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Abstract

The purpose of this paper is to study some new concrete approximation processes for continuous vector-
valued mappings defined on the infinite dimensional cube or on a subset of a real Hilbert space. In both
cases these operators are modelled on classical Bernstein polynomials and represent a possible extension to
an infinite dimensional setting.

The same idea is generalized to obtain from a given approximation process for function defined on a real
interval a new approximation process for vector-valued mappings defined on subsets of a real Hilbert space.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to define an explicit sequence of operators that is an approximation
process for continuous vector-valued mappings F : X → E, where X has “infinite dimension”.
More precisely we deal with two cases. The first is when X is the cube

C∞ := [0, 1]N∗
,

with the canonical product topology, where N∗ denotes the set N \ {0} and N := {0, 1, 2, . . .}.
The other case we consider, is when X is an unbounded, closed subset of a real Hilbert space
endowed with the weak topology.
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A first approximation process, we are going to construct, is modelled on the Bernstein polyno-
mials. Later we shall give a generalization of this construction.

The Bernstein polynomials, for a continuous function F ∈ C(Ck), on the k-dimensional cube
Ck := [0, 1]k , are defined at t = (t1, . . . , tk) ∈ Ck , as

Bn,k(F )(t) :=
n∑

j1=0···
jk=0

F

(
j1

n
, . . . ,

jk

n

)
�n,j1

(t1) · · · �n,jk
(tk),

where

�n,j (t) :=
(

n

j

)
tj (1 − t)n−j .

It is well known that the sequence (Bn,k)n�1 realizes an approximation process on C(Ck) as
specified by

Theorem 1.1. 1. For any F ∈ C(Ck), Bn,k(F ) → F uniformly on Ck as n → ∞.
2. Let Ck endow with the distance d(x, y) :=∑k

i=1 |xi − yi |. If F ∈LipM(Ck), then Bn,k(F ) ∈
LipM(Ck). 1

3. For any convex function F ∈ C(Ck), Bn,k(F ) is convex with respect to each variable.
4. For any F ∈ C(Ck), convex with respect to each variable and n�1, it results F �Bn,k(F ).
5. For any F ∈ C(Ck), convex with respect to each variable and n�1, it results Bn+1,k(F )�

Bn,k(F ).

We refer the interested reader to e.g. [1,2,5].
Our idea is simple. We link the index n to the dimension k of the cube where the operator Bn,k

samples the function, obtaining the operator Bn,n; in the C∞ case, the nth operator acts sampling
F : C∞ → E on a n-dimensional cube.

In the next section we present the results, while the proofs are in Section 3. The last section is
devoted to extend the idea to other operators.

2. Definitions and results

Let X be a Hausdorff space and E a normed space. We denote with F(X, E) and with C(X, E)

respectively the space of all mappings F : X → E and its subspace containing only the continuous
mappings.

Fix g : X → R+, the symbol F(X, E, g) stands for the subspace of all mappings F belonging
to F(X, E) such that F/g is bounded.

For every n�1, we set

An := {h = (hj )j �1|hj ∈ N, 0�hj �n for j �n, hj = 0 for j > n}.
In other words, h ∈ An if and only if it has the form h = (h1, . . . , hn, 0, 0, . . .) with 0�hj �n

for every natural j ∈ {1, 2, . . . , n}.
1 Let (X, d) be a metric space and E normed space. A function f : X → E belongs to LipM(X), if ‖f (t) − f (�)‖

�Md(t, �), for any t, � ∈ X.
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2.1. C∞ case

As we have mentioned in the introduction, the topology in C∞ = [0, 1]N∗
is the canonical

product one; every point t ∈ C∞ is identified with the sequence (tj )j �1.
Let n�1 be natural number, h = (hj )j �1 ∈ An. Define the function

�n,h(t) :=
(

n

h1

)
· · ·
(

n

hn

)
t
h1
1 (1 − t1)

n−h1 · · · thn
n (1 − tn)

n−hn, (2.1)

for every t ∈ C∞. Notice that � has the form �n,h(t) = �n,h1
(t1) · · · �n,hn

(tn).
For every n�1, F : C∞ → E and t ∈ C∞, we define

L1
n(F )(t) :=

∑
h∈An

F

(
h

n

)
�n,h(t),

or, explicitly,

L1
n(F )(t) =

n∑
h1=0···
hn=0

F

(
h1

n
, . . . ,

hn

n
, 0, 0, . . .

