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a b s t r a c t

Objective: Regular physical activity decreases the risk for atherosclerosis but underlying mechanisms are
not fully understood. We questioned whether voluntary wheel running provokes specific modulations
in cholesterol turnover that translate into a decreased atherosclerotic burden in hypercholesterolemic
mice.
Methods: Male LDLR-deficient mice (8 weeks old) had either access to a voluntary running wheel for 12
weeks (RUN) or remained sedentary (CONTROL). Both groups were fed a western-type/high cholesterol
diet. Running activity and food intake were recorded. At 12 weeks of intervention, feces, bile and plasma
were collected to determine fecal, biliary and plasma parameters of cholesterol metabolism and plasma
cytokines. Atherosclerotic lesion size was determined in the aortic root.
Results: RUN weighed less (∼13%) while food consumption was increased by 17% (p = 0.004). Plasma
cholesterol levels were decreased by 12% (p = 0.035) and plasma levels of pro-atherogenic lipoproteins
decreased in RUN compared to control. Running modulated cholesterol catabolism by enhancing choles-
terol turnover: RUN displayed an increased biliary bile acid secretion (68%, p = 0.007) and increased fecal
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bile acid (93%, p = 0.009) and neutral sterol (33%, p = 0.002) outputs compared to control indicating that
reverse cholesterol transport was increased in RUN. Importantly, aortic lesion size was decreased by
∼33% in RUN (p = 0.033).
Conclusion: Voluntary wheel running reduces atherosclerotic burden in hypercholesterolemic mice. An
increased cholesterol turnover, specifically its conversion into bile acids, may underlie the beneficial

se in
effect of voluntary exerci

. Introduction

Atherosclerosis is a complex vascular disease, which is char-
cterized by major abnormalities in systemic factors, such as
irculating lipids and lipoproteins, and concomitant inflammation
f the vascular wall.

It has long been known that exercise is a deterrent of atheroscle-
osis. Numerous clinical and experimental studies report on the

eneficial effects of physical activity on atherosclerosis [1–7] and
arious effects of physical activity on different processes involved
n the pathogenesis and progression of atherosclerosis have been

∗ Corresponding author at: Laboratory of Pediatrics, Center for Liver, Digestive
nd Metabolic Diseases, University Medical Center Groningen, Hanzeplein 1, 9713
Z Groningen, The Netherlands. Tel.: +31 0 50 3611262; fax: +31 0 50 3611746.

E-mail address: meissner.maxi@gmail.com (M. Meissner).

021-9150 © 2011 Elsevier Ireland Ltd.
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Open access under the Elsevier OA license.
mice.
© 2011 Elsevier Ireland Ltd.

reported. For example, it has been shown that physical activity
improves the antioxidant system [4], plaque composition as well
as plaque stability [3,6] and favorably modulates the inflamma-
tory response [1]. However, despite these recent efforts it remains
unclear how exactly physical activity decreases the atheroscle-
rotic process. We hypothesize that the enterohepatic system, which
plays a critical role in several aspects of cholesterol metabolism,
may be of great relevance herein.

Increasing cholesterol excretion into feces as neutral sterols
or bile acids represents an efficient strategy in the amelioration
of atherosclerosis, as it improves the pro-atherogenic state by
modulating lipid content in plasma [8,9]. The liver secretes free
cholesterol into bile, which is released into the intestine upon

Open access under the Elsevier OA license.
ingestion of a meal. In the small intestine, biliary cholesterol mixes
with dietary cholesterol and is partially reabsorbed. The remain-
der is lost in the feces within the neutral sterol fraction. Bile acids
are synthesized from cholesterol exclusively in the liver and enter
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he intestinal lumen after a meal. Bile acids are important for the
mulsification and absorption of dietary fats in the intestine [10].
bout 95% of the bile acids are reabsorbed from the terminal ileum,

ransported back to the liver for re-secretion into bile (enterohep-
tic circulation). The fraction of bile acids that escapes reabsorption
s lost in feces and constitutes an important part of cholesterol
urnover, since fecal bile acid loss is compensated for by de novo
ynthesis from cholesterol to maintain the bile acid pool size [11].
nder steady state conditions, fecal bile acid loss equals hepatic de
ovo bile acid synthesis.

