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Abstract

Let Fy, be the free group of a finite rank We study orbits Orl(u), whereu is an element of
the groupF;, under the action of an automorphigm If an orbit like that is finite, we determine
precisely what its cardinality can beufruns through the whole grouf,, and¢ runs through the
whole group AutF;,).

Another problem that we address here is related to Whitehead'’s algorithm that determines whether
or not a given element of a free group of finite rank is an automorphic image of another given element.
Itis known that the first part of this algorithm (reducing a given free word to a free word of minimum
possible length by elementary Whitehead automorphisms) is fast (of quadratic time with respect to
the length of the word). On the other hand, the second part of the algorithm (applied to two words of
the same minimum length) was always considered very slow. We give here an improved algorithm
for the second part, and we believe this algorithm always terminates in polynomial time with respect
to the length of the words. We prove that this is indeed the case if the free group has rank 2.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let F,, be the free group of a finite rank> 2 with a setX = {x;}, 1 <i < n, of free
generators. Denote by Q) the orbit of an element of the free groupF, under the
action of an automorphisg. That is, Orly(u) = {v € F,, v = ¢" (u) for somem € Z }.

One of the problems that we address here is: how many elementdicite arbit like
that possibly have ifi runs through the whole group,, and¢ runs through the whole
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group AutF,)? The answer is provided by the following theorem, in combination with
a result of McCool [9] (see also [4]):

Theorem 1.1. Inthe free group F,, thereisan orbit Orby (1) of cardinality & if and only if
thereis an element of order k in the group Aut(F;,).

Thus, the question above is reduced to another question, of finding out what possible
order can a torsion element of the group &gt have. The latter was answered by
McCool [9]; more general results were obtained later by Khramtsov [4]. We cite the
relevant result in Section 2, after the proof of Theorem 1.1.

It should be pointed out that the “only if” part of our Theorem 1.1 is no longer valid
if ¢ is an arbitrary endomorphism. The following example is based on the idea suggested
by C. Sims.

Example. In the free groupFs, let ¢ be the endomorphism that takesto xz_lx:g; x2 to
x1; x3to 1. Letu = x1xpx3; then the cardinality of Ogfu) is 5, but there is no element
of order 5 in the group Auf3s).

Another problem that we consider here is the following.

Letu be an element of the free groufy, whose lengthu| cannot be decreased by any
automorphism of;,. Let A(u) denote the set of elementse F,;; |v| = |u|, f(v) = u for
somejf € Aut(F,)}. How fast does the cardinality af(x) grow as a function ofu|?

The setA(u) is therefore an “abridged” orbit Ogy(r,) (1), that includes only those
automorphic images of that have the same lengthasloes.

The problem above was motivated by complexity issues for Whitehead’s algorithm that
determines whether or not a given element of a free group of finite rank is an automorphic
image of another given element. It is known that the first part of this algorithm (reducing
a given free word to a free word of minimal possible length by “elementary” Whitehead
automorphisms) is pretty fast (of quadratic time with respect to the length of the word).
On the other hand, the second part of the algorithm (applied to two words of the same
minimum length) was always considered very slow. In fact, the procedure outlined in
the original paper by Whitehead (see, e.g., [7]) suggested this part of the algorithm to
be of superexponential time with respect to the length of the words. However, a standard
trick in graph theory shows that there is an algorithm of at most exponential time (see
Proposition 3.1 in Section 3). Moreover, in the case where the free group has rank 2, we
were able to prove

Theorem 1.2. Let u € F» beaword whose length isirreducible by any automorphismof F>
(in particular, u is cyclically reduced). Then the number of automorphic images of « that
have the same length as u does, is bounded by a polynomial function of |u]|.

In fact, experimental data suggest that the number in the statement of Theorem 1.2 has
the (exact!) bound of/82 — 40m for m > 9, wherem = |u|, but we were unable to prove
that.

Theorem 1.2 has the following
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Corollary 1.3. Inthe group F», Whitehead' salgorithmterminatesin polynomial time with
respect to the maximum length of the two words in question.

