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EDITORIAL REVIEW

Genetics of Wilms' tumor: A blend of aberrant development and

genomic imprinting

Wilms' tumor or nephroblastoma (WT), one of the most com-
mon childhood solid tumors (1:10,000, 8% of childhood tumors),
is probably the one that best deserves the designation of embry-
onal tumor. Wilms' tumors are composed of three major elements
in variable proportions: compact areas of blastemal cells, tubular
structures of various sizes and fibrous or mixoid stroma containing
elongated stellate-shaped large round cells. These components
are reminiscent of normal human nephrogenesis, known to be
initiated by the ingrowth of the ureteral bud into the metaneph-
rogenic mesenchyma which then condenses and forms the differ-
ent portions of the nephron. These tumors thus show a remark-
able mimicry of the normal nephrogenic processes, although in an
extravagant mode leading to incompletely differentiated struc-
tures with as many dead ends as a labyrinth [1]. These structures
are accompanied, in a minority of cases, by heterologous ectopic
tissues of mesodermal origin including bone, cartilage and skeletal
muscle [2].

The first insights into the genetics of Wilms' tumor came with
proposals for another embryonal tumor, retinoblastoma. In the
early 70s, Knudson formulated his now famous two-hits hypoth-
esis based on observations of unilateral and bilateral cases of this
tumor [3]. The nature of events underlying sporadic versus
hereditary cases was thus postulated. In both instances two events
were required, the first one being present as a germline defect on
one allele in hereditary cases while occurring as a somatic event in
sporadic cases. The second event, assumed to hit the second allele
in a somatic cell was required for the tumor to develop, in
hereditary as well as in sporadic cases. This was indeed demon-
strated later on by Cavenee and coworkers, who showed that
somatic chromosomal events leading to the loss of constitutional
heterozygosity (loss of alleles or LOH) in somatic cells were
responsible for the loss of the second allele [4]. The loss of both
functional alleles was amply confirmed at the molecular level with
the cloning of the RB gene involved in retinoblastoma and further
insights into its mode of action. This shed light on a major clue to
the understanding of tumorigenesis: whatever rare hereditary
cases can be, the search for genes for hereditary predisposition
would obviously be helpful for uncovering genetic events also
involved in sporadic cases, which are by far the most frequent.

In spite of strong beliefs that a similar story should be able to
account for nephroblastoma, the genetics of Wilms' tumor, with
hereditary cases representing only a few percent, appears to be far
more complicated. Indeed, cases with a constitutional deletion of
the chromosomal band lip13 [5] together with somatic losses of
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the lip region in some tumors [6—9] had led to the assumption
that a tumor suppressor gene in lipi3, similar in many ways to the
RB gene, had to be the culprit. This was indeed confirmed by the
cloning of the first Wilms' tumor gene (WT1) in lip13 [10, ii].
But, in contrast to retinoblastoma, there was also accumulating
evidence for the existence of at least two other genes, one in lipl5
(WT2) and the other (WT3) as yet unmapped. Moreover, hered-
itary and somatic events occurred in an unusual, non-mendelian
manner, which strongly suggested that one (or more) of the three
genes could undergo genomic imprinting. An ever growing num-
ber of studies have now addressed the nature of these events, the
number of different loci involved in predisposition and tumor
progression, the recessive or dominant mode of action of muta-
tions in identified genes, their role in embryonic and adult devel-
opment, the nature of epigenetic events underlying genomic
imprinting, and the role they play both in urogenital development
and in tumorigenesis. The aim of this review is thus to focus on the
main streams of research, with particular reference to genetic
events both in genetic susceptibility to tumor and tumor develop-
ment as well as to the emerging role of epigenetic phenomena
such as imprinting, chromatin compaction, timing of replication
and some more speculative trans-sensing effects. Thus the genet-
ics of WT provide strong arguments against well-established
dogma, including the two-hits hypothesis of Knudson, the reces-
sive nature of mutations of tumor suppressor genes, and the
expected presence of a tumor suppressor (antioncogene) rather
than a growth factor (oncogene) at the sites revealed by losses of
alleles [12—15].

WT is seen most commonly as a sporadic event in an otherwise
healthy child, though it may occur in association with congenital
abnormalities. Overall, about 5% of children with WT present
with developmental anomalies of the genitalia including cryp-
torchidism, hypospadias and other genital anomalies as well as
anomalies of the urinary tract, such as duplex ureter and horse-
shoe kidney. This is reminiscent of the close association during
embryogenesis between the development of the reproductive and
urinary system, both arising from the mesonephros. Although
familial cases are rare and represent only 1 to 2% of the cases, the
frequency of bilateral cases (7%) suggests that some of them, as
well as an unknown proportion of unilateral cases, represent
either de novo germline mutations, or somatic events occurring
early during embryogenesis. A few percent of cases are associated
with WAGR syndrome (Wilms' tumor, aniridia, genitourinary
abnormalities, mental retardation), Denys-Drash syndrome
(DDS), partial or complete manifestations of the Wiedemann-
Beckwjth syndrome (WBS) whether or not associated with hemi-
hypertrophy. A few other genetic defects including Perlman
syndrome and hemihypertrophy carry an increased risk of devel-
oping WT. Thus the locus and the type of gene alteration involved
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Fig. 1. Diagrammatic representation of the short arm of chromosome 11. Top. Germline alterations leading to WAGR, DDS, or GU (genitourinary
abnormalities) at the WT1 locus in llpl3 or to WBS, hemihypertrophy (HMHT) at the WT2 locus in lipls.5. Bottom. Loss of heterozygosity studies
in tumors delineating three different regions involved in WT. Using all available markers, LOH can be detected in 57% of informative samples. Of these,
53% of cases show a loss of alleles encompassing both WT1 and WT2, whereas LOH is limited to WT1 or WT2 in 41% and 5% of cases, respectively.
The preferential loss of maternal allele was observed in tumors with LOH either limited to WT2 or encompassing WT1 and WT2. The number of tumors
with LOH limited to WT1 is too small to be informative in that respect. TS = Tumor suppressor sequence. Another region located between WT1 and
WT2 is lost in 1% of the tumors analyzed. If confirmed, this subregion would correspond to the second cluster of breakpoints in WBS. IGF2 and H19
are located 400 kb distal to the first cluster of breakpoints "mat t, mv".

may be different but the genetic bases for some of these predis-
positions are still unclear [16—19].

For the sake of clarity we shall first consider the different
possible germline anomalies affecting three different loci, WT1 in
llpl3, WT2 in lipl5 and WT3 unmapped. Subsequently, we shall
examine the different somatic alterations that can be observed as
the second event following either one of the hereditary events.
The search for the third gene WT3 or any other gene may
obviously benefit from both approaches.