We have recently shown that exposing healthy chow-fed mice
o a voluntary running wheel for two weeks enhanced fecal neu-
ral sterol and bile acid excretion with specific changes in biliary,
lasma and intestinal parameters contributing to an increased
holesterol turnover upon running [12]. To our knowledge, no pre-
ious studies have examined the effects of exercise on cholesterol
nd bile acid metabolism in a hypercholesterolemic mouse model.
hus, the purpose of this study was to investigate whether the
ecently observed effects of voluntary running wheel exercise on
hole body cholesterol turnover in healthy chow-fed mice [12]

xtend to the hypercholesterolemic LDLR-deficient mouse model.
e hypothesized that voluntary wheel running beneficially modu-

ates cholesterol and bile acid metabolism in hypercholesterolemic
ice and thereby mediates a reduction in atherosclerotic burden.

. Methods

All experiments were approved by the Animal Care and Use
ommittee of the University of Groningen, The Netherlands. The
niversity of Groningen is accredited by AAALAC (Association for
ssessment and Accreditation of Laboratory Animal Care) Interna-

ional and follows the Public Health Service Policy for the Care and
se of Laboratory Animals. Animal care was provided in accordance
ith the procedures outlined in the Guide for the Care and Use of

aboratory Animals.

.1. Animals and voluntary cage-wheel exercise

Sixteen 5-week-old male LDLR deficient (B6.129S7-
DLRtm1Her/J) mice were purchased from Jackson Laboratories
The Jackson Laboratory, Bar Harbor, ME, USA). Upon arrival, mice
ere singly housed in a cage (47 × 26 × 14.5 cm) in a temperature-

ontrolled room with a 12:12 h light–dark cycle and had access to
tandard commercial pelleted laboratory chow (RMH-B, ABDiets,

oerden, The Netherlands). At 8 weeks of age, mice were switched
o a western-type diet (0.25% cholesterol, 16% fat, Purified Western
iet, 4021.06, ABDiets, Woerden, The Netherlands) and were

andomly selected to either voluntary cage wheel running (RUN,
= 9) or to remain sedentary (CONTROL, n = 7) for 12 weeks.
hroughout the study, mice had ad libitum access to food and
ater. The voluntary running wheel set-up has been described
reviously [12]. Twice a week, mice were weighed and food intake
as recorded. Two mice in the running group were excluded from

ll analyses because they showed no activity on the running wheel.

.2. Experimental procedures

Fecal, plasma, biliary, hepatic and intestinal parameters were
ollected at the endpoint of the experiment after 12 weeks of RUN
r CONTROL, i.e., at 20 weeks of age.

.3. Fecal parameters
Forty-eight hours feces were collected before and at 12 weeks
unning wheel exposure. Feces were dried, weighed and homoge-
ized to a powder. Aliquots of fecal powder were used for analysis
sis 218 (2011) 323–329

of total bile acids by an enzymatic fluorimetric assay [13]. Neutral
sterols and bile acid profiles were determined according to Arca
et al. [13] and Setchell et al. [14], respectively [15].

2.4. Determination of biliary parameters of cholesterol and bile
acid metabolism

After 12 weeks of CONTROL or RUN, all mice underwent
gallbladder cannulation for continuous collection of bile [16].
Briefly, mice were anaesthetized by intraperitoneal injection with
Hypnorm® (1 ml kg−1) and diazepam (10 mg kg−1). During the
30 min bile collection period, mice were placed in a humidified
incubator to ensure maintenance of body temperature. Bile flow
was determined gravimetrically, assuming a density of 1 g ml−1 for
bile. Bile was stored at −20 ◦C until analysis. Total biliary bile acids
were determined by an enzymatic fluorimetric assay [17]. Biliary
cholesterol and phospholipids levels were measured as described
by Kuipers et al. [18].