We do not know whether or not Theorem 1.2 and, therefore, Corollary 1.3 hold for free
groups of bigger ranks. However, experimental data kindly provided by C. Sims, allowed
us to make the following

Conjecture. In the free group F,,, the cardinality of A(u) is bounded by a polynomial of
degree 2n — 2 in |u|, provided the length of « isirreducible by any automorphismof F,,.

A most amazing thing is that, according to the experimental data mentioned above, the
maximum cardinality of A(u) that can actually occur under the irreducibility assumption
in the Conjecture, appears to Ipeecisely a polynomial of degree2— 2 in m = |u|
for sufficiently largem. For n = 2, this polynomial, as we have already mentioned, is
8m2 — 40m if m > 9. Forn = 3, the polynomial is 4@* — 480n° 4+ 1104n2 — 672m
if m > 11. A particular element € F3 of lengthm whose orbitA (#) has the cardinality
given by the latter polynomial, is, according to the same experimental data,
x]{xlexglxlxzzx?z,, wherek =m — 8.

We also note that, in the case where the free group has rank 2 (but not in the general
case), the condition ojx| to be irreducible by any automorphism can be relaxed juost
being cyclically reduced. If, however, we drop this latter condition, the situation changes,
and the number of automorphic images might become exponential:

Proposition 1.4. The number of primitive elements of length m in the group F> (and
therefore, inany group F,, n > 2)is:

(a) Morethan 3%@ (/3" if m isodd.

(b) Morethan (4/3) - (+/3)" if m iseven.

(c) The number of cyclically reducedprimitive elements of length m > 1 in the group
F> is4m - @ (m), where @ (m) is the Euler function of m, i.e., the number of positive
integers < m relatively primeto m. (Clearly, @ (m) <m.)

Informally speaking, “most” primitive elements i, are conjugates of primitive
elements of smaller length. This is not the caséjjnfor n > 2, where “most” primitive
elements are of the form- xiﬂ« v whereu, v are arbitrary elements that do not depend
onux;.

Proof of Proposition 1.4 is given in Section 4.

2. Finiteorbits

We start with

Proof of Theorem 1.1. (1) The “only if” part is a combination of an observation due to
G. Levitt (see [5]) with a result of Bestvina and Handel [2]. Here is the argument. Suppose
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that for some automorphism of the groupF,, one hasp*(g) = g and¢?(g) # g for
O<gq <k.

Consider the action o on the subgrougd = Fix(¢*) of all elements fixed by*.
(This subgroup is clearly invariant undgisinceg* (¢(h)) = ¢(¢* (h)) = ¢(h).) Theng is
an automorphism of{. Indeed,p is obviously surjective orH since for anyh € H, we
haveh = ¢(¢*~1(h)). If ¢ were not injective orH , then we would have (k) = 1 for some
h € H, in which casé: could not be fixed by*.

Finally, ¢ clearly has ordek as an element of the automorphism group (&L. Since
H has rank at most by [2], this yields the “only if” part of the theorem.

(2) To prove the “if” part we need the following definition. A group satisfies the
big powers condition if for any tuple of elementsy, ..., u, from G with [u;, u;+1] #1
(i=1,...,n—1), there is an integeK such that for any intege®1, ..., M, > K, the
following inequality holds

My M,
uy.ooup "t F L

It is known that every free group satisfies the big powers condition [1]. Now comes

Lemma 2.1. Let ¢ be a nonidentical automorphism of F,. Then there exists an integer
K > 1suchthat for any My, ..., M, > K thefollowing inequality holds

M M, M M
oy txy ) F gt x

Proof. Suppose, by way of contradiction, that for any integer 0, there are integers
M1(K), ..., M,(K) > K such that

Mi(K) M, (K M1(K) M, (K
¢ (xy M) L x By = ) M (KD,
It follows that
— —My(K
¢ )M () Mn O oM (K)o oMK g (1)

for all positive integersk. As we have mentioned above, the free gragp satisfies

the big powers condition, therefore there are two commuting consecutive factors in (1).
Sinceg is an automorphism, the only consecutive factors which can possibly commute are
¢ ()M K andx M) 1t follows thate (x,) = x, and (1) takes the form

