charging behaviour scenarios described above, other
types of charging strategies can be implemented in EV-grid models in
order to coordinate charging of EVs so that the impacts of EVS on the
environment or on the grid are minimised. These types of optimisation
strategies, which require either centralised direct control or decentra-
lised control through pricing signals, are collectively denominated as
“smart charging” or “coordinated charging”. Typically these smart
charging strategies are implemented in an agent based fashion assum-
ing that EV are cost minimising agents, who choose the minimum cost
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charging schedule that enable the execution of their journeys between
charging opportunities.

The use of fixed charging behaviour scenarios instead of explicit
models is a strong limitation, because it implies pre-determined
outcomes of a demand management policy. Pre-determined outcomes
mean that the effectiveness level of a policy has to be assumed a priori,
whereas explicit models of charging behaviour, possibly accounting for
drivers’ heterogeneity, could test how effective a policy is.

The lack of explicit charging behaviour models is mainly due to the
lack of available data on charging. Although, as has been mentioned,
some results from EV trials have started to be published, the original
datasets are not easily available on account of proprietary or partici-
pant privacy issues. This is indeed a barrier for the development and
empirical estimation of policy sensitive charging models, i.e. in which
the response of drivers is the results of underlying behavioural models
calibrated on charging behaviour data. A typical example would be that
of models based on consumer theory in which charging strategies are
the result of empirically elicited driver preferences.

In the rest of this section a selection of the full sample of studies
[53,56–86] adopting short period analyses considered for this review
are discussed according to the classification in Fig. 2. Table 2, below
instead gives an overview of the modelling approach and study scopes
adopted by each paper in the full sample. To the benefit of the readers
we also provide in the appendix a table (Table A1) that summarises
each study in the full sample in more detail, including: modelling
approach, scopes, charging behaviour and infrastructure assumptions,
geographic area which the study considers and main findings.

4.1. Summary travel statistics models

A common approach adopted in modelling EV use patterns is based
on indicative information about (conventional) vehicle use extracted
from national, regional or metropolitan travel surveys. Travel patterns’
summary statistics or empirical distributions obtained from travel
surveys are used to generate deterministic or stochastic vehicle use
patterns. These are mostly utilised in combination with charging
behaviour scenarios to generate charging profiles.

To study smart demand management of the distribution network,
Zakariazadeh et al. use 7 archetypal driving patterns generated based
on summary driving patterns statistics a survey in a “real town”, each of
the archetype has specific times during which EVs has parked at home
and at work as well as trip durations [77,78]. This approach to model
EV use does capture the main structures of travel patterns but strongly
limits capturing the effects of travel patterns variability.

Mullan et al. [80] use a reference daily distance of 40 miles, the
average vehicle distance travelled in Western Australia, and assume
that all EVs in a simulation are charged for 4 h at 1.5 kW, in order to
refill the battery of the energy consumed for driving such a distance.
They use charging behaviour scenarios to determine the charging
period (e.g. 16:00–23:00 “evening only” or 23:00–7:30 “night only”)
and assign random delays to introduce variability in the charging start
times. Other studies in order to represent the variability in both the
daily vehicle mileage and the charging availability start times, use
empirical distributions of daily distance and vehicle trip timings
[79,81–86].

Table 2
Full sample of the reviewed studies in the short period models class by EV use modelling technique and scope.

Modelling technique Study scopes Study

EEI&Pa CIPa EGI&Pa V2Ga SC&DMa EconIa DNI&Pa Metha

ABM X X [53]
ABM X [57]
ABM X [58]
ABM X [59]
ABM X X [60]
ABM X X [61]
ABM X X X [56]
DUOATS X X [62]
DUOATS X [63]
DUOATS X [64]
DUOATS X X X X [65]
DUOATS X X [54]
DUOATS X [66]
DUOATS X [67]
DUOATS X X [68]b

