CONCLUSIONS: Patients in plans with no cost-sharing have greater adherence and are less likely to discontinue treatment in the 12-month period following DMT initiation compared to patients that have no cost-sharing with similar DMT adherence. The risk of being on IFNB-1b was 10% higher for MS patients relative to IFNB-1a in both the short- and long-term analyses. IFNB-1a shows advantages of IFNB-1b in long-term analysis.}

OBJECTIVES: Several disease-modifying therapies (DMTs) including IFNB-1b have been approved for patients with multiple sclerosis (MS) to delay disease progression and reduce relapse rate and disability progression. Fingolimod, the first oral formulation of DMT, was recently approved in several nations around the world including Germany. This study aims to conduct a cost-minimization analysis to estimate the cost impact of MS treatment with fingolimod versus IFNB-1b in Germany from the societal perspective. METHODS: A Markov model was developed to follow the natural history MS patients from time of diagnosis through disease progression and up to 20 years. MS patients receive either IFNB-1b or fingolimod treatment but share the same efficacy on disease progression and relapse rate due to the absence of head-to-head comparison data. Fingolimod patients are assumed to have 10% higher treatment adherence as a result of the oral formulation. In the model, DMT’s costs (IFNB-1b: €19,444/year and fingolimod: €30,584/year) are based on AWP pharmacy retail price, while other cost items are estimated from published literatures or local databases. Main model outcomes include direct costs, indirect costs, and total cost per patient and year are calculated and inflated to 2010 Euros. RESULTS: In the short-term analysis, fingolimod costs additional €8,929 per patient in one year and €29,550 per patient in 5 years compared to IFNB-1b. Long-term analysis (20 years) shows that cost savings associated with IFNB-1b is €41,593 per patient, which mainly occurs when MS patients are still receiving treatment. The cost advantages of IFNB-1b in the long-term analysis are attributed to its lower drug cost ($50,342 vs. $92,873), serious adverse events management ($6.7 vs. $102.4), and clinical monitoring ($8.8 vs. $438.2). CONCLUSIONS: Compared to fingolimod, MS treatment with IFNB-1b leads to substantial cost savings from both societal and payer perspectives in Germany, with similar treatment effectiveness.

WHAT ARE THE KEY DRIVERS FOR CHANGING HTA DECISIONS? EXAMPLE OF ALZHEIMER’S DISEASE TREATMENT IN GERMANY, FRANCE AND UK

ACKERMANN 1, Touni M 2

1University of Lyon, Lyon, France
2University Claude Bernard Lyon 1, Lyon, France

OBJECTIVES: Since launch, HTA agencies from Germany, France and UK have repeatedly reviewed the use of Alzheimer’s disease (AD) treatments and issued recommendations, which have changed over time. The aim of this study was to understand the drivers of agency decisions and whether these too have changed over time.

METHODS: We reviewed HTA appraisals by IQWIG, HAS and NICE for three AD treatments changed, decision drivers were consistent across evaluations.