)MV (xyg) Mo Mt I g,

Upon repeating the argument above, we @ét;) = x; foralli =1,...,n, i.e.,, ¢ is
identical. This contradiction proves the lemmaz

We now continue with our proof of the “if” part. Given> 1 and an automorphisgmof
orderk of the groupF,, we are going to find an elememte F,, so that the orbit Orf(u)
has cardinality.
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If ¢ is a permutation on the sétlﬂ, ..., xf1}, then any element of the form =
xi”l ceee x,’,” M; # 0, would do. If not, then there is at least one free generatorxsay,

such thatp(x1) has length at least 2. Lat= xi”l <o xMn Then, by Lemma 2.1, for
some choice ok > 1, foranyMy, ..., M,, > K we havep(u) # u.

Similarly, for any m, 1 < m < k, we can construct an element, such that
O™ (um) # uy. EVeryu,,, m > 2, is chosen to be of the form,, = xi”l"" cee x,/,w’”
with min; M; ,, > max M, ,,—1, ande™ (un,) # u, (the latter is possible by Lemma 2.1).

Obviously, with this choice of\f; ; we will also havep’ (uj) #u; forany j <m.
Therefore, fom = uy, the orbit Orly () will have cardinalityk. O

We note that possible values of the order of a torsion element of the group,Aatre
described, according to [9] and [4], as follows. Pick a positive intégerp* - --- - pg*,
whereps, ..., ps are different primes. There is an element of ordar the group AutF;,)
if and only if }"7_, (pf" — p;*™") < n. For example, ik = 15= 3 5, then the sum above
becomeq3 — 1) + (5 — 1) = 6. Therefore, there is an automorphism of order 15 in the
group AulF,) for n > 6, but not forn < 5.

We also note that Levitt and Nicolas [6] proved that theximum order (call it H (n))
of a torsion element of A@F,) is the same as that of a torsion elemenGaf, (Z), with
the exception ofi = 2, 6, and 12. They also established the asymptotic of this function by

showing logH (n) ~ +/n - logn.

3. Whitehead'salgorithm revised

In this section, we study complexity of Whitehead's algorithm that determines whether
or not a given element of a free group of finite rank is an automorphic image of another
given element.

Itis known that the first part of this algorithm (reducing a given free word to a free word
of minimum possible length by “elementary” Whitehead automorphisms) is pretty fast
(of quadratic time with respect to the length of the word). On the other hand, the second
part of the algorithm (applied to two words of the same minimum length) was always
considered very slow. In fact, the procedure outlined in the original paper by Whitehead
[11], suggested this part of the algorithm to be of superexponential time with respect to the
length of the words. Indeed, given a wardthe procedure calls for constructing a graph
whose vertices correspond to all words of length That means, the number of vertices
is an exponential function gf:|. After that, for every vertex of the graph, one constructs
edges incident to this vertex as follows: an edge connects this particular vertex to another
vertex if and only if there is an elementary Whitehead automorphism that takes one of
the corresponding words to the other. Finally, to find out if there is an automorphism that
takes the word: to another given word of the same length, one has to check all the
paths in the graph that start at the vertex that correspondsdad see if some of them
leads to the vertex that correspondatd’ he number of paths in a graph is, in general, an
exponential function of the number of vertices, therefore this algorithm is, in general, of
superexponential complexity with respect to the length of the word
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It is possible however to skip some steps in this algorithm and get the following

Proposition 3.1. Let N be the number of automorphicimagesof u € F, that havethe same
length as u does. Then, given an element v of length |«|, one can decidein linear time with
respect to N, whether or not v is an automorphic image of u.

Proof. We are going to use theacktracking method which is a well-known procedure in
graph theory for searching a tree.

Starting with the vertex that correspondsite- ug, we are building a tree as follows.

(We use the same notation for words and corresponding vertices when there is no
ambiguity.)