2.5. Determination of plasma markers of cholesterol metabolism

Immediately after bile collection, blood was drawn via the
orbital sinus. Plasma was collected by centrifugation and stored
at −20 ◦C until analyzed. Plasma total cholesterol, free choles-
terol and triglyceride levels were measured by standard enzymatic
methods using commercially available assay kits (Roche Diag-
nostics, Mannheim, Germany and DiaSys Diagnostic Systems,
Holzheim, Germany). Plasma pro- and anti-inflammatory makers
were analyzed using BDTM Cytometric Bead Array (CBA) Mouse
Inflammation Kit (BD Biosciences, San Diego, CA). Utilizing gaschro-
matography, as described by Windler et al. [19], we analyzed
plasma plant sterols (campesterol and sitosterol) relative to plasma
cholesterol levels as marker of intestinal cholesterol absorption in
pooled plasma samples of each group. Pooled plasma samples from
each group were used for lipoprotein separation by fast protein liq-
uid chromatography (FPLC) in a superose 6 column using an Akta
Purifier (GE Healthcare, Diegem, Belgium)

2.6. Tissue collection

Mice were opened immediately after blood collection. The heart
was slowly perfused with PBS at physiological pressure. Then, the
liver was excised, weighed and snap frozen in liquid nitrogen. The
small intestine was excised, flushed with ice cold PBS (4 ◦C) and
divided into three sections of equal lengths and subsequently snap-
frozen in liquid nitrogen. Lastly, the thoracic aorta was excised
and epididymidal fat pads were removed and weighed. Thoracic
aorta, liver and intestine were stored at −80 ◦C for later analysis.
Hearts were flushed with PBS to remove the excess of blood before
fixation in formaldehyde 1% (Formal-Fixx, Thermo Electron Corpo-
ration, Pittsburgh, PA) for 24 h, cut in an angle eventually revealing
the aortic sinus and stored at −80 ◦C embedded in OCT (Tissue-Tek
O.C.T., Sakura, Zoeterwoude, The Netherlands).

2.7. Determination of atherosclerotic lesion size and aortic
cholesterol content

Frozen sections from the aortic sinus were prepared according
to Paigen et al. [20]. Surface lesion area was measured after Oil Red
O staining by computer-assisted image quantification with Leica
QWin software (Leica Microsystems, Wetzlar, Germany). Images
were captured with a Leica DFC 420 video camera. At least 5 sec-

tions per mouse were examined for each staining. Due to technical
difficulties, we were able to analyze atherosclerotic lesion size in 4
of 7 running mice and 4 of 7 sedentary mice. Aortic cholesterol con-
tent was utilized as an alternative method to assess atherosclerotic
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Table 1
Biometrical data.

CONTROL RUN

Body weight (g) 29.6 ± 2.3 25.9 ± 1.0*

Liver weight (g) 1.35 ± 0.14 1.23 ± 0.05
Liver weight/body weight (%) 4.6 ± 0.7 4.7 ± 0.2
Small intestine length (cm) 33.3 ± 1.8 31.5 ± 1.8
Epididymidal white adipose weight (g) 0.85 ± 0.25 0.23 ± 0.13*

Food Intake (g/day) 3.4 ± 0.4 4.0 ± 0.1*

Values represent mean ± SD at 12 weeks of running in CONTROL (n = 7) and RUN
(
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Table 2
Plasma and liver lipids.

CONTROL RUN

Plasma lipids (mmol L−1)
Total cholesterol 27.7 ± 1.5 23.6 ± 2.5*

Free cholesterol 8.80 ± 1.4 7.65 ± 0.7
Cholesterol esters 18.9 ± 0.9 15.9 ± 1.8*

Triglyce rides 8.52 ± 1.54 6.59 ± 0.8*

Liver lipids (nmol mg−1 liver)
Triglycerides 78 ± 2 41 ± 10*

Total cholesterol 16.3 ± 2.0 13.1 ± 1.3*

Free cholesterol 5.5 ± 0.9 4.7 ± 0.3
Cholesterol esters 10.9 ± 1.7 8.4 ± 1.1
Phospholipids 26.7 ± 2.9 23.8 ± 4.5

Values represent mean ± SD at 12 weeks of running in CONTROL (n = 7) and RUN
(n = 7).

