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Abstract

A y-rigid solution of the Bohr Hamiltonian fop = 30° is derived, its ground state band being related to the second order
Casimir operator of the Euclidean algebr&E Parameter-free (up to overall scale factors) predictions for spectr® @)
transition rates are in close agreement to tii®) Eritical point symmetry, as well as to experimental data in the Xe region
aroundA = 130.
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1. Introduction experimental evidence is increasif+6]. The E5)
model is obtained as an exact solution of the Bohr
The E5) [1] and X(5) [2] critical point symme- Hamiltonian [7] for y-independent potential§l],
tries, describing shape phase transitions from vibra- while the X(5) model is obtained as an approximate
tional (U(5)) to y-unstable (S@)) and vibrational solution fory ~ 0° [2]. Another approximate solution,
to prolate deformed (S(3)) nuclei respectively, have  with y = 3(°, called Z5), has also been obtaings].
attracted recently much attention, since supporting In all these cases, five degrees of freedom (the col-
lective variabless, v, and the three Euler angles) are

Er—— . _ taken into account.
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only four degrees of freedong @nd the Euler angles).
In accordance to previous terminology, this solution
will be called Z4). It turns out that the @) spectra
and B(E?2) transition rates are quite similar to thé3x
ones, while in parallel the ground state band ¢#)Z

is related to the Euclidean algebradk, thus offer-
ing the first clue of connection between critical point

symmetries and Lie algebraic symmetries. Experimen-

tal examples of Z4) seem to appear in the Xe region
aroundA = 130.

The Z(4) solution will be introduced in Sectioh
and its ground state band will be related {@En Sec-
tion 3. Numerical results and comparisons tgEand
experiment will be given in Sectio#, while discus-
sion of the present results and plans for further work
will appear in Sectiorb.

2. TheZ(4) model

In the model of Davydov and Chab49] it is as-
sumed that the nucleus is rigid with respectjte
vibrations. Then the Hamiltonian depends on four
variables g, 6;) and has the forr{Q]
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H="25 [ﬁ3 op 4ﬁ2 Z smz(y - )}
+UB), @

whereg andy are the usual collective coordina{&$,
while Q; (k =1, 2, 3) are the components of angu-
lar momentum and is the mass parameter. In this
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Hamiltoniany is treated as a parameter and not as a Pw, u(p)

variable. The kinetic energy term of Ed) is different
from the one appearing in the® and X(5) models,

because of the different number of degrees of freedom
treated in each case (four in the former case, five in the

latter).

Introducing [1] reduced energies = (2B/h%)E
and reduced potentialea = (ZB/hZ)U, and con-
sidering a wave function of the fornw (8,6;) =
¢ (B)Y(6;), whered; (i =1, 2, 3) are the Euler an-
gles, separation of variables leads to two equations

10 59
[533/3

b

(c - u(m)}p(ﬂ) —o. @

B p?

Qk

Sirf(y — 5 )

}Lj|1/f(9i) =0.

103

Inthe case of = /6, the last equation takes the form
1

[Z(Qi +403 +403) - x]w(e,-) ) )

This equation has been solved by Meyer-ter-Vehn
[10], the eigenfunctions being

YO0 =L 0

_ 2L +1
T\ 16721+ 84,0)

x [DE),6) + (~DEDY L 60)] (5)
with
3 2
)‘-Z)\-L,(XZL(L—i_l)_Za’ (6)

where D(6;) denote Wigner functions of the Euler
angles,L are the eigenvalues of angular momentum,
while u anda are the eigenvalues of the projections
of angular momentum on the laboratory fixgédxis
and the body-fixed’-axis, respectivelyr has to be an
even integef10].

Instead of the projectioa of the angular momen-
tum on thex’-axis, it is customary to introduce the
wobbling quantum numb¢t0,11]n,, = L —a, which
labels a series of bands with = n,,, n,, + 2,1, +
4, ... (with n,, > 0) nextto the ground state band (with
ny = 0)[10].

The “radial” Eq.(2) is exactly soluble in the case
of an infinite square well potentiak(8) =0 for 8 <
= oo for B > Bw). Using the transformation

#(B) = B~Lf(B), Eq.(2) becomes a Bessel equation
92 L1 2
[ g2 " Bop (e ﬂ2>}f(ﬂ) 7
with
V:\/)‘+1:\/L(L+1)—i—31a2+1
_ VLL+H+31,RL =) +4 .