DUOATS X X X [69]
DUOATS X X X X [70]
DUOATS X [71]
DUOATS X [72]
DUOATS X X [73]
FSM X X X [74]
MCM X X X [75,76]
STSM X X X X [77]
STSM X X [78]
STSM X X [79]
STSM X X X [80]
STSM X [81]
STSM X X X X [82]
STSM X X [83]
STSM X X [84]
STSM [85]
STSM [86]

a EGI & P=Electric generation impacts and planning; DNI & P=Distribution network impact and planning; SC &DM=smart charging and demand management; EEI & P=energy and
environmental impacts and policy (here by energy impacts are intended mainly in terms of oil-based fuels consumption reductions and environmental impacts in terms of GHG and
pollutant emissions into the atmosphere); EconI=economic impacts (mainly to consumers or on the power system); CIP=charging infrastructure planning; Meth=methodological.

b In this paper time of day analyses are not carried out, although may be possible.
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4.1.1. Applicability and limitations of STSM
STSM models, being essentially trip based, lack a consistent travel

schedule structure and therefore miss the spatial and temporal details
required for impact analyses at the distribution network level. Instead,
they may appear suitable for analyses which require less accuracy along
the spatial and temporal dimensions, e.g. for generating capacity
planning purposes. An inherent weakness of this approach is that the
exogenous vehicle usage patterns generation typical of STSM models
implies that effects on travel patterns of charging demand management
are inevitably neglected. Moreover if the travel patterns variability is
reduced by the use of summary statistics only (or using archetypal
driving patterns), and their randomness is not recaptured by randomly
drawing from the travel patterns distributions, the inherent load
flexibility of aggregate demand is lost.

4.2. Activity based approaches (ABA)

In activity-based approaches consistent daily activity-travel sche-
dules are considered. The activity-based analysis framework appears
particularly suitable to model EV daily use and charging patterns
because it analyses travel “as daily or multi-day patterns of behaviour,
related to and derived from differences in lifestyles and activity
participation among the population” [87]. This type of analysis is
particularly appealing as it is rooted in the time of day timescales,
obviously absent in vehicle use modelling based on the annual distance
driven metric. An activity-based model with a charging behaviour
component, allowing users preferences for different charging strategies
to be modelled, would allow the effect of charging demand manage-
ment policies both on charging and travel patterns to be simulated
without relying on predefined charging behaviour scenarios.

Before introducing examples of studies where proper activity based
models (ABM) have been used for analysing EV patterns, we review
below (in Section 4.3) analyses that, instead of making use of activity-
travel schedules generated by ABM, utilise observed conventional
vehicle travel patterns to model EV use. This is one of the most
commonly used approaches in impact analyses. Utilisation of observed
conventional vehicle diaries is still considered here as part of the
activity-based approach, since structurally consistent activity-travel
schedules are used for EV pattern modelling.

4.2.1. Direct use of observed activity-travel schedules
Use patterns of conventional (i.e. non-electric) cars have been used

to simulate EV use patterns. This is done in several ways: using travel
diaries from existing travel surveys collected by various agencies;
collecting car diaries in ad hoc surveys; or using GPS data.

Darabi and Ferdowsi [64] extract from the US 2001 National
Household Travel Survey (NHTS) the arrival time last trip of the day
and daily vehicle mileage for each vehicle in survey. The use mileage
information to calculate the remaining state of charge in a PHEV type
characterised by a given energy consumption (based on the vehicle size
class) and a given all-electric-range. Each PHEVs is assumed fully
recharged after the last trip, the charging availability would start at the
arrival time form the last trip. Charging scenarios entailing shifting
variation in charging powers and delaying charging are used to show
how charging demand peaks can be moved in times, if time shift and
charging powers could be “enforced”. In order instead to simulate the
effect of time of use pricing, they design a charging scenario in which
20% of drivers are responsive to the price signal and shift to off-peak
hour charging.

Kang and Recker [66] generate PHEV usage patterns by replicating
car diaries extracted from the Travel Diaries of the 2000–2001
California Statewide Household Travel Survey. The charging patterns
are generated using infrastructure and charging behaviour scenarios. It
is not clear whether the car diaries generated are vehicle based or
person-based, and, in the latter case, whether vehicle use by multiple
drivers was accounted for. In fact, neglecting use of one vehicle by

multiple drivers would lead to an underestimate of the daily energy
needs of the vehicle and to an overestimate of the time the vehicle is
available for charging (indeed, neglecting use by multiple drivers is
equivalent to assuming that each driver uses a different vehicle). It
should be pointed out that, for analyses aiming at assessing the impact
of EV charging on the grid at the distribution level, which require not
only fine temporal resolution but also fine spatial resolutions, especially
in urban contexts, analyses using vehicle-based diaries ensure more
accuracy in energy use and time of charging estimates.