* p < 0.05 vs. CONTROL.
n = 7).
* p < 0.05 vs. CONTROL.

esion burden [21,22] in all mice (n = 7/group) and measured follow-
ng the same procedure as for hepatic cholesterol. Percent smooth

uscles cells in lesions were determined using anti-alpha smooth
uscle actin antibody (1A4, Abcam) as primary antibody (diluted

:100 in TBS–1% BSA–0.01% Tween-20) and goat anti-mouse IgG
�-HRP (SouthernBiotech, Birmingham, USA) and Sirius red was
sed to stain collagen fibers in lesions.

.8. Determination of hepatic lipids

Hepatic lipids were determined after extraction according to
ligh and Dyer [23] and redisolving in Triton–2% H2O using the
ame kits as for plasma lipids.

.9. RNA isolation and PCR procedures

Total RNA was isolated from liver and intestine using TRI-
eagent (Sigma, St. Louis, MO) according to the manufacturers’
rotocol. cDNA was produced as described by Plosch et al.[16]. Real-
ime PCR was performed on a 7900HT FAST real-time PCR system
sing FAST PCR master mix and MicroAmp FAST optical 96 well
eaction plates (Applied Biosystems Europe, Nieuwekerk ad IJssel,
he Netherlands). Primer and probe sequences have been published
efore (www.labpediatricsrug.nl). PCR results were normalized to
-actin.

.10. Statistics

Statistical analysis was performed using the Mann–Whitney U
est (SPSS 12.0.1 for Windows). The Wilcoxon-signed-rank test was
sed to analyze differences in running wheel activity between the
eginning and end of the intervention. All data are expressed as
eans ± SD. P-values of <0.05 were considered statistically signif-

cant

. Experimental results

.1. Running wheel activity and morphometric parameters

Mice exposed to a voluntary running wheel progressively ran
ess during the 12 week running wheel intervention. While a
aily average running distance of ∼10 km and average running
uration of ∼6.5 h was observed at the start of the experiment,

t dropped to ∼5.5 km/day and ∼4.0 h at the end of the experi-
ent (Supplemental Fig. 1). Despite a 17% increase in food intake

ompared to control mice, running mice displayed a ∼13% lower
odyweight and ∼73% lower epididymidal white adipose tissue

eight at 12 weeks of running (Table 1). Liver weight, body
eight/liver weight ratio and small intestinal length were not dif-

erent between running and control mice (Table 1).
3.2. Effect of voluntary wheel running on atherosclerotic lesion
size and inflammatory markers

First, we investigated whether 12 weeks of voluntary wheel run-
ning beneficially affected lesion size area in atherosclerosis-prone
LDLR-deficient mice. Indeed, quantification of atherosclerotic
lesions in the aortic sinus showed a significant reduction in run-
ning mice (Fig. 1A–C). In addition, also aortic cholesterol content
as an alternative approach to quantify aortic atherosclerosis was
decreased by 33% in running mice compared to CONTROL (Fig. 1D).
Because inflammation plays an important role in the pathogenesis
of atherosclerosis, we also assessed the effect of running on plasma
levels of inflammatory markers. Interestingly, voluntary wheel run-
ning had no effect on plasma levels of inflammatory markers at 12
weeks of running (Supplemental Fig. 2).

3.3. Voluntary wheel running beneficially affects plasma
lipoprotein profile

Elevated lipid levels are key factors in the development of
atherosclerosis. Running mice displayed a small but significant
reduction in plasma levels of total cholesterol, esterified cholesterol
and triglycerides (Table 2). Importantly, we found improved plasma
lipoprotein profiles with reduced levels of VLDL- and LDL-sized
lipoproteins in running compared to control mice (Supplemental
Fig. 3A and B). Paralleling these running-induced improvements
in lipoprotein profiles, we not only found a reduction in hepatic
expression of microsomal triglyceride transfer protein, indicative
of a decreased hepatic production of VLDL, but also observed an
increased hepatic lipoprotein lipase expression (Table 3), indica-
tive of an increased lipoprotein clearance. More beneficial effects
of running were observed on hepatic lipid storage. First, control
mice displayed substantial hepatic triglyceride stores, which were
reduced by almost half in running mice (Table 2). Second, running
resulted in a significantly lower hepatic storage of cholesterol, par-
alleled by a running-induced decrease in Hmgcr, the rate-limiting
enzyme in cholesterol biosynthesis. Hepatic contents of choles-
terol esters tended to be reduced in running mice with a lower
expression of Acat2, an enzyme required for cholesterol esterifi-
cation (Table 3). Moreover, the beneficial changes in hepatic lipid
content were paralleled by decreased expression levels of key
lipogenic genes Fasn and Scd1 (Table 3). Collectively, these data
show that running provokes favorable changes in plasma and liver