2

Then the boundary conditiofi(Bw)
the spectrum,

= 0 determines

—, 9)

2
€Bis,v = €gis.ny, L = (ks,v)7,
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wherex; , is thesth zero of the Bessel functiah, (z).
The eigenfunctions are

1
_CIB Jv(ks,u/g),

¢(,3) = ¢sv(ﬂ) = ¢s,n,,,,L(,3) = \/—

By 2
c= 7]U+1(xs,u)
where the normalization constanis determined from
the conditionf(fw B3¢2(B)dB = 1. The notation for
the roots has been kept the same as in Rgf.while
for the energies the notatidty ,, ; will be used. The
ground state band correspondsite 1, n,, = 0. This
model will be called the Z) model.

The calculation ofB(E2)’s proceeds as in Ref],
the only difference being that the integrals ogdnave
the form

(10)

Ig(si, Li, s 57, Ly, ap)

Bw
- f B (B)bs, v, (B3, (11)
0

since the volume element in the present case corre-
sponds to four dimensions instead of five.

A brief discussion of the interrelations among var-
ious triaxial models is now in place. In the origi-
nal triaxial model of Davydov and FilippoM 2], the
Hamiltonian contains only a rotational term (the sec-
ond term in Eq(1)), and is analytically soluble for all
values ofy. In contrast, the Hamiltonian of Davydov
and Chabarj9] contains both a kinetic energy term
(the first term in Eq(1)) and a rotational term, and
is solved numerically. Meyer-ter-Veljfi0] has shown
that triaxial Hamiltonians including both a kinetic en-
ergy term and a rotational term are analytically soluble
in the special case of = 30°. In the present &)
case an analytical solution of the Davydov and Cha-
ban Hamiltonian is obtained for the special case of
y = 30°, as implied by Meyer-ter-Vehn.

3. Relation of the ground state band of Z(4) to
E@4

The ground state band of the(4d model is re-
lated to the second order Casimir operator ¢f)i-the
Euclidean group in four dimensions. In order to see
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in n dimensions, &), which is the semidirect sum
[13] of the algebrdl;, of translations im: dimensions,
generated by the momenta

P .
P=—f—
J 8x,~

(12)
and the S@:) algebra of rotations im dimensions,
generated by the angular momenta

a 8)

Lj=—i <x.,~ — X —

Xy 0x;
symbolically written as &) = T, @, SO(n) [14].
The generators of &) satisfy the commutation rela-
tions

(13)

[P, Pj1=0, [Pi, Lixl=i(ix Pj — 8ij Pr), (14)
[Lij, Ly =i(SikLj; + 81 Lik — 8L jk — SjxLip).

(15)
From these commutation relations one can see that the
square of the total momentun®?, is a second order
Casimir operator of the algebra, while the eigenfunc-
tions of this operator satisfy the equation

1 9 ,,0 w(w+n—2)
_ I S et L I
( 1o ar r2 ) ")
=k’F(r), (16)

in the left-hand side of which the eigenvalues of the
Casimir operator of S@), w(w +n — 2) appeaf15].
Putting

F(r)=r@m2f@), 17)
and
n—2
= , 18
+ (18)

Eq.(16)is brought into the form

32 139 v2

TRy 2N =0 19
<8r2+r8r+ rz)f(r) ' (19)

the eigenfunctions of which are the Bessel functions
f(r) = Jy(kr) [16]. The similarity between Eq$19)
and (7)is clear.

The ground state band of(Z) is characterized by
ny = 0, which means that = L. Then Eq(8) leads to
v=L/2+ 1, while Eq.(18) in the case of &) gives
v = w + 1. Then the two results coincide fér= 2w,

i.e., for even values of.. One can easily see that this

this, one can consider in general the Euclidean algebracoincidence occurs only in four dimensions.
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4. Numerical results and comparisonsto E(5) and
experiment

sured from the ground state; § and are normalized
to the first excited state 3. The ground state band is
characterized by = 1, n,, = 0, while the even and the
odd levels of they1-band are characterized by= 1,

The lowest bands of the(Z) model are given in
@ g ny, = 2, ands = 1, n,, = 1 respectively, and thg;-

Table 1 The notatiorL, ,, is used. All levels are mea-
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Fig. 1. Intraband and interbanBl(E2) transition rates in the @) model, normalized to th&(E2; 21 o — 01 o) rate. Bands are labeled by
(s, ny), their levels being normalized tg 3. The (2, 0) band is shown both at the left and at the right end of the figure for drawing purposes.
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Table 1
Energy levels of the @) model, measured from thk; ,,, =01 0
ground state and normalized to theglowest excited state

L S, Ny L S, Ny
1,0 12 2,0 11

0 0.000 2954

2 1000 1766 4804 3 2445

4 2226 4051 6893 5 4239

6 3.669 6357 9215 7 6188

8 5.324 8788 11765 9 8316
10 7.188 11378 14538 11 10630
12 9256 14139 17531 13 13135
14 11526 17079 20742 15 15831
16 13996 20202 24167 17 18719
18 16665 23509 27805 19 21799
20 19530 27003 31653 21 25071

band is characterized by= 2, n,, = 0. These bands
are also shown ifrig. 1, labeled by(s, n,,).