In order to assess potential energy impacts in California from “user-
designed” PHEVs, Axsen and Kurani [62] model PHEV use and
charging profiles making use of one day car diaries from a previously
administered US nation-wide survey designed to assess, inter alia,
consumer priorities in PHEV designs [88,89] and the effective avail-
ability of EV recharging opportunities in car-owning households
[88,90]. For the latter task, the travel diary collection instrument
embedded questions about the availability of electrical outlets and their
distance from the car at the parking locations visited during the survey
day. One day diaries, charging opportunities data and characteristics of
user-designed PHEVs were also used to generate charging profiles that
integrated with an energy dispatch model so as to estimate the
greenhouse gas emissions. The charging profiles in Axsen and
Kurani's work are generated using charging behaviour scenarios, in
line with most of the shirt period models applications.

Similar types of analyses are carried out by Kelly et al. [67]. Kelly
and colleagues extract one-day vehicle diaries from the US 2009
National Household Travel Survey diaries, and generate aggregate
time of week PHEV charging load profiles, making use of charging
infrastructure and charging behaviour scenarios.

Khan and Kockelman [68] use multiday GPS tracked vehicle
patterns, to carry out another type of analysis, consisting in the
assessment of how EVs (BEVs and PHEVs) can satisfy households’
vehicle use needs. From a sample of 255 Seattle households they find
that a BEV with a 100 miles range could meet 50% of the needs of
single vehicle households and 80% of the needs of multivehicle house-
holds, charging once a day and relying on another vehicle or mode just
four days in a year. Khan and Kockelman, instead of using current
driving data to model EV patterns, assess the potential of EVs to
replicate current driving data. Their results show that single vehicle
households in Seattle need to change their travel patterns in BEV
scenarios, if only one charging opportunity is available. Clearly this
may not apply to PHEVs. Incidentally, one of the reasons why many
analyses using observed conventional vehicle patterns for EV modelling
only involve PHEVs is that the argument for unchanged travel patterns
in BEV deployment scenarios is not so convincing, at least in some
parts of North America. Nevertheless, even in parts of the world where
current driving patterns are more compatible with typical BEV ranges
or even in the case of PHEV deployment, the assumption of unchanged
travel patterns is arguably challenged by future charging service modes,
tariff structures and infrastructure availability, and of course on the
driver's preferences in terms of range availability, and cost.

4.2.2. Applicability and limitations of DOUATS
The underlying assumption is that the introduction of EVs does not

significantly change travel patterns, even in large deployment scenar-
ios. This assumption is of course acceptable if the object of the analysis
is PHEVs, which do not have range limitations. Concerning BEVs, the
assumption is justified by the high feasibility of journeys and tours
under various charging infrastructures and charging behaviour scenar-
ios. Nevertheless, as time of day road pricing can affect car patterns
[91], the complex tariff structures of electricity for EV charging demand
management, and their spatial and temporal variability (e.g. different
prices at home, work charging facilities or at other locations), are likely,
in principle, to induce price sensitive drivers to adapt their travel
patterns to minimise their travel costs.

The inherent rigidity of the DUOATS approach stemming from the
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use of fixed EV travel schedules and pre-determined charging beha-
viour scenarios, makes the approach insensitive to policies potentially
affecting EV travel and charging behaviour. Nevertheless this approach
has been applied across the full applicability spectrum of SPM,
including studies charging demand management and response. This
translates into results more reflective of the analyst expectations of the
effect of a policy under scrutiny rather than a of the potentially
heterogeneous response of EV drivers to such policy.

