
JOURNAL OF COMBINATORIAL THEORY (A) 22, 194-230 (1977) 

Convex Polyhedra of Doubly Stochastic Matrices. 

I. Applications of the Permanent Function 

RICHARD A. BRTJALDI* 

Gziversity of Wisconsin, Madison, Wisconsin 53706 

AND 

PETER M. GIBSON’ 

University of Alabama in Huntsville, Huntsville, Alabama 35807 

Communicated by the Managing Editors 

Received March 21, 1975 

The permanent function is used to determine geometrical properties of the set 
52, of all II x it nonnegative doubly stochastic matrices. If  ,F is a face of Q, , 
then F corresponds to an n x n (0, I)-matrix A, where the permanent of A is the 
number of vertices of 3. I f  A is fully indecomposable, then the dimension of 9 
equals u(A) - 2n + 1, where u(A) is the number of I’s in A. The only two- 
dimensional faces of s2, are triangles and rectangles. For n > 6, G’s has four 
types of three-dimensional faces. The facets of the faces of Sz, are characterized. 
Faces of 52, which are simplices are determined. If  .F is a face of Q, which is two- 
neighborly but not a simplex, then S has dimension 4 and six vertices. All k- 
dimensional faces with k + 2 vertices are determined. The maximum number of 
vertices of a k-dimensional face is 2”. All k-dimensional faces with at least 2L-1 + 1 
vertices are determined. 

1. INTRODUCTION 

In this paper we investigate some geometrical properties of the set Qn, 
of all y1 x y1 nonnegative doubly stochastic matrices. It is a well-known 
fact that Q, is a closed bounded convex polyhedron in Euclidean &space 
whose dimension is (fz - 1)2 and whose vertices are the n x II permutation 
matrices (see, e.g., [ll, pp. 95-1011). One reason for the interest in fi, is 
that it is the polyhedron that arises in the optimal assignment problem [5, 
pp. 11 l-1 121. Doubly stochastic matrices have been studied quite extensively, 
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especially in their relation with the van der Waerden conjecture for the 
permanent [12]. Apart from some applications in combinatorics and pro- 
bability, the permanent, unlike the determinant, appears to be a specialized 
function with limited application in mathematics. However, in our approach 
to the investigation of properties of J2, , the permanent turns out to be a very 
useful tool. 

The nonempty faces of L?, correspond to n x n matrices of O’s and l’s 
whose rows and columns can be permuted to give a direct sum of ful!y 
indecomposable matrices. Let A be an n x n fully indecomposable matrix 
of O’s and 1’s. The number of vertices of the face F corresponding to A 
equals the permanent of A. We shall see that the dimension of 9 is given 
by CT(A) - 212 + 1, where CT(A) is the total number of l’s in A. Since the 
number of vertices of 9 exceeds its dimension, we conclude that 
per A 3 a(A) - 2n + 2, which is an inequality for the permanent due to 
Mint [13]. We determine when equality holds in this inequality and in this 
way determine all faces of 8, which are simplices. 

The faces of Q, are themselves convex polyhedra, and we determine their 
facets. The faces of L?, have rather special properties which, in general, are 
not shared by other convex polyhedra. The only two-dimensional faces 
of s2, are triangles and rectangles. Also, there are only four types of three- 
dimensional faces, and we determine them. The convex polyhedron J& is 
four-dimensional and two-neighborly, and has six vertices. We shall show that 
any face of LIn, which is two-neighborly but not a si,mplex must lrave dimension 
4 and six vertices. Other special faces of Q, are investigated. We characterize 
the k-dimensional faces of L?, with k + 2 vertices. We show that a k-dimen- 
sional face of Q, has at most 2” vertices and determine when equality holds. 

In subsequent parts of this paper, other properties of Q, are investigated. 
In particular, a number of results concerning the vertex-edge graph of faces 
of Qn, are derived. We also look more thoroughly at general combinatorial 
and affine properties of faces of 52, . 

2. BASIC PROPERTIES 

An n x 12 real matrix A is doubly stochastic provided all row and column 
sums equal 1. Let D, denote the compact convex polyhedron of all n x n 
nonnegative doubly stochastic matrices. As already pointed out, the vertices 
of fin, are the n x y1 permutation matrices [4], and the dimension of 0, 
is (n - I)” [ll, pp. 9991011. We adopt the geometric terminology of 
Griinbaum [7]; in particular, a compact convex polyhedron with a finite 
number of vertices is called a polytope. If P is a fixed n x n permutation 
matrix and X is an n x n real matrix, then X + PX defines an orthogonal 
transformation of Euclidean &space which maps Q2, onto L?;t, . Since 
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given n x n permutation matrices Q, and Q2 there exists a permutation 
matrix P such that PQl = Q, , there exists such an orthogonal transfor- 
mation which maps Q, to Q2 . We shall often use this homogeneity property 
by fixing a particular permutation matrix. 