)(
n

h1

)
t
h1
1 (1 − t1)

n−h1

×· · ·
(

n

hn

)
thn
n (1 − tn)

n−hn .

In Section 3 we shall prove the following approximation result:

Theorem 2.1. For any F ∈ C(C∞, E), the convergence

L1
n(F ) → F as n → ∞

holds uniformly on C∞.

2.2. Hilbert case

Let H be an infinite dimension separable real Hilbert space. With (aj )j �1 we denote a Hilbert
base of H, so that the points t ∈ H are represented by t = ∑∞

j=1 tj aj .A well-known fact says that

H is isometrically isomorphic to the Hilbert space �2 := {(tn)n�1| ∑∞
n=1 |tn|2 < ∞}. Therefore,

we shall use the identification H = �2.
We set

� := {t ∈ H | 0� ti �1}.
The definition of �n,k in (2.1) is still valid for t ∈ �, hence for every n�1, F : � → E and

t ∈ �, we define

L2
n(F )(t) :=

∑
h∈An

F

(
h

n

)
�n,h(t), (2.2)
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or, equivalently:

L2
n(F )(t) =

n∑
h1=0···
hn=0

F

(
h1

n
, . . . ,

hn

n
, 0, 0, . . .

)(
n

h1

)
t
h1
1 (1 − t1)

n−h1

×· · ·
(

n

hn

)
thn
n (1 − tn)

n−hn .

We remind the following definitions

Definition 2.2. Let X be a convex subset of a Banach space Y.
(1) The symbol UCB(X, E) stands for the subspace of F(X, E) of all the uniformly continuous

and bounded mappings. For F ∈ UCB(X, E), we define, as usual, its modulus of continuity,
as

�(F, �) := sup{‖F(u) − F(t)‖ |u, t ∈ X, ‖u − t‖ ��} (� > 0).

(2) We say that F : X → E is weak-to-norm continuous if it is continuous from X equipped with
the weak topology �(Y, Y ′) in Y, into E with the norm topology. By K(X, E) we denote
the space of all weak-to-norm continuous mappings from X into E. We set K(X, E, g) :=
K(X, E) ∩ F(X, E, g).

The approximation results in the Hilbert case are as follows.

Theorem 2.3. For any F ∈ K(�, E, 1 + ‖·‖2), the convergence

L2
n(F )(t) → F(t)

holds for any t ∈ � and uniformly on relatively compact subsets of �.

Theorem 2.4. For any F ∈ UCB(�, E), we have L2
n(F ) → F (as n → ∞), uniformly on

relatively compact subsets of �. Moreover for any t ∈ �, n�1 and � > 0, there holds the
estimate

∥∥∥L2
n(F )(t) − F(t)

∥∥∥ ��(F, �)

⎡
⎣1 + �−2

⎛
⎝∑

j>n

t2
j +

n∑
j=1

tj − t2
j

n

⎞
⎠
⎤
⎦ ,

therefore, in particular

∥∥∥L2
n(F )(t) − F(t)

∥∥∥ � 2�

⎛
⎝F,

√√√√∑
j>n

t2
j +

n∑
j=1

tj − t2
j

n

⎞
⎠

� 2�

⎛
⎝F,

√√√√∑
j>n

t2
j + ‖t‖√

n
+ ‖t‖2

n

⎞
⎠ .

These operators L2
n satisfy the following preserving properties.
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Proposition 2.5. 1. If F ∈ LipM(�), then L2
n(F ) ∈ Lip√

nM(�) for any n�1.
2. If F ∈ C(�, R) is convex, then for any n�1, L2

n(F ) is convex with respect to each variable.