The WT1 locus at lipl3
Characterization of the WT1 gene

The llpl3 region associated with WAGR and Denys-Drash
syndromes, has been intensively studied by several groups who
have provided numerous markers precisely mapped in the inter-
vals of breakpoints of deletions of more than fifty patients with
complete or partial WAGR syndrome and have established the
first long range map of 16 megabases [20]. This region harbors
several genes including the WT1 gene, involved in kidney and

genitourinary development and in Wilms' tumor, and the PAX6
gene, involved in aniridia (Fig. 1). The WT1 gene, a 50 kb/10
exons-long gene, was cloned by positional cloning [10, 11]. Evi-
dence for the WT1 gene as the Wilms' tumor gene was provided
by analysis of patients with germline intragenic deletions and
point mutations [21—28]. Two alternative splice sites give rise to
four different mRNA [29] (Fig. 2). The most abundant form
contains both the 17 amino acid insertion and a three amino acid
insertion (KTS=lys-thr-ser) in exons 5 and 9, respectively. This
gene encodes a 3.2 kb mRNA transcribed into four isoforms (49
to 54 kDa) with four zinc fingers, in the C terminal region, similar
to those observed in some transcription factors, including SP1 and
the EGR1 and EGR2 genes (early growth response 1 and 2) which
appear to be involved in cellular growth signals. Using antibodies
raised against the entire zinc finger domain, the protein product
was localized within the nucleus [30]. The highest level of mRNA
expression is in the epithelial podocyte layer of the glomerulus but
WT1 is also expressed in cells of hematopoietic origin and in other
mesodermally derived tissues which experience a mesenchymal to
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epithelial transition. These include the gonads, spleen, brain, and
mesothelium [31—35]. The introduction of a homozygous muta-
tion into the murine WT1 by gene targeting in embryonic stem
cells demonstrated the involvement of WT1 in early kidney,
gonad, and heart development [36].

The WT1 gene product is a regulator of transcription and binds
in vitro to specific G-rich DNA sequences including the EGR1
consensus sequence: 5'-GCGGGGGCG-3' [37, 38]. It has been
shown that the three zinc fingers from Zif268, homologous to the
three C terminal zinc fingers of WT1, are required for binding to
the DNA consensus sequence [39, 40]. Thus WT1 could be a
repressor of growth stimulating factor(s). WT1 could also act as
an activator of tumor suppressor genes. Moreover, the four
alternatively spliced forms expressed in various tissues have
different target specificity to synthetic oligonucleotides and most
likely bind to different target genes in the genome [38, 41]. The
significance of these different forms is still elusive. It may be that
the ratio participates in the modulation of WT1 in the different
tissues and at different stages of development. Although it has
been shown that WT1 can act as a transcriptional repressor on two
growth factors, 10F2 (insulin-like growth factor II) and PDGFA
(platelet-derived growth factor A chain), it may be that either the
different forms or their relative proportions or a different concen-
tration of WT1 may have different effects [39, 42—44]. Transfec-
tion of each of four wild-type WT1 isoforms was shown to
suppress the growth of a WT cell line devoid of exon 2 sequences.
This mutation resulted in a protein with altered transactivational
properties, thus representing a distinct mechanism for inactivating
WT1 in Wi' [45]. Many of these properties of the WF1 gene are
reminiscent of those of another transcription factor, Krtippel,
which may explain some of the intriguing features of WT1
mutants [46].

The promoters that drive expression of the fetal transcripts of
the IGF2 gene are GC-rich and contain several potential high-
affinity binding sites for WT1. This raised the possibility that the
10F2 gene may be one of the targets of WT1 transcriptional
repression. Using transient transfection assays in HepG2 cells,
Drummond and coworkers [39] demonstrated that WT1 interacts

Fig. 2. Diagrammatic representation of the WTJ
gene with DDS mutations. Germline mutations
observed in DDS patients are represented by
vertical bars. A hot spot with 69% of mutations
in exon 9 is shown. The two alternative splice
sites in exon 5 and exon 9 are shown in black
boxes.

directly with the IGF2 promoter. Moreover, the potent repressor
effect of WT1 on 10F2 transcription is dependent on the presence
of multiple high and low-affinity binding sites flanking the P3 site
of the main fetal 10F2 transcriptional initiation. Functional loss of
WT1 transcriptional repressor activity may result in continued
synthesis of large amounts of IGF2 in kidney blastemal cells and
unrestrained autocrine growth stimulation both in kidney blast-
emal cells and in tumor cells. WT1 may function in a similar
fashion to p53 and Rb [47, 48]. Moreover, since interaction
between these two proteins p53 and WT1 has recently been
observed, they may act in a synergistic manner [49].

Germline mutations of the WT1 gene have dominant effects on

kidney development

De novo constitutional overlapping deletions of the lip 13
region including WT1 are characteristic features of WAUR
syndrome. De novo constitutional deletions or point mutations
have been reported in WT patients with or without genitourinary
abnormalities, but without aniridia [27, 50]. One case of father-
to-son transmission has been described [25]. This patient with
hypospadias and bilateral cryptorchidism which may make him
unfertile, developed a Wi' at the age of 3 while his father had
been successfully treated for WT. It is salient to point out that the
father had no genital phenotype although he presented with
Wilms' tumor which was cured. A third case of transmitted WT1
mutation has been reported [51]. In this report an unaffected
father of a DDS mutation child himself carries the same mutation
in two independently taken blood samples. Thus here we have a
case of non-penetrance of the DDS phenotype and another case
of WT1 mutation transmitted through the germline. Although the
exclusion of lip linkage in four WT pedigrees suggests that
mutations at a different locus (WT3) can predispose to familial
WT [52—54], the inheritance of the WT1 mutation together with
the only one instance of transmission of a WAGR associated
deletion from a mother with aniridia to her son are the first
examples of the involvement of the ilpl3 locus in familial WT
[55]. Thus a point mutation or a deletion of WT1 can indeed be
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genetically inherited. However, although familial transmission is
rarely observed, these mutations most likely account for a minor-
ity of familial cases or patients with de novo germline mutations,
probably about 10% [12]. The low frequency of familial WT1
cases may well be explained by reduced fertility in WT1 mutation
carriers. Females may also be more subtly affected. 46 XX DDS
patients do in some cases have gonadal anomalies as described by
Pelletier et a! [56, 57].

De novo constitutional mutations of WT1 have been found in
approximately 30 patients with Denys-Drash syndrome (DDS)
[42, 51, 56, 58, 59]. DDS patients who develop WT often have
bilateral tumors and present earlier than sporadic WT patients.
These children suffer from severe abnormalities of the podocyte
layer of the glomerulus, a condition that leads to early renal
failure. These WT1 mutations mainly consist in amino acid
changes in either one of the four zinc finger domains of WT1, with
a hot spot (18 of 28 cases, 64%) in exon 9 corresponding to zinc
finger III, but also in two cases, in a chain termination mutation,
leading to alteration or complete or partial loss of the DNA
binding domain, but sparing the N terminal portion involved in
gene regulation (Fig. 2). Most DDS mutations lead to the inability
to produce one isoform of WT1, the so-called +KTS form, thus
supporting the importance of differential splicing [42, 60].

The underlying differences between WAGR patients and DDS
patients, with their more severe gonadal dysgenesis and the
characteristic nephropathy, are still poorly understood. This can-
not be totally accounted for by differences in the nature of the
mutation, a deletion (WAGR) and a point mutation affecting the
DNA binding domain (DDS), since there are now two examples
reported in the literature of DDS patients with lip 13 deletion and
aniridia [22, 61]. That the majority of individuals with WAGR
syndrome do not develop nephropathy suggests that the renal
system is not as sensitive as the genital system to a reduction in
WT1 levels during embryogenesis. The WT1 mutations observed
in DDS are dominant in their effects on urogenital development.
However, because of the incomplete penetrance (only 2/3 of
WAGR patients develop a tumor), the dominant effect of these
mutations in tumorigenesis is more difficult to establish. Several
hypotheses can be proposed. Firstly, they may compromise or
abolish binding of the WT1 zinc finger domain to its normal target
DNA binding sites, perhaps blocking the binding of the wild-type
allele gene product, resulting in a dominant negative mutation.
Secondly, they may confer the ability to recognize novel but
inappropriate DNA binding sites (dominant mutation). The al-
tered peptide products could behave either in a dominant nega-
tive fashion by sequestering a polypeptide required for WT1
function or in a gain-of-function manner by activating or repress-
ing genes not normally under WT1 control [12].