The polytope 0, consists of all n x n real matrices A’ = [xij] which satisfy 
the following constraints: 

Thus a,, is a polytope in the (IZ - I)“-dimensional linear manifold defined 
by Eqs. (2.2). We obtain the faces of Q, by replacing some of the inequalities 
of (2.1) by equalities. Note that because of the constraints given in (2.2), 
the constraints of (2.1) are not independent. Let KC {(i,j): i,.j = l,..., n> 
and determine a face F of Q2, by replacing (2.1) by 

xij = 0 Kid ci K). 

Let B = [b<j] be the /z x IZ (0, II-matrix, where bij = 1 if and only if (i,j) E K. 
Thus the face 9 consists of all IZ x n nonnegative matrices X = [xii] 
satisfying (2.2) and xij < bjj (i,,j = l,..., n). We denote this face by F(B). 
The n x 12 permutation matrices P such that P < B are precisely the vertices 
of the faces F(B). Hence if B’ is an n x n (0, I)-matrix such that for each 
permutation matrix P, P < B if and only if P < B’, then *F(B) = F(B’). 
As a consequence, if there exist Y, s E {I,..., n} with b,, = 1 for which there 
is no permutation matrix P = [pij] with pTs = 1 and P < B, then 
F(B) = F(B’), where B’ is obtained from B by replacing b,, by 0. Hence in 
determining the nonempty faces of 52, we need only consider those n x PZ 
nonzero (0, 1)-matrices B = [b,], with the property that b,, = 1 implies 
there exists a permutation matrix P = [yij] with prs = 1 and P < B. Such 
matrices B are said to have total suppovt [17]. 

Let A be an y2 x n nonnegative matrix. If n > I, A is jiurty itdecomposabk, 
provided there do not exist permutation matrices P and Q such that 

PAP = [;; Aoi], (2.3) 

where AI and A, are square matrices. If ~1 = 1, A is fully indecomposable 
if and only if A is positive. If A is doubly stochastic matrix of the form (2.3), 
then it follows easily that A, = 0. Hence it follows that if A is a doubly 
stochastic matrix, then there exist permutation matrices P and Q such that 
PAQ is a direct sum of fully indecomposable matrices. It follows from [16] 
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that a (0, l)-matrix has total support if and only if there exist permutation 
matrices P and Q such that PAQ is a direct sum of fully indecomposable 
matrices. Thus the nonempty faces of G’, are in one-to-one correspondence 
with the IZ x y1 (0, 1)-matrices which can be permuted to direct sums of fully 
indecomposable matrices. If A is an n x iz (0, I)-matrix with total support, 
then we say that the matrix A and the face F(A) correspond to each other. 
The matrix corresponding to G), is the n x n matrix K,,, all of whose entries 
are 1. Note that if P and Q are n x YI permutation matrices and AT is the 
transpose of A, then F(A), F(PAQ), and R(AT) are all congruent. 

Let A = [aij] be an n x II real matrix. Then the permanent of A is defined 

by 

per A = c fl GW , OES, i=l 
where S, is the symmetric group on (l,..., n>. The basic properties of the 
permanent can be found in the survey article [12]. If A is an rz x n (0, l)- 
matrix, then the permanent of A is the number of permutation matrices 
P with P < A. Thus if A is an n x n (0, 1)-matrix with total support, then 
the permanent of A is the number of vertices of the face of 52, corresponding 
to A. 

THEOREM 2.1. Let PI ,..., P, be distinct n x n permutations matrices. Let 
A = [aSi] be the n x n (0, l)-matrix such that aii = 1 if and only if the 
(i, j)-entry of at least one of the Pk’s is 1. Then A has total support and S(A) 
is the smallest face of 0, which contains the vertices PI ,..., P, . Moreover, 
P, ,..., Pt are the vertices of a face of .9, if and only if per A = t. 

ProoJ: From the definition of A, A has total support. Clearly, F(A) 
is a face containing PI ,..., Pt . Now suppose that B is a (0, l)-matrix with 
total support such that 9(B) contains PI ,..., Pt . Then Pi < B (i = l,..., t), 
so that A ,< B. Hence 9(A) C F(B). Therefore S(A) is the smaIIest face 
containing PI ,..., P+, . This, in turn, implies that P, ,..., P, are the vertices 
of a face if and only if they are the vertices of F(A). Since per A equals the 
number of vertices of S(A), PI ,..., P, are the vertices of S(A) if and only 
if per A = t. 