(1) Apply an arbitrary elementary Whitehead automorphismptdf a new wordu, of
the same length is obtained, plot the corresponding vertex and conneggittmot, then
apply another elementary Whitehead automorphism, until you get a newmyatithe
same length. (Note that the total number of those automorphises” (r) is finite and
depends on the rankof the groupF;, only.)

(2) Continue the same process. That is, suppose we have obtained a;word0, at
the previous step. This time “a new word” would mean a word different from all the words
obtained at previous steps.

If none of the elementary Whitehead automorphisms produces a new word, then do
“backtracking”, i.e., return to the word obtained at the immediately preceding step, and
repeat the same process.

In the end (i.e., when no new word can be obtained from any of the “old” words),
we shall obviously have gpanning tree of the graph described before the statement of
Proposition 3.1. It will therefore hav® vertices andV — 1 edges. Furthermore, in the
course of constructing this tree, we did not traverse any of the edges more than twice (one
in each direction).

Thus, the time we need to construct this tree, is no more thawv, whereC is the
constant mentioned above. Once the tree is constructed, it will také/jusbre steps to
find out if the vertex corresponding to the wards among the vertices. Or, we can perform
the check every time we get a new vertex, because once we getcan stop. O

Thus, the speed of Whitehead’s algorithm is determined by the number of automorphic
images of an elememte F), that have the same lengthasloes. Therefore, Theorem 1.2
will imply that, in the case where the free group has rank 2, Whitehead'’s algorithm does,
in fact, terminate in polynomial time with respect to the length of the words in question.
We are now ready for

Proof of Theorem 1.2. Throughout the proof, we shall call “length-preserving” those
automorphisms off, that are permutations on the dat x 1, y, y~1}. There are 8 of
them, so whenever we count the number of automorphic images of a particular element
“up to a length-preserving automorphism,” it means the upper bound for such a number
should be multiplied by 8.

Let M = |u|. Let k be the sum of exponents onin the wordu, and! the sum
of exponents ory. Upon applying a length-preserving automorphism if necessary, we
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may assume that,/ > 0. First, we are going to establish the result of Theorem 1.2 for
u ¢ [F2, F2], so we assume that / are not both 0. In this case, the result will follow from
the following observations.

(1) For a word of lengthM, there arer‘io(i +1) =(1/2)(M + 1)(M + 2) possible
pairs(k,l) withk,1 >0,k +1 < M.

(2) It is well known (see, e.g., [8]) that the group A#}) is generated by inner
automorphisms, by 3 length-preserving automorphisms — y, y — x; o :x — x 1,

y = y; oyix — x, y — y~ %, and by the following two:e:x — xy, y — y, and

B:x — x, y — yx. The subgroupd of Aut(F>) generated by and 8 can be mapped
ontoSL>(Z). Under this epimorphismy and correspond to the matricgs %) and (g 1),
respectively. The kernel of this epimorphism is generated (as a normal subgroup) by the
inner automorphism induced by the elementy]; in particular, every automorphism in

the kernel is inner.

Furthermore, relations between generators of (Ayt given in [8, Section 3.5,
Theorem N1] show that in any product of automorphiseis, g*2, =, oy, andoy,
automorphisme®! andg*! can be collected on the right. This, together with the fact that
the subgroup of inner automorphismsiafis normal in Aut F2), implies that applying an
automorphism ofF; amounts to first applying an automorphism from the subgraiup
generated by and g8, then a length-preserving automorphism, and, finally, an inner
automorphism.

Therefore, to bound the number of cyclically reduced automorphic imagesiath
the same non-zero vectok,l) of exponent sums, it is sufficient to bound the number
of matrices fromSLy(Z) that fix the vector(k,/) acted upon by right multiplication,
and then multiply this number by (the number of cyclic permutations of a word of
length M). Furthermore, up to a length-preserving automorphism, every automorphism
from the groupH corresponds to a matrix fro®L,(Z) whose elements in the first row are
of different signs, say, the element in the upper left corner is non-negative, and the element
in the upper right corner is non-positive. (Elements in the first row correspond to the image
of x.)