4.2.3. Activity based models
The activity based modelling of travel demand, comprising a set of

heterogeneous behavioural theories and conceptual frameworks (mi-
croeconomic theory of consumer behaviour, remaining the dominant
choice), implementation methods (econometric models or heuristics
approaches) and empirical applications, in essence tries to reconcile
travel behaviour modelling and analysis with the common shared
perspective that travel behaviour represents just a facet of a complex
pattern of behaviours that the analyst observes, individuals seek
participation in activities. Traditional transport trip-based modelling
has lacked a strong foundation in this more holistic philosophy, since in
the most often used trip based framework, the Four Step Model (FSM),
activities affect mainly trip generation and their influence decreases as
the sequence of modelling steps proceed [92]. The effort to improve
travel demand modelling by adopting ABM frameworks has not been
driven purely by the intellectual trend towards solving the dialectics
between this philosophy and modelling practice to reach the trans-
cending unity that would appease theoreticians. In fact, the theoretical
deficiencies1 present in the trip-based approach prevent its use in
policy analyses beyond “certain well-defined situations” [93], which in
practice consist of their original objective of urban highway investment
analysis [94]. More precisely, the most prominent policy types requir-
ing enquiring tools that would overcome FSM's limitations were:
“global and highly flexible policies”, such as fare changes in public
transport and policies that would lead to “substantial [and hetero-
geneous] travel response”, like road pricing [94].

Practitioners have indeed introduced improvements to the FSM
framework to make it more flexible in reflecting more realistic
behavioural responses. These improvements, however, had the aim to
obtain more reasonable result at the aggregate level, rather than
actually improve behavioural modelling at the individual level. In
contrast, at the heart of the development of activity based models
there is the representation of the individual decision process as
disaggregate.

In order to analyse the effect on travel and EV charging patterns of
policies intended to manage the EV power demand profile and of travel
demand management policies on EV load, ABMs appear particularly
suitable for several reasons including the following:

• They capture inter-dependence of activity and mobility patters and
therefore on the relation between travel patterns and the durations
of vehicle dwell time at locations where activity are carried out and
where vehicle may potentially be recharged.

• They are suited to model the response to road pricing policies, so
they have the potential of modelling the response to charging
electricity tariffs.

• Their bottom up structure, allows flexibility in aggregation, and
consequently in analysis goals.

Despite the apparent advantages of ABMs for the type of policy
analyses of interest in the realm of EV deployment, to the authors’
knowledge, only a few ABM implementations are documented in the
literature. The first prominent example is the MATSim–PMSS integra-
tion developed in Switzerland at ETH [53,55].

4.2.3.1. The MATsim–PMPSS simulation tool as exemplar case. The
ETH researchers integrated an EV and power system simulation tool
PMPSS with MATSim, a tool for agent-based activity-based transport
modelling [95]. In MATSim a population of vehicle owners (agents) is
generated from census data (or through a population synthesiser if only
the marginal distributions of vehicle owner characteristics are
available). Based on specific EV penetration scenarios, each agent is
assigned a BEV, a PHEV or another vehicle. Each agent is also assigned
a plan of a trip and activities, (the initial demand). In an iteration of
MATSim each plan is executed and scored with a utility value (based on
the activities in the plan, their durations, delayed arrivals, earlier
departures, and early arrivals at locations with opening times) and re-
planned, i.e.by adapting time choice; route choice; mode choice; and
destination choice. The goal of each agent is to maximise the utility and
this is achieved via a co-evolutionary algorithm in which the plans are
varied via crossovers and mutations, and by eliminating adaptations
with lower utility. In the integrated MATSim–PMPSS, the cost for
charging an EV is also taken into account in the utility. This depends on
the price of the electricity at the time when the vehicle is charged and
on the amount of energy required (depending on the total time on
charge, given a fixed charging power). An additional “charging module
is added to the original MATSim configuration, that:

• Assigns charging times to EVs, based on specific charging scenarios
to the cars;

• Assigns the cost of the electricity charged that is used in the
evaluation of the plan utility.

The MATSim simulation iterates until a relaxed state has been
reached. At this point the charging times, locations and state of charge
of the agents are sent to the PMPSS which determines if the load from
charging infringes physical network conditions. Depending on the type
of analysis being carried out, the PMPSS may feedback a real-time
electricity price signal containing network congestion information to
the MATSim scheduler, so that the cost of congestion is also included in
the scheduling process. In this case, an outer optimisation loop takes
place, (see Fig. 3).