Homozygous mutation of WT1 introduced into mouse embry-
onic stem cells by gene targeting resulted in embryonic lethality.
The mutant embryos exhibited a failure of kidney and gonad
development. At day 11 of gestation, the cells of the metanephric
blastema underwent apoptosis, the ureteric bud failed to grow out
of the Wolflian duct, and the inductive events that lead to
formation of the metanephric kidney did not occur. Moreover the
mutation caused abnormal development of the mesothelium,
heart, and lungs. These observations now clearly demonstrate the
role of this gene in early genital development, although the animal
model used does not entirely reproduce the features associated
with human WT1 mutations [36].

WT1 and urogenital development

The frequency of genital anomalies in WAGR patients with del
lipl3, >50% of boys, led to the proposal that a gene different
from the WT gene may map to the same region. There have been
several attempts to map this putative gene within iipi3 using
overlapping deletions in patients with different manifestations,
but obviously the WT1 gene itself is implicated. This is strongly
supported by: (1) the observed expression pattern of WT1 in the
developing gonads mainly over the germinal epithelium and the
sex cords (34); (2) the observation of WT1 mutations in two WT
patients with cryptorchidism and hypospadias [25], and (3) WT1
point mutations in DDS patients who invariably present with
gonadal dysgenesis and predisposition to WT or gonadoblastoma.
These DDS mutations either result in an amino acid change in the
DNA-binding domain or even the complete loss of this domain
[58]. High levels of WT1 mRNA expression are observed in the
developing gonads. In mature gonads, WT1 expression is re-
stricted to the Sertoli cells of the testis and granulosa and
epithelial cells of the ovaries. The possibility that WT1 has a
transcriptional relationship with müllerian inhibiting substance, or
with any of the genes controlling testosterone biosynthesis and
action, or with the Y chromosome gene, SRY, which initiates
male sexual development, needs to be evaluated [62]. One
particularly fascinating WAGR associated deletion observed in a
family with a balanced translocation resulted in isolated aniridia
in a 46XXdelllpl3 girl and in ambiguous genitalia, Wi', aniridia
and mesangial sclerosis in a once removed cousin 46XYdelllpl3
[61]. This difference in penetrance can be explained in terms
either of developmental plasticity in the genitourinary system or
of genetic background effects. More likely this is a reflection of the
presence of the Y chromosome in the child with the more severe
phenotype as in the majority of DDS patients. Although the DDS
phenotype is usually more severe than the WAGR phenotype,
there is an obvious overlap between them. Furthermore, germline
hemizygous inactivation of WT1 may result in apparently non-WT
associated genital anomalies. We are testing this hypothesis in XY
patients with gonadal dysgenesis but without mutation in the SRY
gene (Henry et al, unpublished data). Nonetheless, the germline
and somatic mutations found in the WT1 gene provide a direct
link between development and oncogenesis. Although there is
accumulating evidence that WT1 is indeed a tumor suppressor
gene and that both copies can be lost in approximately 10% of the
tumors, this not the rule and other genes are obviously involved
[12, 63].

The WT2 locus at lipl5

The Wiedemann-Beckwith syndrome

That the iipi5 region carries a second gene for predisposition
to or progression of WT was proposed on the basis of (1) a subset
of Wilms' tumors with non-random maternal losses of alleles
limited to iiplS, not involving iipi3 [64—66]; (2) the description
of patients with the Wiedemann-Beckwith syndrome (WBS)
carrying constitutional chromosomal duplications overlapping the
lipi5.S region (Fig. 1). This syndrome is characterized by a
number of congenital disorders including neonatal gigantism,
exomphalos, macroglossia, visceromegaly, hemihypertrophy and
neonatal hypoglycemia. About one tenth of patients with this
overgrowth syndrome develop tumors, including WT, adrenocor-
tical carcinoma, rhabdomyosarcoma and hepatoblastoma. To
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date, less than twenty cases with dupllplS have been reported. In
every case where the parental origin of the duplicated region
could be identified it was of paternal origin [13]. More recently,
eight WBS patients with apparently balanced reciprocal translo-
cations having in common a breakpoint in lipl5.5 have also been
reported [67, 68]. Again a similar bias in parental origin was
observed, since in all eight patients the rearranged chromosome
11 was of maternal origin. Familial cases, which represent about
15% of all cases, showed linkage to markers in the iipl5.5 region
[69, 70], namely, HRAS (c-H-ras), INS (insulin) and IGF2. A
parental bias in familial transmission of the defect was observed
with a threefold excess of carrier mothers. Although there are rare
cases of paternal transmission, affected offsprings tend to display
less severe symptoms. This can have two explanations: the lower
penetrance when transmitted by a father, and the reduced fecun-
dity of affected males. This may be the consequence of an altered
developmental process affecting gonads and external genitalia,
mostly in male patients, and resulting in cryptorchidism and
hypospadias [13, 71].

Imprinting

The biases in parent of origin observed in the different forms of
WBS and associated tumors strongly suggested that the gene or
genes were submitted to imprinting. This also applies to various
human hereditary diseases, where imprinting conveys a unique
pattern of inheritance [72, 73], and to several embiyonal tumors,
in which a parental bias in allele loss has led to the proposal that
some tumor-suppressor genes may undergo genomic imprinting
[74, 75]. Genomic imprinting can be defined as the differential
modification(s) of the maternal and paternal genetic contributions
to the zygote that results in the differential expression of parental
alleles during embryonic and adult development. Genes subject to
imprinting are therefore monoallelically expressed.

The loss of maternal lip alleles limited to tumor cells is
reminiscent of uniparental paternal disomy which can be observed
in a whole zygote. Uniparental disomy (UPD) refers to the
presence in a zygote of two copies of all or part of a chromosome

Fig. 3. Uniparental paternal disomy. Isodisomy
corresponds to the presence of two identical
copies and heterodisomy to that of both
homologs from the same parent. Heterodisomy
results from non-disjunction during the first
mitosis of meiosis while isodisomy can occur
either following non-disjunction during the
second mitosis of meiosis, or at a post-zygotic
stage. Partial isodisomy can result from a
mitotic recombination and, depending on the
stage of development and the fate of embryonic
tissues lead to mosaicism.

from the same parent, with a lack of the corresponding chromo-
somal region from the other parent. Several mechanisms occur-
ring during meiosis I or II or at a post-zygotic stage can result in
UPD (Fig. 3). Using crosses between mice carrying different
translocations, Beechey and Cattanach (1987) have obtained
offspring carrying maternal or paternal uniparental disomies
[76—781. To date, fifteen different chromosomal regions on the
mouse genome show no complementation by the other parent
chromosome. Although the actual number of imprinted genes is
not known, each of these fifteen regions must carry at least one
imprinted gene. To date, four murine genes have been found to be
imprinted. Two of them, Hi9 and IGF2R (insulin-like growth
factor II receptor) are expressed exclusively from the maternal
allele while the other two, IGF2 and SNRNP (small nuclear
ribonucleoprotein polypeptide N) are found to be expressed only
from the paternal allele. Interestingly, the human H19 and IGF2
genes map to lipl5 are also imprinted in humans.