Thus, the analogues of the properties 1, 2 and 3 of Theorem 1.1 are in some sense inherited
from L2

n.
Let E be an ordered space. The following question arises. What happens to properties 4 and

5? They fail even in the case E = R. We shall prove this claim in the next section finding a
counterexample.

3. Proofs

Before proving the statements of the previous section, we recall the following definitions
(cf. [4]). For any function g ∈ F(X, R) and any vector v ∈ E, with g ⊗ v we denote the function
belonging to F(X, E) defined as

(g ⊗ v)(t) := g(t)v for any t ∈ X.

Definition 3.1. Let S be a linear operator on F(X, R). A linear operator L on F(X, E) is said
to be S-regular if

L(g ⊗ v) = S(g) ⊗ v for all g ∈ F(X, R) and v ∈ E.

L is said monotonically regular, if it is S-regular for some positive linear operator on F(X, R).

Remark 3.2. The operators L1
n and L2

n are well defined on scalar functions as well as on vector-
valued mappings and we shall use the same symbol for the operators acting on vector-valued
mappings or on scalar functions. Moreover, it is easy to see that both operators are monotonically
regular.

3.1. Proof of Theorem 2.1

Combining the results [1, Theorem 4.4.6] and [4, Theorem 9, p. 111] we obtain

Theorem 3.3. Let X be a compact Hausdorff space, E a normed linear space, M a subset of
C(X, R) which separates the points of X, v ∈ E \{0} and Ln a sequence of monotonically regular
operators of C(X, E). If

Ln(h) → h uniformly on X

for any h ∈ {1v} ∪ {hj v| h ∈ M, j = 1, 2}, then

Ln(F ) → F uniformly on X

for any F ∈ C(X, E).

Since L1
n is monotonically regular and C∞ is compact, we shall use Theorem 3.3 to prove our

Theorem 2.1.
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Proof of Theorem 2.1. For j �1, let prj : C∞ → R be the canonical projection: prj (t) = tj .
Let v ∈ E be a non zero constant, since M = {prj |j �1} separates the points of C∞, it is sufficient
to check the convergences on the test function: 1v, prj v and pr2j v.

L1
n(1v)(t) =

∑
h∈An

v�n,h(t)

= v
n∑

h1=0

(
n

h1

)
t
h1
1 (1 − t1)

n−h1 · · ·
n∑

hn=0

(
n

hn

)
thn
n (1 − tn)

n−hn = v.

For j > n,

L1
n(prj v)(t) =

∑
h∈An

prj

(
h

n

)
v�n,k(t) = 0,

L1
n(pr2j v)(t) =

∑
h∈An

pr2j

(
h

n

)
v�n,k(t) = 0,

while for j �n,

L1
n(prj v)(t) =

∑
h∈An

prj

(
h

n

)
v�n,k(t) = v

∑
h∈An

hj

n
�n,k(t)

= v
n∑

h1=0

(
n

h1

)
t
h1
1 (1 − t1)

n−h1 · · ·
n∑

hj =0

hj

n

(
n

hj

)
t
hj

j (1 − tj )
n−hj

· · ·
n∑

hn=0

(
n

hn

)
thn
n (1 − tn)

n−hn = tj v,

L1
n(pr2j v)(t) = v

∑
h∈An

h2
j

n2 �n,k(t)

= v
n∑

h1=0

(
n

h1

)
t
h1
1 (1 − t1)

n−h1 · · ·
n∑

hj =0

h2
j

n2

(
n

hj

)
t
hj

j (1 − tj )
n−hj

· · ·
n∑

hn=0

(
n

hn

)
thn
n (1 − tn)

n−hn = t2
j v + tj − t2

j

n
v.

From these identities, we conclude the proof. �

3.2. Hilbert case: proofs

We begin recalling the definition (cf. [3,4])
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Definition 3.4. Let L : D(L) → F(X, E), S : D(S) → F(X, R) be linear operators, with
D(L) and D(S) subspaces of F(X, E) and F(X, R), respectively. L is said to be dominated by
S if

‖F‖ ∈ D(S) and ‖L(F)(t)‖ �S(‖F‖)(t)
for any F ∈ D(L) and t ∈ X.