(3) Thus, what is left to do now is to count the number of matriceSlip(Z) whose
elements in the first row are of different signs, that fix a given non-zero véktoy
with &, > 0. The computation here is straightforward. Let (511 912) be a matrix from

SLo(Z) with a11 > 0, a12 < 0, which fixes a vectork, ). Then we have the following
system of equations im; :

k-ain+1-ax =k, k-aip+1-axn=I, aiilazz — aipaz1 =1.

Suppose first that botk,! # 0. Then from the first equation we geb1 = k/I —
(k/1) - a11, and from the second equatiapy, = 1 — (k/1) - a12. Plug this into the third
equation and simplifyt-a11 —k-a12=1. Sincek, [ > 0,a11 > 0,a12 < 0, this gives either
a12=0,a11=1, ora11 =0, a12= —1/k. In the former case, we gebo=1,a21 =0. In
the latter caseqo1 =k/1, a11=0, a22 = 2.
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Now suppose, say,= 0. Thenaz1 = 0,a22 =1, a11 = 1, whereasi12 can be arbitrary.
However, we can show that, should the automorphism corresponding to the matrix
preserve the length af, the absolute value afi> cannot be greater than:2. Indeed,
let K = a1, then the automorphism corresponding to the matriz o X, i.e., it takesy to
xyK, y to y. SupposeK > 2|u|; we may assume that has at least one occurrencexof
ThenaX (1) has a subwordyX (before cancellation). Since we have assumeddfiat)
has the same length asdoes, more than half ofX should cancel out. This implies that,
in the wordu itself, there is a subworg=" with N > (K + 1)/2. This is a contradiction
sinceK > 2|ul.

Thus, in any of the considered cases, we have no more thadifferent matrices from
S, (2) that fix a given non-zero vectdk, [).

Summarizing the observations (1), (2), (3), we see that the number of cyclically reduced
automorphic images af of length M = |u| is no more than: - M* for some constant
independent of;. This completes the proof in the case wherg[ F», F»].

Now letu € [F>, F2]. In this case, we are going to use induction on the lengih @b
make the induction work, we are going to prove the following somewhat stronger claim.

Proposition 3.2. Let u € [F>, F»] be cyclically reduced. For any positive integer K, the
number of elements v € F» suchthat v = ¢ (1) for some ¢ € Aut(F2) and |v| = |u| + K, is
lessthan ¢ - 3K - (Ju| + K)* for some constant ¢ independent of u and K .

Proof. The basis of inductiont = [x, y] is almost obvious. This element is fixed by
any automorphism fronf (recall thatH is the subgroup of Af>) generated by two
automorphismsy:x — xy, y — y, andg:x — x, y — yx), and therefore, to count the
number of elements € F» such thaty = ¢ (1) for some¢ € Aut(F») and|v| = |u| + K,
we just have to count (up to a length-preserving automorphism) the number of conjugates
of u of length up toju| + K. This latter number is no bigger than the number of different
elements of lengthk /2] in the groupFs, i.e., equals &/21.

For the induction step, we first assume thatas a subword of the forfx®1, y*1].
Then, upon applying a length-preserving automorphism if necessary, we may assume that
u has a subwordx, y]. Then a cyclic permutation af has the form(x, yJw, with no
cancellation betweefi, y] and w. Thus, by the remarks in the beginning of the proof
of Theorem 1.2, we may assume that [x, yJw. Let ¢ be an arbitrary automorphism
from H. Recall that every automorphism H fixes[x, y].

Assume first thatv is cyclically reduced. We have two possibilities:

() [x,y] is entirely canceled out by (w). Then, sincep (u) = [x, yl¢ (w), we see
that, if |[¢(u)| = |u| + K, we must havel¢(w)| = |lw| + K + 4. By the inductive
assumption, the number of automorphic imagesvofith this property is no more than
c- 354 |w + K + 4/* for some constant independent ofv and K. Similar result for
now follows.