Both WBS and a possibly related condition in mice are associ-
ated with paternal UPD. Chimeric mouse embryos containing
cells paternally disomic for the distal part of chromosome 7 are
abnormally large [79]. The distal end of mouse chromosome 7 is
homologous to human chromosome iipi5.5. Using iipi5 poly-
morphic markers, comparison of the genotypes of WBS children
with the genotypes of their parents showed that approximately
20% of sporadic WBS cases present with paternal isodisomy with
complete or partial lack of a maternal allele [64, 80—82]. The
common region of isodisomy found in WBS patients is depicted in
Figure 1. Moreover, most WBS patients with UPD are mosaics
[83] and, UPD limited to kidney was observed in a proportion (4
of64) of Wilms' tumor patients [84] (Fig. 4). Thus UPD may not
be detectable in a blood sample from a patient but be present only
in some tissues and account for the extreme variability of the
syndrome. Alternatively, UPD may be present only in kidney and
account for bilaterality or multifocality in an otherwise apparently
healthy sporadic, non-hereditary case. Moreover, patients with
UPD are at increased risk of developing a tumor, 64% versus 10%
for all WBS (Table 1). Detection of UPD, which was demon-
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Fig. 4. Mosaicism for uniparental disomy in kidney giving rise to a tumor.
UPD can be considered as a loss of alleles. Cells with UPD are therefore
more prone to develop a tumor. However, since not every patient (64%)
with UPD develops a tumor, another event, which has not been defined
yet, must occur.

Table 1. WBS, uniparental disomy and risk of tumor

Risk of tumor

• All WBS —* 8.5% (17/200)
• Dup ilpl5 —* 0—7.5% (1/15)

•UPD — 64%(7/11)

strated here for the first time in a cancer predisposing syndrome,
therefore represents a new important test for predicting the risk of
cancer in these patients.

A defect in genomic imprinting can occur constitutionally,
leading to growth abnormalities and predisposition to Wilms'
tumor. Recently, relaxation of IGF2 imprinting in four of six
fibroblasts cultures from WBS patients has been detected [85]. In
one child with generalized overgrowth, IGF2 was transcribed from
both alleles in her kidney, peripheral blood leukocytes and Wilms'
tumor [86]. In contrast, kidney samples from nine children with
normal growth profiles showed monoallelic transcription of IGF2
[87]. This is consistent with constitutional relaxation of IGF2
imprinting arising from a germline mutation or as a very early
event during embryogenesis.

A third gene, WT3, involved in familial cases

A third region, yet unknown, harbors a gene for familial
predisposition to WT. Linkage analysis yielded significant lod
scores for exclusion of the iipi3 region, the WT1 gene itself (1
family), and the liplS region [54, 69, 70]. However, the small
number of informative families is still insufficient for demonstra-
tion of linkage to a specific region of the genome. In these
families, the absence of characteristic clinical features led to the
proposal that most familial cases without partial or complete
overgrowth syndrome (WBS) and/or without genitourinary abnor-

malities (WT1) carry a mutation at the WT3 locus. However, due
to incomplete penetrance of these developmental abnormalities,
the exact proportion of familial cases carrying a mutation of this
putative WT3 gene remains unknown. As previously mentioned,
genetic transmission of a WT1 mutation has already been re-
ported in two cases [25, 55]. Because of the frequent association
of genitourinary abnormalities and the poor prognosis of WT in
the past decades these must be rare today. However, there has
been considerable progress in the treatment of WT recently and,
with long-term survival close to 90%, it would not be surprising if
a greater number of these individuals, provided they are not
infertile, have offspring with the mutant gene and who would
therefore be at risk of developing a tumor.

Segregation analysis performed in familial cases showed that
the risk of being affected is not significantly different when the
transmitting parent is a man rather than a woman [88}. These
results, which are clearly in contrast with the familial cases of
WBS, do not provide evidence for genomic imprinting of the WT3
gene.

Cytogenetic and molecular analysis of the tumors

One of the most perplexing aspects of the genetics of predis-
position to cancer is that germline mutations or deletions may
have a dominant mode of action resulting in developmental
anomalies whereas, in agreement with the retinoblastoma model,
a recessive mode of action has been assumed for somatic muta-
tions leading to tumors. This implies that inactivation of both
alleles is required to initiate tumorigenesis. However, as discussed
below, and although demonstrated in 10% of WT this may not
always apply in the case of WT. This seriously questions the
nature, dominant or recessive, and the role of the mutations
occurring at the somatic level as well as the function(s) of the gene
itself as an antioncogene.

In WT as in many other tumor types the tumorigenic process is
characterized not only by loss, but also by equally frequent gain of
genetic material including duplications the significance of which is
still elusive. Cytogenetic analyses of Wilms' tumors allowed
characterization of the different regions involved. A large number
of tumor karyotypes were performed, and a review of 107 cases
showed that numerical and structural rearrangements appeared to
be non-randomly distributed. Chromosomes 1, 11, 12, and 16 are
the chromosomes most often involved in the rearrangements
(Table 2).

LOH studies have been used to identify regions frequently
deleted with or without reduplication of the remaining chromo-
some, thus pointing to areas that may harbor possible tumor
suppressor genes. The involvement of these chromosomal regions,
lp, lip and 16q, was amply confirmed and refined by LOH
analyses in a large number of tumors using molecular markers.
LOH was observed in 20% of tumors studied for the short arm of
chromosome 1, in 55% to 57% of tumors studied for the short arm
of chromosome ii, and in 20% of tumors studied for the long arm
of chromosome i6. The most striking features of LOH studies on
lip was the preferential loss of maternal alleles (52/53) in
sporadic cases as well as in WAGR syndrome or familial cases
[89—91; Henry, unpublished data].

At least two different regions in lip

Cytogenetic analysis and molecular analysis looking for allele
loss revealed that two different regions on chromosome 11, lip13
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Table 2. Numerical and structural somatic chromosomal
rearrangements in 107 Wilms' tumors

Chromosomes
Number of

rearrangements
% Of

rearrangements
Specific

aberrations

1 35 33 Dup 1q21-qter
2 9 8
3 19 18 Total trisomy
4 7 6
5 5 5
6 21 20 Total trisomy
7 25 23 Total trisomy,

Dup7q
8 20 19 Total trisomy
9 16 15 Total trisomy

10 18 17 Total trisomy
11 37 35 Del lipl3
12 39 36 Total trisomy
13 ii 10
14 11 10
15 4 4
16 32 30 Total

monosomy
Del 16q

17 17 16 Monosomy,
trisomy

18 16 15 Total trisomy
19 11 10
20 10 9
21 5 5
22 14 13
X 8 7
Y 5 5

Total 107 tumors 100 tumors

Chromosomes 1, 11, 12, and 16 are the chromosomes most often
involved in the rearrangements. The q12 region to qter of chromosome
1 and chromosome 12 in its entire length are duplicated in 33% and 36%
of tumors, respectively. Other chromosomes were shown to be duplicated
in WT, but either less than 15% of tumors were involved or the
rearrangement, such as the 7q duplication (23%) was common to a large
number of different types of tumors and therefore not specifically associ-
ated with tumor progression. The p13 region of chromosome 11 and the
long arm of chromosome 16 are deleted in 35% and 30% of the tumors,
respectively (Austruy et al, manuscript in preparation). Cytogenetic
studies in tumor cells therefore delineated two different regions, namely
lip and 16q, frequently deleted and therefore harboring at least three
possible tumor suppressor genes. Surprisingly, ip deletions were not
found in this analysis. This is in contrast with the description of losses of
alleles for region 1p36 reported in WT (Mannens personal communica-
tion). This may reflect chromosomal rearrangements undetected by
cytogenetic analyses, that is, microdeletions or mitotic recombination.