As already stated in Remark 3.2, the operators acting on vector-valued mappings and on scalar
functions will be denoted with the same symbol L2

n. Therefore, the operator L2
n : F(�, E) →

F(�, E) is dominated by L2
n : F(�, R) → F(�, R).

In order to prove Theorems 2.3 and 2.4, we shall use the results stated in [3], which, for the
sake of completeness, we report below.

Theorem 3.5. Let Y and E be normed spaces, X be a convex subset of Y, K ⊂ X and for any
n�1, Ln: D(Ln) → F(K, E) be a Sn-regular linear operator dominated by the positive linear
operator Sn: D(Sn) → F(K, R). We suppose that, for every n�1, UCB(X, E) ⊂ D(Ln),
UCB(X, R) ⊂ D(Sn) and �2

t := ‖· − t‖2 ∈ D(Sn) for some (and hence for all) t ∈ Y . Then for
each F ∈ UCB(X, E), t ∈ K and � > 0, one has

‖Ln(F )(t) − F(t)‖ � ‖F(t)‖ |Sn(1)(t) − 1| + �(F, �)
[
Sn(1)(t) + �−2�2

n(t)
]
, (3.3)

where �2
n(t) := Sn(�

2
t )(t).

From Theorem 4.1 and Remarks 4.2 and 4.3 in [3], we deduce the following:

Theorem 3.6. Let Y be a real reflexive Banach space, E normed space, X a convex subset of Y
closed and unbounded or open, K a bounded, closed convex subset of X and g : X → R satisfying
the following conditions: g is strictly positive, strictly convex, Fréchet differentiable on K, g′(K)

is bounded in Y ′ and the function

h(t, u) := g(u) − [
g(t) + 〈g′(t), u − t〉] ,

is lower semicontinuous with respect to weak topology. Moreover, setting Bn := g−1([0, n]), we
require that K ⊂ Bn, Bn is bounded, X \ Bn �= ∅ and

lim
‖t‖→∞

t∈X

g(t)

‖t‖ = +∞.

For each n�1, let Ln: D(Ln) → F(K; E) be a Sn-regular linear operator dominated by the
linear positive operator Sn: D(Sn) → F(K, R), with K(X, E, g) ⊂ D(Ln), K(X, R, g) ⊂
D(Sn) and g, h ∈ D(Sn). If for every continuous linear functional � ∈ Y ′, the convergences

Sn(1)(t) → 1, Sn(�|X)(t) → �(t) and Sn(g)(t) → g(t) (3.4)

hold uniformly for t ∈ K , then for every F ∈ K(X; E, g) and f ∈ K(X, R, g),

Ln(F )(t) → F(t) and Sn(f )(t) → f (t) uniformly for t ∈ K.

In our case Y is the real separable Hilbert space H, X is the set � that results to be convex,
unbounded and closed. In order to prove the pointwise convergence in Theorems 2.3 and 2.4 we
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have only to check the convergences in (3.4) and to evaluate the quantities involved in (3.3). The
proof of the uniform convergence will need the following lemma.

Lemma 3.7. Let C ⊂ �2 be relatively compact. Then for any 	 > 0, there exists an integer
number i = i(	, C), such that for every x ∈ C, we have

∑
j � i

x2
j < 	.

Proof. Suppose, contrary to our claim, that there exist 	 > 0 and a sequence (xi)i �1 in C, such
that √∑

j � i

(xi
j )

2 �
√

	

for every i�1. From the relatively compactness of C, there exists x̄ ∈ C such that (up to a
subsequence), xi → x̄ (as i → ∞). Thus, we have

√
	�
√∑

j � i

(xi
j )

2 �
√∑

j � i

(xi
j − x̄j )2 +

√∑
j � i

(x̄j )2 �
∥∥∥xi − x̄

∥∥∥+
√∑

j � i

(x̄j )2,

for every i�1. Letting i → ∞, we have a contradiction. �

Proof of Theorem 2.3. We begin fixing A ⊂ � relatively compact and set K the compact convex
hull of A. Setting g(u) := 1 + ‖u‖2, we have that the function

h(t, u) = ‖t‖2 + ‖u‖2 − 2〈t, u〉,

is lower semicontinuous for the weak topology. Choosing 
 such that K ⊂g−1([0, 
]), we have
that the hypotheses of Theorem 3.6 are satisfied.