Both intraband and interban®(E2) transition
rates, normalized to the one between the two lowest
states B(E2; 21 o — 01,0), are given irFig. 1

The similarity between the spectra aBdE2) val-
ues of 44) and E5), for which extensive numeri-
cal results can be found in Refl7], can be seen
in Fig. 2(a) and (b), where the spectra of the ground
state band and thg;, band, as well as their intraband
B(E2)’s are given. One can easily check that the sim-
ilarity extends to interband transitions between these
bands as well, for which the selection rules in the two
models are the same.

The main difference between(4d and E5) ap-
pears, as expected, in the band, the spectrum of
which is shown inFig. 2c). The predictions of the
two models for the odd levels practically coincide,
while the predictions for the even levels differ, since
in the E5) model the levels are exactly paired as
(3,4, (5,6), (7,8), ..., as imposed by thenderlying
SO(5) D SO3) symmetry[1,17], while in the Z4)
model the levels are approximately paired(4s5),
(6,7), (8,9), ..., which is a hallmark of rigid triaxial
models[12]. The latter behavior is never materialized
fully [18], but it is known[19] thaty -unstable models
andy-rigid models yield similar predictions for most
observables ifyims of the former equalgrigig of the
latter, a situation occurring in the Ru—Pd, Xe—Ba (be-
low N = 82), and Os—Pt regions.

Predictions of the Z) model are compared to ex-
isting experimental data fof?8Xe [20], 13%e [21],
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Fig. 2. (a) Ground state ban@[n,,) = (1, 0)] and first excited band
[(s,nyw) = (2,0)] of Z(4) (labeled asBi-band) compared to the
corresponding bands of(&) [1,17]. In each model all levels are nor-
malized to the }.’ state. (b) Intraban®(E2) transition rates within
the same bands of(Z) compared to the correspondiBiE?2) rates
of E(5). In each model all rates are normalized to tije-2 07 rate.
(c) The lowest K = 2 band” of Z4) (formed out of the {, n,)
bands(1, 2) and(1, 1), labeled as/1), compared to the correspond-
ing band of E5).
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Fig. 3. Comparison of the @) predictions for (normalized) energy levels and (normaliz@}2) transition rates (a) to experimental data for
128x e [20] (b), 13%Xe [21] (c), and132Xe [22] (d). Bands in (a) are labeled lty, n,,). See Sectiod for further discussion.

and 1¥2Xe [22] in Fig. 3. The reasonable agreement
observed is in no contradiction with the characteri-
zation of these nuclei as (6) nuclei[19], since, as
mentioned above, the predictionsjpfunstable mod-
els (like O6) [23]) and y-rigid models (like 44))
for most observables are similarjifys of the former
equalsyrigig of the latter.

5. Discussion

In the present work an exact solution of the Bohr
Hamiltonian withy “frozen” to 3, called Z4), is
obtained. Spectra anB(E2) transition rates of #)
resemble these of the critical point symmetr¢5E
while the ground state band of(Z is related to the
Euclidean algebra @), thus offering a first clue of
connection between critical point symmetries and Lie
algebras. Empirical evidence fof4 in the Xe region
aroundA = 130 has been presented.

It should be emphasized, however, that neither the
similarity of spectra an®(E2) values of 44) to these
of the E§5) model, nor the coincidence of the ground
state band of &) to the spectrum of the Casimir oper-
ator of the Euclidean algebra 4 clarify the algebraic
structure of the Z4) model, the symmetry algebra of
which has to be constructed explicitly, starting from
the fact thaty is fixed to 30. The fact that the Bohr
Hamiltonian fory = 30° possesses “accidentally” a
symmetry axis (the body-fixetl -axis) has been early
realized[24]. This “accidental” symmetry should also
serve as the starting point for clarifying the symme-
try underlying other solutions of the Bohr Hamiltonian
obtained fory = 30° [8,25,26]
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