lipid metabolism.

http://www.labpediatricsrug.nl/
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ig. 1. Voluntary wheel running reduces atherosclerotic lesion formation. Represe
UN (B); (C) quantification of lesion size in aortic sinus of CONTROL (n = 4) and RUN
eeks of running. *p < 0.05 vs. CONTROL.

.4. Voluntary wheel running increased fecal sterol output

Next, we assessed whether the running-induced beneficial
hanges in plasma and liver lipid metabolism were accompanied by
hanges in cholesterol and bile acid metabolism. First, we assessed
ecal parameters of cholesterol and bile acid metabolism and feces
ere collected quantitatively from all mice during the last 48 h of
he experiment. Hypercholesterolemic running mice had signifi-
antly increased feces production (+19%, data not shown) as well
s fecal neutral sterol (+33%) and fecal bile acid output rates (+93%)
ompared to sedentary controls (Table 4). No major differences

able 3
epatic genes involved in lipid metabolism.

CONTROL RUN p-value

Cholesterol metabolism
Clearance

Lpl 1.0 ± 0.2 1.6 ± 0.1* 0.006

Production
Mttp 1.0 ± 0.3 0.7 ± 0.2* 0.029
Hmgcr 1.0 ± 0.3 0.6 ± 0.1* 0.020
Acat2 1.0 ± 0.2 0.7 ± 0.1* 0.024

Efflux
Abca1 1.0 ± 0.3 1.1 ± 0.3 0.061
Abcg5 1.0 ± 0.2 0.9 ± 0.2 0.426
Abcg8 1.0 ± 0.1 1.0 ± 0.1 0.420

Fat metabolism
Fasn 1.0 ± 0.2 0.7 ± 0.1* 0.048
Scd1 1.0 ± 0.3 0.6 ± 0.1* 0.029

epatic mRNA expression levels of lipoprotein lipase (Lpl), microsomal triglyc-
ride transfer protein (Mttp), 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr),
cetyltransferase 2 (Acat2), ATP-binding cassette transporter 1 (Abca1), ATP-binding
assette transporter g5 (Abcg5), ATP-binding cassette transporter 8 (Abcg8), fatty
cid synthase (Fasn), stearoyl-CoA desaturase-1 (Scd1), Values are relative to �-actin
nd represent mean ± SD in CONTROL (n = 7) and RUN (n = 7).

* p < 0.05 vs. CONTROL.
e morphological section of aortic root stained with Oil Red Oil of CONTROL (A) and
) and (D). Total aortic cholesterol content in CONTROL (n = 7) and RUN (n = 7) at 12

in fecal bile acid composition (Supplemental Table 1) and any of
these parameters were observed before the running wheel inter-
vention (data not shown). Next, we investigated whether voluntary
wheel running increased fecal neutral sterol output by modulat-
ing cholesterol absorption. Running had no effect on the plasma
plant sterol/cholesterol ratio (Supplemental Fig. 4A), a marker of
cholesterol absorption. No effect of voluntary wheel running was
found on jejunal Npc1l1 mRNA expression (Supplemental Fig. 4B),
while, intriguingly, the expression of the ATP-cassette binding
transporters g5 and g8 (Supplemental Fig. 4C and D), which are
known to promote efflux of cholesterol and plant sterols from the
enterocyte back into the intestinal lumen for elimination into feces,
was increased.