Note that the EV agents are also modelled in the PMPSS system.
Here, a (deterministic) game theoretical approach is used to model the
charging behaviour of several connected EVs, both in congested and
non-congested networks. The game theoretic approach is applied here
to enable modelling competition between EV agents over potentially
scarce energy or network capacity at a certain node of an electric grid.
For the details of the PMPSS model we refer specifically t to [51,52,55].
Here, we just describe how the utility of EV agents is defined. EV agents
derive benefit from their individual state of charge (SOC) and they
feature an individual value for energy acquisition. At a time interval,
while charging, the benefit from charging of an agent is modelled as a
quadratic function of the SOC

b αSOC βSOC α β= − , > 02

This form of the benefit is chosen so that a satiation effect for the

1 Mc Nally and Rindt summarise six main theoretical limitations of trip-based models
as: “(1) ignorance of travel as a demand derived from activity participation decisions; (2)
a focus on individual trips, ignoring the spatial and temporal interrelationship between
all trips and activities comprising an individual's activity pattern; (3) misrepresentation
of overall behaviour as an outcome of a true choice process, rather than as defined by a
range of complex constraints which delimit (or even define) choice; (4) inadequate
specification of the interrelationships between travel and activity participation and
scheduling, including activity linkages and interpersonal constraints; (5) misspecification
of individual choice sets, resulting from the inability to establish distinct choice
alternatives available to the decision maker in a constrained environment; and (6) the
construction of models based strictly on the concept of utility maximization, neglecting
substantial evidence relative to alternate decision strategies involving household
dynamics, information levels, choice complexity, discontinuous specifications, and habit
formation”.
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agent is represented by a decreasing marginal benefit: the higher the
energy already available in the battery the lower the additional benefit
attained by further increasing the SOC. The coefficient α sets the
maximal marginal benefit and the coefficient β defines the slope of the
marginal benefit. In the model implementation α is chosen to an
equivalent to the current price of petrol, per unit of SOC (i.e. the price
of a unit of petrol at the current price per liter that would generate the
same energy as a unit of SOC). Choosing alpha in this way prevents
PHEV to charge when driving with petrol is cheaper. The parameter β
defines the “bidding behaviour “of the agent, i.e. the price is ready to
pay to achieve a certain SOC. This parameter also needs to be chosen.
In the implementation presented in [55] it is suggested to tune beta
based on the if the minimum forecasted price of the electricity for the
next day is low compared to the current equivalent price of gasoline β
will be high and the benefit of charging now will decrease faster for
higher SOC values (because the lowest is the forecasted price of
electricity next day the more convenient would be to charge then).
Clearly this approach to tune α and β is perfectly reasonable when
PHEVs are involved, given that they can run on both gasoline and
electricity, but the relevance and behavioural realisms of this scaling in
case of BEVs is not evident.

The total utility uT for an EV agent while charging, at each time
interval T of the charging operation, is given by the benefit scaled by a
private value θT minus the price pT of electricity times the qT quantity
of energy acquired during the time interval.

u θ αSOC q β SOC q p q= [ + − ( + ) ]−T T T T T T T T
2

To maximise his utility an agent will charge as long as the marginal
benefit, scaled by θT , is above the price of electricity. The private value
is defined as a function of various parameters as well as the current
state of charge. In particular, it decreases as the difference between the
desired state of charge at departure and the current state of charge
decreases and increases as the current time approaches the departure
time.

The tuning parameters of the private value are somewhat arbitrarily
defined to obtain curves that increase more or less steeply as the
departure times approaches, given the state of charge and desired state
of charge. Moreover, the desired state of charge is decided based on the
energy required to drive the vehicle to the next location with a charging
opportunity, whereas other factors, including range anxiety, seem to be
neglected. Thus, the model of charging behaviour although plausible in
the case of PHEVs where problems of range limitations do not exist,
may be less suitable for describing BEV user behaviour. In any case,
this charging behaviour model, while developed to be theoretically
coherent with the game-theoretical framework, appears to lack proper
empirical backing,2 both in the calibration of the parameters (apart
from the mentioned use of market liquid fuel prices to determine the
upper bound of an acceptable electricity price for electric mobility, for
the agents) and in the validation of the model structure.