THE FSS presents nine items on a 7-point scale ranging from 1 (totally disagree) to 7 (completely agree), where higher scores indicate higher level of fatigue. The process of cross-cultural adaptation included: two independent translations for Portuguese spoken in Brazil; the development of a consensus translated version; application in a pilot group (n=14) of patients with myopathy; evaluation by an expert committee; for content validation, a back-translation by one bilingual translator whose native tongue was English, but who was fluent in Brazilian Portuguese. The two English versions (original and back translated) were analyzed by two of the authors who were fluent in English and one who was native Brazilian葡萄牙语. This study aims to conduct a cost-minimization analysis to estimate the cost impact of MS treatment with fingolimod versus IFNB-1b in Germany from the societal perspective. METHODS: A Markov model was developed to follow the natural history MS patients from time of diagnosis through disease progression and up to 20 years. MS patients receive either IFNB-1b or fingolimod treatment but share the same efficacy on disease progression and relapse rate due to the absence of head-to-head comparison data. Fingolimod patients are assumed to have 10% higher treatment adherence as a result of the oral formulation. In the model, DMT’s costs (IFNB-1b: €19,444/year and fingolimod: €30,584/year) are based on AWP pharmacy retail price, while other cost items are estimated from published literatures or local databases. Main model outcomes include direct costs, indirect costs, and total cost per patient and year are calculated and inflated to 2010 Euros. RESULTS: In the short-term analysis, fingolimod costs additional €8,929 per patient in one year and €29,550 per patient in 5 years compared to IFNB-1b. Long-term analysis (20 years) shows that cost savings associated with IFNB-1b is €41,593 per patient, which mainly occurs when MS patients are still receiving treatment. The cost advantages of IFNB-1b in the long-term analysis are attributed to its lower drug cost ($50,342 vs. $92,873), serious adverse events management ($6.7 vs. $102.4), and clinical monitoring ($8.8 vs. $438.2). CONCLUSIONS: Compared to fingolimod, MS treatment with IFNB-1b leads to substantial cost savings from both societal and payer perspectives in Germany, with similar treatment effectiveness.

WHAT ARE THE KEY DRIVERS FOR CHANGING HTA DECISIONS? EXAMPLE OF ALZHEIMER’S DISEASE TREATMENT IN GERMANY, FRANCE AND UK

ACKERMANN 1, Touni M 2

1University of Lyon, Lyon, France
2University Claude Bernard Lyon 1, Lyon, France

OBJECTIVES: Since launch, HTA agencies from Germany, France and UK have repeatedly reviewed the use of Alzheimer’s disease (AD) treatments and issued recommendations, which have changed over time. The aim of this study was to understand the drivers of agency decisions and whether these too have changed over time.

METHODS: We reviewed HTA appraisals by IQWIG, HAS and NICE for three AD treatments changed, decision drivers were consistent across evaluations.

THE FSS presents nine items on a 7-point scale ranging from 1 (totally disagree) to 7 (completely agree), where higher scores indicate higher level of fatigue. The process of cross-cultural adaptation included: two independent translations for Portuguese spoken in Brazil; the development of a consensus translated version; application in a pilot group (n=14) of patients with myopathy; evaluation by an expert committee; for content validation, a back-translation by one bilingual translator whose native tongue was English, but who was fluent in Brazilian Portuguese. The two English versions (original and back translated) were analyzed by two of the authors who were fluent in English and one who was native Brazilian葡萄牙语. This study aims to conduct a cost-minimization analysis to estimate the cost impact of MS treatment with fingolimod versus IFNB-1b in Germany from the societal perspective. METHODS: A Markov model was developed to follow the natural history MS patients from time of diagnosis through disease progression and up to 20 years. MS patients receive either IFNB-1b or fingolimod treatment but share the same efficacy on disease progression and relapse rate due to the absence of head-to-head comparison data. Fingolimod patients are assumed to have 10% higher treatment adherence as a result of the oral formulation. In the model, DMT’s costs (IFNB-1b: €19,444/year and fingolimod: €30,584/year) are based on AWP pharmacy retail price, while other cost items are estimated from published literatures or local databases. Main model outcomes include direct costs, indirect costs, and total cost per patient and year are calculated and inflated to 2010 Euros. RESULTS: In the short-term analysis, fingolimod costs additional €8,929 per patient in one year and €29,550 per patient in 5 years compared to IFNB-1b. Long-term analysis (20 years) shows that cost savings associated with IFNB-1b is €41,593 per patient, which mainly occurs when MS patients are still receiving treatment. The cost advantages of IFNB-1b in the long-term analysis are attributed to its lower drug cost ($50,342 vs. $92,873), serious adverse events management ($6.7 vs. $102.4), and clinical monitoring ($8.8 vs. $438.2). CONCLUSIONS: Compared to fingolimod, MS treatment with IFNB-1b leads to substantial cost savings from both societal and payer perspectives in Germany, with similar treatment effectiveness.