3.5. Voluntary wheel running increases bile flow and biliary bile
acid secretion
To evaluate whether physical activity modulates biliary
parameters under hypercholesterolemia, mice were subjected to
gallbladder canulations for collection of hepatic bile at 12 weeks
of running. Indeed, running mice had a 24% increased bile flow

Table 4
Fecal and biliary parameters.

CONTROL RUN

Fecal outputs (�mol/24 h/100 g BW)
Neutral sterols 47.8 ± 5.7 64.0 ± 4.1*

Bile acids 5.3 ± 1.6 10.2 ± 3.1*

Biliary secretions (�mol/24 h/100 g BW)
Cholesterol 0.9 ± 0.3 1.6 ± 0.9
Bile acids 249 ± 49 417 ± 134*

Phospholipids 26 ± 3 25 ± 4
Bile flow (ml/24 h/100 g BW) 6.1 ± 1.1 7.6 ± 1.1*

Values represent mean ± SD at 12 weeks of running for CONTROL (n = 7) and RUN
(n = 7).

* p < 0.05 vs. CONTROL.
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p = 0.011), a 67.5% increase in biliary bile acid secretion and a trend
owards increased biliary cholesterol secretion (p = 0.179), while
o differences in the rate of biliary phospholipid secretion was

ound (Table 4). Compared to sedentary mice, running mice dis-
layed an increase biliary secretion of cholate-derived bile acids
nd tended to decrease in chenodeoxycholate-derived bile acids
Supplemental Table 1). Moreover, no differences in the expres-
ion levels of important genes involved in cholesterol efflux from
he hepatocyte towards the plasma (Table 3) were observed. Our
ata suggest that voluntary wheel running increases cholesterol
urnover to promote its fecal excretion as cholesterol and bile acids,
ndicating increased cholesterol excretion out of the body in the
bsence of changes in endogenous cholesterol synthesis.

. Discussion

In the present study, we tested the hypothesis that voluntary
heel running ameliorates atherosclerosis possibly by modulating

holesterol metabolism. By using hypercholesterolemic LDLR-
eficient mice on a western-type diet, we were able to show for the
rst time that voluntary wheel running provokes specific changes

n cholesterol metabolism, particularly by promoting its conversion
nto bile acids likely contributing to reduced plasma lipid levels, and
hat these alterations coincide with a reduction in atherosclerosis.

First, we show running-induced increases in fecal neutral sterol
nd bile acid excretion. The fecal bile acid loss in running mice is
assive and reflective of an increased de novo bile acid synthesis.

econd, we found that the increased fecal bile acid loss was par-
lleled by specific changes in biliary parameters consistent with
n increased cholesterol turnover. Specifically, running mice had
higher bile flow, an increased biliary bile acid secretion and a

rend towards an increased biliary cholesterol secretion. Third, hep-
tic cholesterol content was reduced in running mice, indicating
holesterol turnover over storage.

To the best of our knowledge, this is the first study link-
ng the effects of voluntary exercise on sterol metabolism with
therosclerotic lesion development. While we show here a 33%
eduction in atherosclerotic lesion size upon voluntary wheel run-
ing, previous studies in LDLR-deficient mice undergoing forced
xercise, like treadmill running or swimming, reported a reduc-
ion by ∼40% [4,24]. Additionally, reductions of atherosclerotic
esion size of ∼54–30% have been observed in another hypercholes-
erolemic mouse model, the ApoE-deficient mouse, when forced
o swim for different durations [5,7,25]. Moreover, using a dif-
erent atherosclerotic mouse model and a different study design
o focus on atherosclerosis regression even a reduction in pro-
nflammatory markers was reported [1], however, no literature is
vailable describing the effects of exercise (forced or voluntary)
n plasma pro-inflammatory markers in atherosclerosis develop-
ent in mice. We show here that voluntary wheel running reduced

therosclerosis with no concomitant improvements in inflamma-
ory markers. However, due to the study design we were not able
o measure inflammatory markers at earlier time points. Further, in
ontrast to another study exposing ApoE-deficient mice to a long-
ime swim training [26] no differences in parameters of plaque
tability were observed in our study at 12 weeks of voluntary run-
ing (percentage of collagen content in lesions was 21.4 ± 8.2% for
ONTROL and 24.2 ± 8.8% for RUN; percentage of smooth mus-
le cells content in lesions was 21.8 ± 9.2% for CONTROL and 26.
± 4.1% for RUN (mean ± SD)). Differences in the respective study
esign (duration of the exercise intervention) and exercise proto-

ols (voluntary vs. forced) likely account for these discrepancies.