4.2.3.2. Other ABMs applications in EV used modelling. A Belgian
study [60] uses the FEATHERS activity based model to generate 24-h
activity-travel schedules from which car schedules are extracted.
Vehicle categories, represented by an equivalent internal combustion
engine cylinder volume (small, medium and large) are assigned to each
car user, reflecting the market share in Flanders. Each equivalent
internal combustion engine vehicle category is mapped into a battery

capacity and energy consumption category, used to define the
characteristics of BEVs or PHEVs. According to pre-set market
penetration scenarios, EVs or conventional vehicles are assigned to
schedules. Whether the assigned EV is a PHEV or a BEV is determined
by market share scenarios and schedule BEV-feasibility. Charging
scenarios are used to model charging behaviour, so that the power
load from EV charging can be generated. In this work the methodology
applied is very similar to that described in the previous subsection in
which real travel diaries are used to model EV patterns. Here, instead
of real travel diaries, ABM generated activity travel schedules are used.
The way the ABM is used is not sensitive to electricity pricing because
schedules are generated independently from charging behaviour
scenarios. In fact, the analysis carried out in this work carries the
same weakness of the analyses based on observed travel patterns; it
lacks policy sensitivity when it comes to evaluating the potential effects
of charging demand strategies on travel patterns.

A similar ABM implementation is also adopted by Hodge et al. [59],
where the energy demand profile in Alexandria, Virginia from PHEV
charging under various charging behaviour scenarios, are obtained
based on vehicle schedules generated by the TRANSIMS model [96].

Nourinejad et al. [56] study vehicle to grid-operations using
activity-based equilibrium scheduling. This study accounts for the
interaction between EV use decisions and activity travel scheduling
decisions adopting and extending Lam and Yin's [97] time-based utility
theory model which models the utility an activity as time dependent
and express the scheduling problem as a continuous equilibrium
problem.

While this subsection has focused on the use of ABMs in EV pattern
analysis, it is worth noting that, despite the much more widespread
application in travel demand practice of the FSM approach, compared
to ABMs, the literature on EV impact analysis using FSM for EV
pattern generation is almost non-existent. The reason for this is that
transport academics have almost completely given up publishing on
this approach, given the limitations mentioned above for the type of
policy analyses that are now required that go far beyond large
infrastructure planning. In fact only one example was found by the
author of the application of FSM: for the estimation of additional
domestic load on the grid by EV deployment [74]. Huang and
colleagues use hourly origin-destination matrices to deduce the num-
ber of (electric) vehicles arriving at home in each traffic analysis zone of
Indianapolis, together with the total trip length and distance distribu-
tions so as to model the quantity of charge required. Amongst the
drawbacks of this method, there is the fact that actual trip chaining is
neglected. This has possibly negligible effects on aggregate home
charging demand (for a given charging behaviour scenario). At the
disaggregate level, however, where it is necessary to model nodal
congestion on the distribution network, the effect of a lack of
behavioural realism may have more profound effects.

4.2.4. Applicability and limitations of ABMs
ABM can be potentially applied for all the analyses requiring shot-

period models, (i.e. those upper left and lower left quadrants in Fig. 1).
However, only by explicitly modelling charging behaviour (i.e. avoiding
charging behaviour scenarios) jointly with activity-travel behaviour
enables realistic representations of the interdependencies the road
transport network and in the electric grid and the respective relevant
fenomena congestions and demand management mechanisms. This
has been achieved with the MATSim–PMPSS model system, which
however has its limitations, specifically in the representation of the
charging behaviour of EV agents. Essentially, as highlighted in the
discussion of the representation of the utility attained by EV agent from
the charging operation, we argue that the model is theoretically
appealing, but lack empirical estimation (validation) of its tuning
parameters, which ultimately define agents’ preferences.

Simulation Charging module Scoring Relaxed demand

Charging module

Power system simulation 

Fig. 3. MATSim–PMPSS optimisation loop Waraich et al. [53].