(2) Only part of[[x, y] cancels out (this includes the case where nothing cancels out).
Then, sincep (1) = [x, y]¢(w) and since an element of the commutator subgroup must
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have an even length, we see thatgifu)| = |u| + K, then eithet¢ (w)| = |w| + K + 2, or
|¢(w)| = |w| + K. By the inductive assumption, the number of automorphic imagas of
with this property is no more than 3X+2. |w 4+ K + 2|* (respectively¢ - 35 - |w + K|%)
for some constant independent ofv and K. Similar result foru now follows.

If w is not cyclically reduced, i.e., ift = [x, ylgw'g~1, then we consider a cyclic
permutation ofu: u’ = g7 1[x, ylgw’' = [xg_l,yg_l]w’, where we can assume’ to
be cyclically reduced. Now we apply essentially the same argument &s we have
just applied tou, upon replacing the subgroufi of automorphisms by the left coset
igH, wherei, is the inner automorphism induced by the elemgnt(Applying an
automorphism from, H is equivalent to first applying conjugation lgyand then applying
an automorphism fron#/ .)

Since the group of inner automorphisms is normal in (&b}, observation (2) in the
beginning of the proof of Theorem 1.2 remains valid upon replaé¢indy i, H. That
is, every automorphism from AUE) is a product of an automorphism from the coset
igH and an inner automorphism. Since every automorphism frdihfixes the element

[xg_l, yg_l], the same argument as above completes the proof in this case.

Suppose now that does not have a subword of the fofmi*!, y*1], but does have
a subword of the formx*1y*1xF1, Then, upon applying a length-preserving automor-
phism if necessary, we may assume thias a subwordyx 1. Thus, a cyclic permuta-
tion of u has the formxyx~1w, with no cancellation. Then we can writeasu = [x, y]yw.
Note that the worgw has smaller length thandoes, and we can assume thatis cycli-
cally reduced, for if it was notp would end withy~1, and then a cyclic permutation of
would be of the formy~xyx~1w’ = [y~1, x]w’, and therefore this case would be reduced
to the previous one.

Thus, we can apply the inductive assumption to this wor@nd the same argument as
above will work in this case as well.

Finally, suppose that does not have a subword of the fored!y*ix¥1. Thenu
must have a subword of the formtlykx¥! for somek # 0,+1. We can assume,
upon applying a length-preserving automorphism and a cyclic permutation if necessary,
thatu = xy*x~1w, k > 1. Then we can write: = [x, y]yxy*"x~1w. Now the word
yxy*~1x~1w has the same length asdoes, but it has the subword*~1x~1. Also, we
can assume thatw is cyclically reduced, for if it was notp would end withy~1, and
then a cyclic permutation of would be of the formy~1xykx~1w’, i.e., it would begin
with y~1xy, and therefore this case would be reduced to one of the previously considered.
An obvious inductive argument now completes the proaf.

4, Primitiveelementsof F»
In this section, we give bounds for the total number of primitive elements of a given
lengthm in the groupF>, and a precise number ojclically reduced primitive elements of

lengthm. (Note that the total number of elements of lengtin the groupFs is (4/3) - 3™.)

Proof of Proposition 1.4. Letx andy be generators af.
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(a) Supposen is odd. Then any conjugate aft!, as well as ofy*!, by an element
of lengthk = (m — 1)/2, is a primitive element of length: (assuming there are no
cancellations in the middle). The number of elements like that in the gFplig2- 31,
whence the result.

(b) If m is even, then counting conjugates.ofly andxy*! by elements of length
(m — 2)/2 yields the result.

(c) The result of this part will follow from a well-known fact about primitive elements
of F> (see [3] or [10]):

for any pair {k,!} of integers with(k,l) = 1, there is exactly one, up to a cyclic
permutation, cyclically reduced primitive element®@f whose exponent sum onis &
and the exponent sum gnis /.

Thus, the number of cyclically reduced primitive elementgpbdf lengthm is 8n times
the number of pairgk, I} of positive integers with(k,/) =1,k <[, k + 1 =m. The latter
number is obviously equal tl/2)® (m), whered (m) is the number of positive integers
< m relatively prime ton. O
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