Now, with the same computations of the proof of Theorem 2.1, we evaluate the convergences
on the test functions.

We begin with

L2
n(1)(t) =

∑
h∈An

�n,h(t) = 1. (3.5)

Let us denote with (ej )j �1 the dual base of (aj )j �1 (that is the base of the dual space H ′ such
that 〈ei, aj 〉 = �ij ). For j > n,

L2
n(ej )(t) =

∑
h∈An

ej

(
h

n

)
�n,k(t) = 0,

L2
n(e

2
j )(t) =

∑
h∈An

e2
j

(
h

n

)
�n,k(t) = 0,
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while for j �n,

L2
n(ej )(t) =

∑
h∈An

ej

(
h

n

)
�n,k(t) = tj ,

L2
n(e

2
j )(t) =

∑
h∈An

h2
j

n2 �n,k(t) = t2
j + tj − t2

j

n
.

Let t ∈ H and � ∈ H ′, representing them as t = ∑∞
j=1 tj aj and � = ∑∞

j=1 �j ej , we have
�(t) = ∑∞

j=1 �j tj . Computing

L2
n(�)(t) = L2

n

⎛
⎝ ∞∑

j=1

�j ej

⎞
⎠ (t) =

∞∑
j=1

�jL
2
n(ej )(t) =

n∑
j=1

�j tj ,

we obtain the convergence of L2
n(�) to �, uniformly on bounded subsets of �.

Noting that �2
t (u) = ‖u‖2 +‖t‖2 −2〈t, u〉, in order to conclude the proofs, we have to evaluate

L2
n(‖·‖2) on relatively compact subsets. From identity

‖t‖2 =
∞∑

j=1

t2
j =

∞∑
j=1

e2
j (t),

we have

L2
n(‖·‖2)(t) =

∞∑
j=1

L2
n(e

2
j )(t) =

n∑
j=1

(
t2
j + tj − t2

j

n

)
,

and hence

L2
n(‖·‖2)(t) − ‖t‖2 = −

∑
j>n

t2
j +

n∑
j=1

tj

n
− 1

n

n∑
j=1

t2
j , (3.6)

L2
n(�

2
t )(t) =

∑
j>n

t2
j +

n∑
j=1

tj

n
− 1

n

n∑
j=1

t2
j . (3.7)

For the second term in the right-hand side of (3.6) and (3.7), the following estimate holds

n∑
j=1

tj

n
�

⎛
⎝ n∑

j=1

1

n2

⎞
⎠

1/2⎛
⎝ n∑

j=1

tj
2

⎞
⎠

1/2

� 1√
n

‖t‖ .

Thus, the last two terms in (3.6) and (3.7) decay to 0 uniformly on bounded subsets of �. Therefore,
the estimates and the convergences hold pointwise as claimed in Theorem 2.3. The uniform
convergences on K (and hence on A) follow from the uniform convergence of

∑
j>n t2

j to 0, and
this is stated in the above Lemma (3.7). �
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Proof of Theorem 2.4. In order to prove the estimates in the statement of Theorem 2.4, taking
into account Theorem 3.5, it is sufficient to compute L2

n(1)(t) and L2
n(‖· − t‖2)(t). These quan-

tities are already computed in the proof of Theorem 2.3. Hence from (3.5) and (3.7), we obtain
the stated estimates. �

Proof of Proposition 2.5. The preserving properties of Proposition 2.5, follow from the defini-
tion of L2

n and from Theorem 1.1. For instance, the inclusion L2
n(LipM(�)) ⊂ Lip√

nM(�) follows
from 2 of Theorem 1.1 and the relation

n∑
i=1

|ti | �
√

n

(
n∑

i=1

|ti |2
)