and lipls, can show LOH but not necessarily in complete
agreement with Knudson's two-hits hypothesis. More than half of
the tumors, 57%, showed LOH (Henry, unpublished data). Con-
sidering all tumors informative for llpl3 and lipl5 markers, we
showed that WT1 is specifically involved in 5% of cases, WT2 is
specifically involved in 41% of cases, and WT1 and WT2 are both
involved in 54% of cases. Demonstration of LOH limited to lipl5
thus suggested that a mutation in a gene mapping in lip 15 may
also be involved (Henry, unpublished data). More direct evidence
for the involvement of WT2 comes from the observation of three
WAGR cases who retained their unique WT1 allele at lipl3 but
showed LOH limited to region 11p15, suggesting successive
involvement of WT1 and WT2 [92, 93]. However, since a high
proportion of LOH encompasses iipi3 and liplS, this may
suggest that these two loci must be involved sequentially [21] and

interact (Fig. 1). These figures demonstrate the major role played
by somatic rearrangements of WT2 in the pathogenesis of WT,
whether or not WT1 is involved. The WAGR cases are a separate
matter in some ways since here LOH for the germline mutation
would most likely be cell lethal. Thus, for the functional copies of
WT1 to be lost an independent second hit is required. This has
been seen in several cases, but may not always occur. It is possible
that in some of these cases UPD for the WT2 region can interact
with loss of one copy of WT1 and so lead to a sort of hybrid tumor
mechanism. What has not been clearly described in any cases is
WT1 mutation in patients with UPD.

Although only a small fraction of sporadic \VT exhibit homozy-
gous deletions of the WT1 gene, some of them intragenic, the
WT1 in lip 13 therefore conforms to the definition of a tumor
suppressor gene [10, 21, 25, 27, 50, 94—98]. Except for one case
[59], in every case of DDS in which tumor material was examined
and compared with constitutional DNA, a reduction to homozy-
gosity for the germline mutation was observed [56]. However,
dominant mutations of WT1 may lead to tumorigenesis without
requiring the loss of the second normal allele, as suggested by a
sporadic WT that had a WT1 mutation deleting zinc finger 3, yet
retained the normal WT1 allele [21]. Recently, Park et al reported
a case of adult human mesothelioma that contains a homozygous
point mutation within WT1 [32]. This mutation within the putative
transactivation domain, converts the protein from a transcrip-
tional repressor of its target sequence to a transcriptional activa-
tor. Little et al also described a sporadic WT with heterozygosity
in the tumor for the WT1 mutation demonstrated. Therefore
there are several reported cases where WT1 mutation does not
become homozygous in the tumor [23]. Alternatively, as recently
shown, more subtle mutations of WT1 may be present in some
cases [25]. Analysis of the remaining allele in a WT from a
WAGR patient revealed the deletion of a single nucleotide in
exon 7 [97]. This mutation likely played a role in tumor formation,
as it prevents translation of the DNA binding zinc finger domain
that is essential for the function of the WT1 polypeptide as a
transcriptional regulator. Another patient carried a heterozygous
mutation while the other allele was wild-type and expressed at
normal levels [99]. It was suggested that the mutant WT1 protein
acted either in a dominant mode or as a dominant negative that
interfered with the function of the wild-type protein. In co-
transfection experiments, the mutant form of WT1 was able to
cooperate with the adenovirus E1A oncoprotein to transform
primary baby rat kidney cells, while the wild-type WT1 form
exerted no such effect [99]. This is not the first example of a
dominant mode of action for a genuine tumor suppressor: there
are now several examples of P53 somatic mutations with analo-
gous properties [48]. In most tumor samples, however, no deletion
or mutations of WT1 were found. RNA transcripts of this gene
could still be detected in many cases at levels comparable to those
in the developing kidney.

Moreover, further experiments showed that sequences with
features of tumor suppressor gene mapped to iipi5. Dowdy and
coworkers showed that a sequence mapping to lipi5 was respon-
sible for suppression of tumorigenicity of a WT cell line (G401)
[100]. Koi et al [101] showed that a sequence mapping between
HBB and D11S12, thus different from WT2 and WT1, had a
tumor suppressor effect on a rhabdomyosarcoma cell line (Fig. 1).
Genetic predisposition to rhabdomyosarcoma is often associated
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with susceptibility to other tumor types in the context of either
WBS or SBLA (Li-Fraumeni syndrome).

The unexpected, relatively rare implication of WT1, may thus
be explained by the existence of at least three other loci, TS, WT2
and WT3 postulated to play a role in an unknown proportion of
WTs.

Genomic imprinting, development and tumorigenesis
Although the molecular bases for genomic imprinting are still a

matter of debate, strong a priori considerations designate DNA
methylation as a good candidate. Firstly, DNA methylation is a
transmissible epigenetic modification that has profound effects on
gene expression [102, 103]. Secondly, DNA is known to be
differentially methylated in paternal versus maternal gametes,
and, thirdly, DNA methylation is reversible in that it can be
maintained during several cell cycles and can be erased in somatic
cells as well as in germ cells [104—108]. The simplest explanation
for an imprinting process would be the establishment during
gametogenesis of allelic methylation differences at critical CpGs
(imprinting boxes) over imprintable loci, with persistence of
subsequent effects on allelic gene expression during critical stages
of development and differenciation [109]. These differences in
methylation patterns are indeed observed and often accompag-
nied by differences in DNA compaction as shown by sensitivity to
several DNAses [110—113]. The role of DNA methylation in
genomic imprinting was recently demonstrated by experiments in
mice homozygous for a DNA methyl-transferase mutation. These
embryos die at embryonic day 11 with their DNA substantially
demethylated. The expression of three imprinted genes Igf-2,
Igf-2r and H19 in mutant mice that are deficient in DNA
methyl-transferase activity was examined. Expression of all three
genes was affected in mutant embryos: the normally silent pater-
nal allele of H19 gene was activated, whereas the normally active
paternal allele of the Igf-2 gene and the active maternal allele of
the Igf-2r gene were repressed. These results demonstrate that the
normal level of DNA methylation is required for controlling
differential expression of the paternal and maternal alleles of
imprinted genes [114]. Moreover, it has recently been shown that
imprinted regions are characterized by asynchronous replication
[115]. Reasonable theoretical arguments can also be made for
more complicated models, those which involve spread of gene
inactivation along the chromosome from hypothetical distant
imprinting controlling elements, perhaps in a process analogous
to heterochromatinization or X-inactivation. This could account
for the as yet unexplained spreading over large distances of the
breakpoints of WBS associated translocations (Fig. 1).

Several studies have been carried out to determine which of the
three loci, WT1 WT2 or WT3, is responsible for the imprinting
phenomenon. There is now growing evidence that the WT1 gene
is not imprinted. Firstly, in two families in which malsegregation
of a balanced translocation led to the birth of children with
deletion of band lipl3 [55, 116]. Secondly, two reports demon-
strate the biallelic expression of WT1 which is equally transcribed
from both alleles in most WT and in the surrounding normal
kidney [117, 118]. Thirdly, the corresponding region on mouse
chromosome 2 is not imprinted. Segregation analysis performed
in familial cases did not provide evidence for genomic imprinting
of the WT3 gene [88]. In contrast, as already mentioned for WBS,
there is now accumulating evidence that WT2 is the best candi-
date for imprinting.