The mechanisms behind the beneficial effects of exercise on
therosclerosis are not yet understood. Being a major physiological
rocess for the body to clear excess cholesterol, the fecal excretion
sis 218 (2011) 323–329 327

of cholesterol as neutral sterol or bile acid plays a critical role in the
maintenance of whole-body cholesterol homeostasis. Increasing
cholesterol excretion into feces as neutral sterol or bile acid is long
known as an efficient strategy in the amelioration of atheroscle-
rosis, as it improves the pro-atherogenic state by reducing lipid
content in plasma [8,9]. Furthermore, it has been demonstrated
that patients with coronary artery disease have a reduced fecal
excretion of bile acids [27]. Strikingly, studies describing the effects
of physical activity on the enterohepatic metabolism of sterols in
hypercholesterolemic mice and men are thus far lacking. However,
the fecal bile acid loss upon running observed in our study par-
allels earlier work in healthy humans. One initial study [28], not
specifically designed to elucidate the effects of exercise on sterol
metabolism did not find an effect of exercise on fecal sterol excre-
tion. But subsequent studies specifically designed to investigate the
impact of exercise on fecal sterol excretion in humans indicated
that exercise increased feces production and fecal sterol output
[29,30], consistent with the mouse data of our present study.

Our observations of running-induced increases in fecal neutral
sterol and bile acid outputs also confirm our earlier results in chow-
fed mice running for 2 weeks [12]. It is, however, noteworthy that
the effects are more striking in hypercholesterolemic mice run-
ning for 12 weeks. For example, while we found a ∼30% increase
in both fecal neutral sterol and bile acid outputs in chow-fed mice
upon 2 weeks running, we report here a similar increase in fecal
neutral sterol loss in 12 week running hypercholesterolemic mice
(∼33%) yet because the diet already contained 0.25% the amount of
extra cholesterol excreted by running is massive. In addition there
was a strong increase in fecal bile acid secretion (∼93%) compared
to 30% in control mice. This increase in fecal bile acid excretion
in running mice is remarkable and reflects an increase in de novo
bile acid synthesis. Intriguingly, we observed a negative correlation
between atherosclerotic lesion size and fecal neutral sterol output
(r = −0.602; p = 0.024) and a strong negative correlation between
atherosclerotic lesion size and fecal bile acid output (r = −0.88;
p = 0.007), indicating that there is a crosstalk between the reduction
in atherosclerosis and the increase in cholesterol turnover.

Consistent with our previous study [12] in chow-fed mice, we
did not observe changes in any of the major genes involved in bile
acid synthesis in running mice (data not shown). Thus, within this
and our previous study, the increase in bile acid synthesis upon
voluntary wheel running as demonstrated by fecal bile acid loss
did not result in an upregulation of key genes involved in bile acid
synthesis, such as Cyp7a1 and Cyp8b1 indicating that regulation
via the nuclear receptor FXR and its downstream target FGF15 is
not operational here. Increases in de novo bile acid synthesis with-
out concomitant increases in any of the major bile acid genes have
also been reported by others [31,32] and are most likely induced
by posttranscriptional mechanisms. It is speculative, therefore, that
physical activity enhances bile acid synthesis by metabolic mecha-
nisms. For example, physical activity increased dietary fatty acid
absorption (data not shown). During physical activity, energy is
depleted in energy expending tissues, such as skeletal muscle.
Thus, a high demand to recover this expended energy manifests
in these tissues. In this regard, physical activity might, hypotheti-
cally, increase bile acid synthesis to increase the capacity for micelle
formation, thereby fatty acid absorption and thus energy delivery
to energy expending tissues.