�
√

n ‖t‖ . (3.8)

See Proposition 4.3 for more general cases. �

When E is the real line, it remains to prove that the analogues of properties 4 and 5 of Theorem
1.1 fail for L2

n. Indeed, it is enough to consider what happens with the functionals ej , the base of
H ′: for j > n, L2

n(ej ) = 0 and n�j , L2
n(ej ) = ej . Thus, one can conjecture that the properties

hold definitively, that is, for any f ∈ K(�, R, g) convex, there exists an integer � such that, for
n��, L2

n(f )�f and L2
n(f )�L2

n+1(f ). Though, even this conjecture is doomed to fail. Indeed,
let f̄ be the function defined as f̄ := ∑

j �1
ej

2j . The function f̄ is convex and belongs to
K(�, R, g). Computing

L2
n(f̄ )(t) =

n∑
j=1

1

2j

(
t2
j + tj − t2

j

n

)
,

and applying at t̄ = (1, . . . , 1, tn+1, tn+2, . . .), we obtain

f̄ (t̄) − L2
n(f̄ )(t̄) =

∑
j �n+1

t2
j

2j
�0,

L2
n+1(f̄ )(t̄) − L2

n(f̄ )(t̄) = 1

2n+1

(
t2
n+1 + tn+1 − t2

n+1

n + 1

)
�0,

that prove our claims.

4. A generalization

In this section we generalize the proposed scheme. We start with a generic sequence of positive
linear operators, and as in Bernstein polynomials case, we obtain approximation processes for
vector-valued mappings defined on subsets of an infinite dimensional Hilbert space.

Let E be a Banach space, I a Hausdorff space, J ⊂ I and for n�1, and t ∈ J , �n(·; t) a
probability measure on �-algebra of all Borel subset of I. With L1(I, E, �n(·; t)), we denote the
subspace of F(I, E) of all �n(·; t)-integrable functions. We consider the linear integral operator
Ln,1 : L1(I, E, �n(·; ·)) → F(J, E), defined as

Ln,1(f )(t) :=
∫

I

f (u) d�n(u; t).
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From the measure �n(·, t), we define for n�1, k�1 and t = (t1, . . . , tk) ∈ J k the product
measure �n,k(·; t) := ⊗k

i=1 �n(·; ti ), and then we consider the associated integral operator:

Ln,k(f )(t) :=
∫

I k

f (u) d�n,k(u; t) =
∫

I k

f (u1, . . . , uk) d�n(u1; t1) ⊗ · · · ⊗ d�n(uk; tk),

for t = (t1, . . . , tk) ∈ J k , and f ∈ L1(I k, E, �n,k(·; t)).

We fix s = (si)i �1 ∈ IN∗
. For f : IN∗ → E, the symbol fk stands for the function fk :

I k → E defined as fk(t1, . . . , tk) := f (t1, . . . , tk, sk+1, sk+2, . . .). In the other direction, for
f : I k → E, the symbol f̃ denotes the function f̃ : IN∗ → E, defined as f̃ (t) := f (t1, . . . , tk).
Finally, for f : IN∗ → E such that fn ∈ L1(In, E, d�n,n(·; t)), for any t ∈ J N∗

, we define

Ln(f ) := (Ln,n(fn)) .̃

It is immediate to check that Ln is a monotonically regular operator.
One can hope that some property of Ln,1 are inherited from Ln. For instance, choosing Ln,1 =

Bn,1, the Bernstein operators, s = 0, it results L2
n(f ) = (Bn,n(fn))̃, for f : � → E. If we define

L2
n with a generic s ∈ �,

L2
n(f )(t) :=

∑
h∈An

f

(
h1

n
, . . . ,

hn

n
, sn+1, sn+2, . . .

)
�n,h(t),

then this variation is not essential. Indeed, Theorems 2.3, 2.4 and their proofs are the same, and
with a small change of the function f̄ , one can show that analogue properties of 4 and 5 of
Theorem 1.1 do not hold.