Preferential LOH of a specific parental allele in several child-
hood tumors may provide indirect evidence for genomic imprint-
ing in cancer [74]. However, as already demonstrated for bilateral
retinoblastoma, since new germline mutations on the RB gene
preferentially occur in paternal gametes, the loss of the maternal
allele in the child's tumor only reflects this hypermutability of
male gametes. Hypermutability of the region iipl3 in paternal
gametes has also been demonstrated [119]. Other arguments are
thus needed to conclude that preferential maternal LOH reflects
genomic imprinting. The involvement of genomic imprinting in
expression of some genes can be demonstrated by: (1) differences
in the patterns of methylation of a gene or a genomic region for
the paternally inherited chromosome versus the maternally inher-
ited one; (2) the existence of uniparental disomy for a region
known to be involved in the same disorder; (3) monoallelic gene
expression with only the paternal or the maternal allele being
expressed; (4) differences in the timing of replication for the same
region; and (5) differences in chromatid compaction of the two
alleles of one gene. Two genes localized in the iipi5 region,
namely H19 and IGF2, known to be imprinted in opposite
directions, are therefore good candidates to account for genomic
imprinting in WBS and associated tumors.

The H19 gene in lipl5 is paternally imprinted
The H19 gene codes for a spliced and polyadenylated RNA

which is highly expressed in a large variety of fetal tissues at a
stage when cells are differentiating [120—123]. H19 transcripts
may also play a role in the process of cytotrophoblast differenti-
ation [124]. Gene expression was shown to be down-regulated to
nearly zero in the postnatal period in all tissues except skeletal
muscle [125]. Transcription of H19 remains detectable in differ-
entiated myoblast cultures, and at a level somewhat lower than
that of corresponding fetal organs, in several adult mouse and
human organs [121, 122, 125—128]. Because of the apparent lack
of evolutionarily conserved open reading frames, the protein
coding potential of H19 RNA is uncertain. It has therefore been
proposed that this gene may act at the level of its RNA, perhaps
through the formation of a ribonucleotide particle [129]. While
one report has suggested that the human Hi9 gene might give rise
to a polypeptide in vivo in adult muscle, this data have not yet
been confirmed [127].

Parental imprinting of the H19 gene was demonstrated in
several ways.

(1) Specific sites in the CpG island promoter and 5' portion of
the gene are only methylated on the paternal allele [110].

(2) H19 is included in the region of paternal disomy associated
with Wiedemann-Beckwith syndrome [64, 83] (Fig. 1).

(3) Monoallelic expression has been demonstrated using differ-
ent approaches. Using a DNA polymorphism detectable at the
RNA level, Zhang and Tycko demonstrated that, as in the murine
tissues, only the maternal allele is expressed in human tissues
[118]. This was confirmed by experiments on either androgenetic
tissue, such as a complete hydatidiform mole, or gynogenetic
tissue showing expression of H19 only on gynogenetic tissue [124].
More recently, a tissue-specific somatic allele switching correlat-
ing with demethylation of the imprinted allele has been charac-
terized in the cerebellum and an apparent erasure of imprinting
with biallelic expression in the lung has been reported in only one
adult case [113].

(4) H19 is included in the liD15.5 region of about 1 to 2 Mb in
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which the two homologous alleles replicate asynchronously. The
paternal allele always replicates earlier. This phenomenon of
asynchronous replication has also been demonstrated for other
regions known to be imprinted in the mouse as well as in the
human chromosome [1151.

(5) The active maternal allele in mouse embryos disomic for the
maternal allele (Mat Di7) is more sensitive and accessible to
nucleases. The differences in chromatid compaction between the
two alleles is certainly associated with the pattern of methylation
and confirms that imprinting only occurs on the paternal allele of
the H19 gene [110].

The IGF2 gene in ilpiS is maternally imprinted and
expressed in WT

Several lines of evidence from expression studies in mice and
humans suggest that the fetal mitogen IGF2 seems justifiably
implicated in the pathogenesis of WT. IGF2 is overexpressed in
all WT examined to date, including tumors from WBS patients
[130—1331. As an alternative hypothesis it has recently been
proposed that the IGF2 gene products can behave not only as a
growth promoter, but also as a tumor suppressor gene [134]. The
IGF2 gene precisely maps within the region involved in WBS, in
lipl5.5. Studies of WT transplanted in nude mice have shown
that the tumor cells express the IGF1 receptor and that antibodies
that block this receptor inhibit tumor growth [135]. This is not
suprising since the IGF1 receptor binds IGF2. These data strongly
suggest that IGF2 may function as an autocrine growth factor in
WT. IGF2 is abundantly expressed in kidney blastemal cells, but
not in differentiated epithelial cells, whereas a reciprocal pattern
of expression has been described for WT1 [33, 34]. As previously
mentioned, the WT1 gene has been shown to interact with several
sequences in the P3 promoter region of IGF2 [39].

The suggestion that IGF2 might be responsible for the over-
growth in WBS is supported by the finding that only the paternal
allele of the IGF2 gene is transcribed in most tissues in the mouse
and that pups with an inactive IGF2 paternal allele do not reach
full size [136]. Furthermore, abnormally large chimeric mice
resulted from a duplication of a chromosomal segment containing
the paternal IGF2 allele. De Chiara, Efstratiadis and Robertson
found that the normally proportioned dwarfism seen in mice
lacking IGF2 activity persisted throughout their adult life [137].
Previous explanations for the role of the IGF2 gene in WBS have
incriminated gene dosage effects in which duplication of the active
paternal allele for IGF2 leads to overexpression. An alternative
model involving trans-sensing effects was proposed which also
assumes imprinting of the human IGF2 gene but does not require
increased copies of the paternal allele [138]. This hypothesis
might therefore account for some but not all sporadic cases of
WBS for which a biparental contribution has been observed [139].
It may be that the familial cases where no translocation is involved
may be the most exciting for throwing light on the mechanism of
imprinting, since the simplest hypothesis would be that these cases
are point mutations which alter the imprinting mechanism. They
may or may not lie in an expressed portion of the genome, but if
we can find them, they should throw light on how imprinting is
mediated and what interferes with the mechanism.

Parental imprinting of the IGF2 gene was demonstrated in
several ways.

(1) Differences in the pattern of methylation between the two
alleles has been demonstrated for the IGF2 gene. Surprisingly, for

the region of the gene analyzed, hypomethylation was observed
for the non-expressed maternal allele in the various tissues tested
[111, 140]. The same phenomenon is observed in the IGF2R gene.
Indeed, in this gene the promoter is hypomethylated on the
expressed maternal allele, while an intronic region is hypermethy-
lated on the same allele. While the differential methylation
pattern in the promoter is progressively established after fertili-
zation, the intronic one is established earlier, during gametogen-
esis and rather than the promoter itself it may therefore represent
an important key signal for imprinting [109, 112].

(2) IGF2 is included in the region of disomy characterized in
the Wiedemann-Beckwith syndrome [64, 83] (Fig. 1).

(3) Monoallelic expression of IGF2 was established with the
same type of experiments as for H19. IGF2 is only expressed in
androgenic tissues [124]. The specific expression of the paternal
allele was confirmed with studies using a DNA polymorphism
detectable at the RNA level [141, 142].

(4) IGF2 and H19 map on the same 200 kb fragment which
belongs to the same 1 to 2 Mb unit showing asynchronous
replication [115, 143].

The physical linkage of the H19 and IGF2 genes in both mice
and humans suggests that they constitute a functional imprinting
domain, although one in which the imprint can be imposed in
either direction and for which the paternal region replicates
earlier. Both genes share a very similar pattern of expression
suggesting the possibility that they may share transcriptional
regulatory elements. Both genes are initially activated in extraem-
bryonic tissues by day 4.5, and in a very similar set of tissues in the
embryo proper at 8.5 days. After birth, the expression of both
genes is repressed in most tissues. One interesting exception to
their co-expression occurs in the postnatal choroid plexus and
leptomeninges, the only tissues which are known to express both
alleles of IGF2, while neither expresses H19 [143]. The preserva-
tion of physical linkage and imprinting of these genes in mammals
implies that their imprinting has important selective advantages to
mammalian survival [144].