Paralleling our observations of fecal bile acid excretion, run-
ning appears to induce more drastic effects on biliary parameters in
hypercholesterolemic mice than in chow-fed healthy mice. Com-
pared to control mice, the increase in biliary bile acid secretion

was ∼20% in healthy chow-fed mice running for 2 weeks [12].
Furthermore, we report here an increase in bile flow, which was
not observed in running chow-fed mice, but has been previously
reported in exercising rats [33].
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Next, it is intriguing that the livers of running mice display ∼20%
ess cholesterol stores and ∼45% less triglyceride stores than con-
rol mice do. Control LDLR-deficient mice on a western-type diet
isplay hepatic triglyceride and cholesterol contents more than
.5 times that of chow-fed wildtype mice [12]. Yet, despite their

ncreased food intake, running mice had significantly reduced hep-
tic cholesterol and triglyceride stores demonstrating an enhanced
urnover rather than their storage. No data are available describing
he effects of exercise, either forced or voluntary, on hepatic lipids
n hypercholesterolemic mouse models. Yet, limited data show that
igh fat and low fat-fed wildtype mice displayed reduced hepatic
riglycerides levels after treadmill exercise training [34] and that
wim training reduced hepatic fatty acid synthesis in C57BL/6J mice
35]. Moreover, we previously found reduced hepatic triglyceride
ontent and a trend towards reduced hepatic cholesterol content in
how-fed mice running for 2 weeks [12]. Collectively these observa-
ions demonstrate favorable effects of physical activity on hepatic
ipid storage.

We have previously reported indications for impaired choles-
erol absorption in chow-fed C57BL/6J mice exposed to a voluntary
unning wheel as the jejunal expression levels of a crucial pro-
ein in cholesterol absorption, Npc1l1, and the plasma plant
terol/cholesterol ratio were decreased in running mice [12]. In
ontrast, we did not observe an effect on jejunal Npc1l1 expression
or on the plasma plant sterol/cholesterol ratio here. In contrast, we
how a running-induced increased expression of jejunal Abcg5/8
he heterodimer cholesterol efflux transporter implicated in the
xcretion of cholesterol from the intestine [36]. Thus, running
ppears to differentially affect parameters of cholesterol absorp-
ion under low dietary cholesterol, normo-cholesterolemic versus
igh dietary cholesterol, hypercholesterolemic conditions. It is also
ossible that the previously observed running-induced decreases

n expression of Npc1l1 upon 2 weeks of running might underlie
ransient adaptations in the intestine, which could be modulated
urther during longer periods of running.

Noteworthy is that we also found improvements in plasma
holesterol levels and plasma lipoprotein profile and thereby
educed atherosclerotic lesion formation in running mice. Similar
mall improvements in plasma cholesterol levels have previ-
usly been reported in swimming [4] and treadmill-running
24] LDLR-deficient mice and may underlie at least part of the
ntiatherosclerotic effect.

Intriguing is the running-induced improvements in plasma
ipoprotein profiles, showing a marked reduction in the apoB-
ontaining lipoprotein particles VLDL and IDL/LDL. Decreased LDL
nd VLDL levels have been reported for physically active men
37], however, no such descriptions are available in hypercholes-
erolemic mice. Furthermore, the improved plasma lipoprotein
rofiles parallel the running-induced increase in hepatic lipopro-
ein lipase expression levels and the running-induced decrease
n hepatic microsomal transfer protein, suggesting an increased
ipoprotein clearance and decreased production, respectively.
owever, what exactly the role of running in lipoprotein clear-
nce and reduced production is and how this relates to the human
ituation remains to be explored in future studies.

An interesting observation of this study was the progressive
rop in running wheel activity during the experimental period
hich does not occur in wildtype mice at 20 weeks of age [38].
owever, a progressive drop in running wheel activity during the

ast 4 weeks of an 8 week intervention has previously also been
bserved in ApoE-deficient mice that started running at 20 weeks
f age [1] but has not been published thus far in the model used in

he current study, the LDLR-deficient mouse.

Altogether, the present study shows that voluntary wheel run-
ing is a feasible means to decrease atherosclerotic burden in
ypercholesterolemic mice and that an enhanced turnover of

[

[

sis 218 (2011) 323–329

cholesterol into bile acids might be the underlying mechanism
herein.
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