2 Based on revealed or stated preference data.
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Table A1
Summary of studies using short period models of EV use and charging – the colour coding represents the modelling technique adopted.
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4.3. Markov chain models

An alternative approach to generate consistent vehicle patterns is
that pursued by Soares, et al. [75]. They develop a vehicle state Markov
chain model chain, in which a one year EV pattern is generated by a
discrete time state Markov Chain to define the state of each EV agent in
each 30 min interval over one year. The states in which a vehicle can be
are: driving, parked in a residential area, parked in a commercial area
and parked in an industrial area. Initial state and transition probabil-
ities are obtained from statistical information regarding traffic patterns
in the region of analysis (the Porto area in Portugal for the specific
case).

4.3.1. Applicability and limitations of MCMs
The theoretical applicability domain of the type of modelling

approach described above would be those of short period analyses
(again, upper left and lower left quadrants in Fig. 1). The further
advantage of such a model is that can generate fully disaggregate year
long EV patterns whereas, to do so AMBs would enable generating
aggregated representative EV patterns over a year.

Notwithstanding the advantage of Markov Chains approaches such
as in generating consistent vehicle patterns over longer time periods
than activity based models, their lack of the theoretical link between
activity demand and travel demand is problematic. Indeed, tradeoffs
between activity participation and travel and charging requirements
are not explicitly represented, therefore it appears more conceptually
difficult to model the response of EV users to the variation of factors
potentially indirectly affecting their charging patterns, by affecting
activity participation.

5. Conclusions

This paper has reviewed the techniques that have been used to
model the demand for EV acquisition, use and charging. A number of
observations can be made regarding the state of the field and associated
future research requirements.

In transportation reseach the bulk of studies in EV use demand
modelling has focused on long term decisions such as vehicle acquisi-
tion and annual vehicle use, which are most relevant to strategic
aspects of energy security, environmental impact and power infra-
structure requirements. In comparison, less work has been undertaken
into modelling the detailed spatial and temporal patterns of EV use and
charging behaviour, which are vital for the analyses of integrated
transport and power systems at the tactical and operational level. As a
result, short time period models tend to rely on aggressive simplifying
assumptions, such as the downscaling of annual use to time periods of
the order of hours or less, the use of pre-determined charging
behaviour scenarios or charging strategies and the use of fixed travel
patterns (typically based on those observed in conventional cars).
These simplifications render such approaches de facto policy-insensi-
tive with respect to a number of key issues; for example, they are not
sensitive to electricity tariff structures and therefore are inappropriate
to test the effectiveness of alternative pricing policies.

We believe that there is an urgent need for new modelling frame-
works to be developed that can provide a theoretically coherent,
integrated and policy sensitive treatment of behaviour at these two
timescales, taking into account for example of both long-term strategic
consumer decisions (e.g. car ownership related decisions) with short
term EV use and charging decisions. The framework of activity based
modelling provides at attractive starting point for this work.

Within this general ABM approach, we believe further that an
important area for future work is the modelling of charging behaviour.
The models of charging behaviour available to date are largely
theoretical in nature and lack well-confirmed empirical estimation of
their parameters or strong validation. They moreover tend to neglect
some important aspects of charging behaviour, such as range anxiety or
the denial of spontaneous use , that may play an important role when
EV drivers must respond to complex electricity tariffs designed to foster
demand response are introduced. Modelling these demand-side pro-
cesses is complex and will require innovation both in terms of theory
and data. The limitations of existing data are particularly significant
and although some of these limitations may be partially overcome by
making use stated preference data from hypothetical choice experi-
ments, there remains a need for significantly improved datasets on real
world charging behaviour both in the contexts of EV trials and
demonstrations and, critically, in periods of normal operation. The
development of commercial charging services may complicate access of
these data and is an issue that the research community must urgently
address.

A final area where we believe further research is urgently required is
in the design of price and non-price incentives for behavioural change
(in acquisition, use and charging behaviour) including but not limited
to dynamic pricing, product bundling (e.g., vehicle and charging
infrastructure access) and regulatory interventions. Current demand
modelling methods provide a starting point but the design of incentives
that can effectively and predictably expose demand side flexibility (in
space and time) poses distinct challenges that have so far received little
attention but which we believe will become increasingly important in
the future.
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