These two genes, H19 and IGF2 and their specific parental
imprint, may thus account for the pattern of inheritance observed,
the variable expressivity, the specific loss of alleles and the loss of
imprint [145]. However, these genes map 400 kb away from a
cluster of breakpoints observed in the cytogenetic cases of WBS,
suggesting that other genes could be involved [146]. Indeed,
although mapping to a different subregion, a sequence with
properties of a tumor suppressor (rhabdomyosarcoma cell line)
has recently been isolated [101]. Furthermore, neither reduplica-
tion of the active IGF2 paternal allele nor relaxation of IGF2
imprinting is sufficient for tumorigenesis, thus indicating that
other mutation(s) must occur.

Since imprinting is expected to start in the germline, a heritable
molecular tag is needed. This tag should be able to regulate gene
expression and be removable during each cycle of germ cell
development. DNA methylation may be one of the molecular
markers [147]. IGF2 and H19 are closely linked in mice and
humans, but are imprinted reciprocally. It has been proposed that
expression of the two reciprocally imprinted genes H19 and IGF2
is functionally and/or mechanistically related and that the imprint-
ing of a single chromosomal site might control the activity of both
genes [148]. It is suggested that the observed methylation and
condensed chromatin of the inactive paternal H19 promoter may
be the controlling event. Imprinting of H19 and IGF2 might be
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linked mechanistically if the IGF2 and H19 promoters compete
for the two enhancers downstream of H19 [110, 148, 149]. The
enhancers may activate IGF2 expression, but only if the H19 gene
is methylated and inactive, as on the paternal chromosome [148].

The fate of parental imprints in mutant mice with impaired
methylation is striking: the imprints on three genes including
IGF2 and H19 are lost, resulting in either repression (IGF2) or
expression of both parental copies (H19) and the death of mutant
embryos. In agreement with previous proposals, the paternal
IGF2/H19 domain becomes functionally maternal [114]. This
confirms the view that DNA methylation is a key event in the
imprinting process. Embryos with the maternal disomy for chro-
mosome 7 have excess H19 and no IGF2 (just like the methyl-
transferase mutant embryos) and are lethal [110]. However, the
observation that both alleles of the two genes are expressed in
androgenetic mononuclear trophoblasts also suggests that a bipa-
rental contribution may be required for expression of the recip-
rocal IGF2/H19 imprint [150]. In addition, that imprinted regions
replicate asynchronously and that, whatever the imprinting pat-
tern, the paternal chromosome replicates earlier adds further
complexity to this puzzling syndrome [115].

Several recent papers report biallelic or monoallelic expression
of IGF2, but whether or not H19 was simultaneously expressed
was not investigated systematically [82, 86, 87, 141, 142, 150—152].

Relaxation of imprint in tumors
The biased LOH at lipl5 in WT might reflect parental

imprinting of one or more growth-regulatory genes, perhaps

including H19 and IGF2. How then would monoallelic expression
still fit the Knudson's two-hits model? It was first argued that
imprinting of one allele, resulting in its inactivation, represents
the first hit, and LOH with loss of the active allele would therefore
represent the second hit. This implied two things: (1) the gene had
to be a tumor suppressor; (2) the allele inactivated by imprinting
had to be the paternal one. This should lead, as for germline
mutations, to an earlier age of onset for tumors with LOH.
However, this did not prove to be the case. Even more puzzling
was the association of overgrowth with two paternal copies in
WBS patients, in at least two situations, dupllpl5.5 and paternal
UPD for lipiS. This finding suggested that the gene involved in
WBS is a growth factor expressed by the paternal allele. This
apparent paradox (tumor suppressor gene or growth factor?)
could only be resolved if two different genes were involved, a
growth factor expressed by the paternal allele and a maternally
expressed tumor suppressor gene (Fig. 5). More recent evidence
suggests an alternative hypothesis: that loss of imprinting is
associated with aberrant gene activation in cancer. The determi-
nation of the parental origin of the allele expressed in tumors
without LOH clearly demonstrates that in 69% of cases there is
relaxation of the imprint for IGF2 or H19 (20%) or both (one
case) [74, 86, 152]. Another study on a Wilms' tumor with a loss
of the maternal allele in lipl5 and a reduplication of the paternal
allele showed that one or both paternal copies of H19 is/are
expressed [93; Jeanpierre, unpublished data 1993]. Thus loss or
relaxation of imprint (LOl or ROl) is not restricted to tumors

Normal

WBS mut or
9

Paternal duplicationMaternal transmission

j$or$
Fig. 5. WBS, imprinting and tumorigenesis. A model proposing two genes imprinted in opposite direction to account for the different situations observed.
A good candidate for the maternally expressed gene is represented by H19 while the paternally expressed gene could be 10F2. In addition a tumor
suppressor (TS) gene different from H19 and IGF2 could be involved in a proportion of 'NT.
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retaining paternal and maternal H19 alleles and can occur in
conjunction with maternal llpl5 LOH. A similar type of phenom-
enon has also been described in the switching of expression in an
adult cerebellar tissue [113]. Regardless of the precise role played
by this process in neoplasia, these data provide evidence for a
novel epigenetic mutational mechanism in cancer, namely relax-
ation of genomic imprinting. However, this mechanism questions
the relevance of Knudson's two-hits hypothesis and conflicts with
the dogma according to which LOH unmasks a mutation in a
tumor suppressor gene. The consequences of activation of the
maternal allele of a growth factor such as IGF2 can be easily
explained in terms of excess cellular growth. In contrast, the
hypothesis that H19 might be a tumor suppressor gene is appar-
ently incompatible with the observations that the paternal allele
can be activated not only in a tumor without LOH [152], but also
in a tumor with maternal LOH (Jeanpierre, personal communi-
cation). Although overexpression of H19 in transgenic mice
results in late embryonic lethality, suggesting that the level of the
gene product is strictly controlled, the function of H19 remains
unknown [153].

How many independent events in the different forms?

Whether single mutational events at these loci are sufficient for
tumor formation or whether there are interactions between the
mutant gene products of these loci remains to be determined.
Data from 511 cases of WT in France including 12 familial cases
and 8 pedigrees from the literature, were analyzed to test three
modifications of Knudson's classical bimutational theory based on
genomic imprinting in Wihus' tumor carcinogenesis [88]. In order
to determine the number of independent events for WT develop-
ment and to look for a differential role of paternal and maternal
alleles, analysis of age at diagnosis and segregation analysis were
performed. For familial cases, the linear regression was consistent
with Knudson's classical bimutational theory in which the first
mutation is germinal and the second mutation is somatic. In
familial cases, no effect of the sex of the transmitting parent on
either age at diagnosis or segregation ratio was observed. Unex-
pectedly, in isolated unilateral cases which are considered to be
mainly non-hereditary, the linear regression could be explained by
only one rare event. However, the possibility of two non-indepen-
dent events remains. This could be explained by models of
genomic imprinting which assume two non-independent events, or
only one rare genetic event. Surprisingly, in bilateral cases a
bimodality for age at diagnosis was observed, suggesting a mixture
of hereditary (40%) and non-hereditary cases (60%). This result
seriously questions the classical assumption that all bilateral cases
would be hereditary. The rejection of the two-hits model was not
due to familial cases, but to bilateral cases as well as isolated
unilateral cases. Since there are different predisposing factors to
WT, the different ages of onset may be found in hereditary cases,
but the predisposition in the two categories may be different, for
example, due to WT1 mutation in one group, but part of the
WT2-WBS spectrum or the WT3 group in the other cases. It is
quite reasonable to suppose that the second hit may arise at
different rates in association with different predisposing genes.
These genetic findings support the hypothesis that WTarises from
a variety of etiological pathways.