Theorem 4.1. In the same setting of Subsection 2.2 and with the above notation, let I = J be
a real interval with 0 ∈ I , �′ := {t ∈ H | ti ∈ I }, and fix s = (si)i �1 ∈ �′. We assume that
e2 ∈ L1(I, R, �n(·; t)) for every n�1 and t ∈ J , Ln,1(e1) = e1 and Ln,1(e2) = e2 + e2o(1) +
e1o( 1√

n
) + o( 1

n
).

1. If F ∈ K(�′, E, 1 + ‖·‖2), or F ∈ UCB(�′, E), then

Ln(F ) → F

uniformly on relatively compact subsets of �′.
2. If Ln,1(Lip1(I )) ⊂ Lip1(I ), then Ln(LipM(�′)) ⊂ Lip√

nM(�′).

We note that the conditions of Theorem 4.1 are satisfied by many operators, e.g. Szász–Mirakjan
operators, Baskakov operators, Post–Widder operators.

Remark 4.2. In the assumption Ln,1(e2) = e2+e2o(1)+e1o( 1√
n
)+o( 1

n
), the last term cannot be

substituted with the weaker condition O( 1
n
). Indeed, let Ln,1 be the Gauss–Weierstrass operators,

defined for t ∈ R and f ∈ C(R, exp(e2)), as

Ln,1(f )(t) :=
√

n




∫
R

f (u)e−n(u−t)2
du.
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It results Ln,1(1) = 1, Ln,1(e1) = e1, Ln,1(e2) = e2 + 1
2n

and Ln,1 approximates uniformly on
bounded sets the functions belonging to C(R, exp(e2)) (see [6]).

Choosing si = 0, with same notation as before, we get Ln(‖·‖2)(t) = ∑n
i=1 t2

i + 1/2, which
converges to ‖t‖2 + 1/2. Therefore, we cannot conclude that Ln is an approximation process for
functions belonging to K(H, R, 1 + ‖·‖2).

In order to prove the preserving property 2, we give the following result.

Proposition 4.3. Let (I, d) be metric space. Consider the metric space I k endowed with the
distance dk(t, �) := ∑k

i=1 d(ti , �i ). If Ln,1(Lip1(I )) ⊂ Lip1(I ), then for any k�1 we have
Ln,k(Lip1(I

k)) ⊂ Lip1(I
k).

Proof. We shall argue by induction on k. For k = 1, the property holds by hypothesis. We assume
that it is true for k − 1. Let f ∈ Lip1(I

k), t, � ∈ I k−1 and tk, �k ∈ I . Using the integral nature
of the operators Ln,k , one gets

Ln,k(f )(t, tk) − Ln,k(f )(�, �k)

=
∫

I

[
Ln,k−1(f (·, uk))(t) − Ln,k−1(f (·, uk))(�)

]
d�n(uk; tk)

+
∫

I k−1

[
Ln,1(f (u, ·))(tk) − Ln,1(f (u, ·))(�k)

]
d�n,k−1(u; t).

Thus, since f|I k−1 ∈ Lip1(I
k−1), we obtain∥∥Ln,k(f )(t, tk) − Ln,k(f )(�, �k)

∥∥
�
∫

I

dk−1(t, �) d�n(uk; tk) +
∫

I k−1
d(tk, �k) d�n,k−1(u; t)

= dk((t, tk), (�, �k)),

which allows us to conclude the proof of the proposition. �

Proof of Theorem 4.1. The proof of the approximation property ofTheorem 4.1, usingTheorems
3.5 and 3.6, is the same of Theorems 2.3 and 2.4.

In the setting of Theorem 4.1, the inclusion Ln(LipM(�′)) ⊂ Lip√
nM(�′) is now immediate.

Indeed, if f ∈ Lip1(�
′), then also its restriction fk belongs to Lip1(I

k), for every k�1. Hence,
Ln,n(fn) ∈ Lip1(I

n), and from inequality (3.8), we get the thesis. �
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