Histopathology of WF

Islands of cells resembling metanephric blastema may persist
during postnatal life in both normal and dysplastic kidneys. It has
been suggested that these so-called nephrogenic rests may repre-
sent a precursor lesion. Indeed, nephroblastomatosis, which is
present in only 1% of infant postmortem examinations, can be
found in 40% of kidneys from children with unilateral WT and in
almost 100% of bilateral cases. Based on histologic features,
Beckwith, Kiviat and Bonadio suggested that Wilms' tumors can
be divided into two categories namely tumors associated with
perilobar nephrogenic rests (PLNR) and those associated with
intralobar nephrogenic rests (ILNR) [154].

Tumors with heterologous stromal elements (striated muscle,
cartilage, and bone) and a prominent stromal component are
associated with the WAGR syndrome, and the presence of ILNR
are therefore able to mimic the whole range of nephrogenesis.
Those that do not have heterologous elements and are composed
primarily of blastema with epithelial differentiation, are associ-
ated with the WBS and PLNR, and mimic later stages of
nephrogenesis. Intralobar WT is associated with an early age of
diagnosis of presumed genetic Wilms' tumor and is almost
universal in the tumors associated with aniridia, Denys-Drash
syndrome and genital anomalies. Perilobar WT has the typical age
of diagnosis of sporadic tumors and is associated with WBS and
hemihypertrophy. This might suggest that these two pathogenic
groupings represent \VT with different biologic characteristics and
possibly different mechanisms, the ILNR representing earlier
events than the perilobar ones, each probably reflecting the timing
of the original tumorigenic insult. The first clue as to the genetic
origin of nephrogenic rests and their relationship to the associated
Wilms' tumors was recently provided by Park et al [155]. WT1
mutations identical to the mutations found in the tumors were
identified in two cases. One case of ILNR was associated with a
sporadic WT while one case of PLNR was associated with signs of
WBS. This indicates that these two lesions, Wi' and nephrogenic
rests, share a clonal origin although topographically distinct [155].

Pritchard-Jones and Fleming have shown that WT1 expression
in the tumors remained very high in contrast to the low levels
normally seen in childhood, thus providing molecular evidence for
the abnormal persistence of cells with fetal characteristics [156].
However, in view of the continuing role of the WF1 gene in the
differentiation processes of nephrogenesis, one might expect
tumor cells involving this gene to be blocked at an early stage of
the mesenchymal-epithelial transition (condensed blastema) or to
be totally unable to enter this pathway and divert to the stromal
pathway or show heterologous differentiation. However, in order
to explain the ability of WT cells to differentiate beyond the
blastemal stage, we must propose either that the WT1 mutation
causes an alteration rather than a loss of protein function which
allows some epithelial differentiation. Alternatively, the WT1
protein may be not absolutely critical in the multistep process of
nephron formation and some degree of bypass of a differentiation
block can be achieved. The latter hypothesis is supported by four
cases that were classified as typical triphasic WT and showed
homozygous WT1 deletions [11, 24, 94, 157].

Kikuchi and coworkers compared genomic alteration and his-
topathology [157]. They found three cases, out of 25 unilateral
tumors, of genomic deletions of both alleles of WT1. The three
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tumors that showed genomic deletions were histologically classi-
fied as triphasic nephroblastic WT, and one of them was associ-
ated with intralobar nephroblastomatosis and a rhabdomyoma-
tous component. In another report, Gerald and coworkers
compared the expression of WT1 in WT by Northern blot analysis
and quantitative RNA slot blot analysis with clinical, histologic
and molecular features [135]. They found a significant difference
between the mean level of relative WT1 RNA for the two groups,
although exceptions to the general trend existed for both catego-
ries. The levels of WT1 mRNA were lower in the group of tumors
with heterologous elements and stromal predominance [157].
However, although none of the tumors analyzed showed a tran-
script with an altered size, point mutation affecting the protein
product and its function cannot be ascertained by these experi-
ments.

If IGF2 plays a causal role in WT onset, then it is possible that
the cellular distribution of IGF2 expression could differ from the
normal situation. In some tumors, the pattern of IGF2 synthesis
was strikingly different to the pattern found in the normal fetal
kidney. In other tumors, the difference was more subtle but
nevertheless distinct from the expression pattern in fetal kidney,
thus providing evidence for the role of IGF2 in the onset of WT
[131—133]. IGF2 mRNA expression, detected by in situ hybridiza-
tion, should be confined mainly to the stem cells and terminal
differentiation of either normal or neoplastic cells would be
coupled with a decrease or loss of its expression [158]. In the
triphasic type, hybridization signals were localized mainly to
blastematous cells and not to cells with epithelial differentiation.
In the blastemal predominant type which does not display differ-
entiation, all tumor cells showed IGF2 mRNA expression. How-
ever, in the monomorphous tubular type, signals were found even
over the tumor cells with epithelial differentiation. This suggests
that IGF2 could potentially regulate epithelial cell growth or
differentiation in an autocrine fashion. In this case, unregulated
expression of IGF2 could lead to autonomous cellular growth or
to decreased sensitivity to factors that induce differentiation. One
of these factors is probably WT1. The regional distribution of
IGF2 mRNA in the kidney was largely complementary to that of
N-myc, that is, predominantly over the blastemal cells with a
relative lack of hybridization over the epithelial structures. N-myc
expression was primarily detected over epithelially differentiating
mesenchyme. The apparent coexpression of the IGF2 and N-myc
genes in immature kidneys largely occurs in distinct cell types
[159]. High levels of N-myc RNA were present in the blastemal
elements in the Wilms' tumors [160]. The precise role of each
gene and their relationships in the complex processes of differen-
tiation and tumorigenesis remain to be clarified.

Conclusion

Although there are still a few percent of 'NT cases which
ultimately will resist any therapy, considerable progress in the
treatment of INT has been achieved in the past few years. This was
paralleled by important discoveries in the understanding of the
complex genetics of this tumor and the close relationship with
kidney and urogenital development. Obviously, the next step
should provide tools not only for recognition of the tumors with
poor prognosis, but also for prevention of tumors in those rare
conditions that predisposes to 'NT such as uniparental disomies,
and ultimately, although more speculative, in sporadic cases.
Neither the involvement of a germline mutation in WT1, WT2 or

WT3 nor somatic mutations at either locus revealed by LOH
studies have linked a particular histological type to a particular
chromosomal locus. It is not surprising that such a simple
correlation has not been established when so few studies have
examined only a few of the large number of parameters involved.
Further genetic and histologic data are needed to assess the
relationship between alteration of the WT1 gene and histopatho-
logical features. This will require complete histological and mo-
lecular analysis of large series of genetically well-characterized
'Ni'. Until then the histological diversity observed in 'NT will
remain an enigma.

As the first example of a tumor associated with developmental
anomalies and involving the fascinating phenomenon of genomic
imprinting, the WT story now represents a model of unexpected
complexity, with several genes involved and possibly interacting.
Step by step, this model reveals the subtlety of unforeseen
epigenetic phenomena such as genomic imprinting, postzygotic
uniparental disomies leading to a vast spectrum of mosaicism,
relaxation of imprint, and an ever higher order of gene action with
alternatively spliced forms of a same gene, uncovering new modes
of fine gene regulation.
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