Let P be an n X n permutation matrix. Then the cycles of P are defined 
to be the cycles of the permutation in S, which corresponds to P. If Q is also 
an IZ x n permutation matrix, then the cycle number of P and Q, v(P, Q), 
equals the number of cycles of length greater than 1 of Pp’Q. Observe that 
v(P, Q) = v(Q, P) and that if I is the n x rz identity matrix, then ~(1, P) 
equals the number of cycles of length greater than 1 of P. If R is an n x n 
permutation matrix, then it is easy to verify that v(RP, RQ) = v(P, Q) = 
v(PA, QR). The following result is essentially the same as [I, Theorem 21. 
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THEOREM 2.2. Let P, Q be distinct n x n permutation matrices. Then 
v(P, (2) > 1 with equality if and only if P and Q are the vertices of a (one- 
dimensional) face of Qn, . 

ProoJ Clearly, v(P, Q) 3 1 if P # Q. By the homogeneity of J2-2, and 
the invariance properties of the cycle number we may take P = I. Let A 
be the matrix obtained from I and Q as in Theorem 2.1. There exists a permu- 
tation matrix R such that &R-l = L1 @ *.. @ L, @ I, where k = ~(1, Q) 
and for each i = l,..., k, Li has order at least 2 and is of the form 

1 0 ... 0 1 
1 1 ... 0 0 
;; ii. (2.4) 
0 0 ..’ 1 0 
0 o- .‘. 1 1 I 

Since R is a permutation matrix, per A = per RAR-1 = 2”. Hence, from 
Theorem 2.1, 1 and Q are the vertices of a face if and only if k = 1. 

We determine the relationship between the number of l’s in a (0, I)-matrix 
A with total support and the dimension of F(A) by first considering nearly 
decomposable matrices. An n x n (0, I)-matrix A is called nearly decom- 
posable provided it is fully indecomposable and no matrix obtained by 
replacing a 1 in A with a 0 is fully indecomposable. Given a fully indecom- 
posable nonnegative integral matrix B there exists a nearly decomposable 
(0, I)-matrix A with A < B. It has been shown [9, 181 that given an n x y1 
nearly decomposable matrix A with IZ > 1 there exist permutation matrices 
P and Q such that PAQ has the form 

. I 
1 1 

(2.5) 

where A, is an m x m nearly decomposable matrix with 1 < m < n and 
where unspecified entries are 0. Let A be a nearly decomposable matrix 
of order y1 > 3. It has been shown [IO, 141 that o(A) < 3(n - 1). Hence A 
has at least three rows (columns) with exactly two entries equal to 1. 

If F is a face of Gn, then dim F denotes the dimension of F. If A is any 
matrix, then o(A) denotes the sum of the entries of A. 
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LEMMA 2.3. Let A be an n x n nearly decomposable .matrix. Then 
dim g(A) > o(A) - 2n + 1. 

Proof. We induct on ~1. Clearly, the lemma is true for rz = 1. Let IZ > 1. 
We may assume A has the form (2.5), where A, is an m x m nearly decom- 
posable matrix with m < n. Let B be the matrix obtained from A by replacing 
the 1 in the (1, n)-position by a 0. Then clearly dim 9(B) = dim *(A,). 
Since A is fully indecomposable, there exists a permutation matrix P with 
P < A and P $ B. Hence dim F(A) > dim F(A,) + 1. Observing that 
a(A) - 2n + 1 = (o(A,) - 2n2 + 1) + 1, we conclude from the inductive 
assumption that dim S(A) 3 a(A) - 2n + 1. 

LEMMA 2.4. Let A = [aij] and B = [bij] be FZ x n fully in,decomposable 
(0, I)-matrices with A < B, A # B. Then dim F(A) < dim F(B). 

Proof. Choose I’, s such that a,., = 0, b,, = 1. Since B is fully indecom- 
posable, there exists a permutaton matrix P = [pii] such that P < B and 
prs = 1. Since P 4 A, P is not in F(A). Thus F(A) is a proper subface 
of F(B), so dim F(A) < dim 9(B). 

THEOREM 2.5. Let A be an n x n fully irzdecomposable (0, I)-matrix. 
Then 

dim 9((A) = a(A) - 2n + 1. 

Proof. Let B be a nearly decomposable matrix with B < A. Set 
t = n2 - a(B). Then there exist fully indecomposable matrices A, , A, ,..., A, 
such that A,, = B, At = K,,n, Aj = A for some j and 

AC < Ai+1 3 4h+J = +fi) + 1 (i = O,..., t - 1). 

By Lemma 2.3, dim F(B) > a(B) - 212 + 1. Hence it follows from 
Lemma 2.4 that 

dim S(A) > o(A) - 2n + 1. 

From Eqs. (2.2) we conclude that dim *(K,,,) < (fz - 1)2. So from 
Lemma 2.4 again, 

dim F(A) < a(A) - 212 + I. 

This proves the theorem. 
Since dim 9(A, @ .*. 0 A,) = dim F(A,) + ... + dim P(A,) for non- 

zero square (0, I)-matrices, we have the following. 
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COROLLARY 2.6. Let A be an n x rz (0, I)-matrix with total support. 
Let P and Q be permutation matrices such that PAQ = A, @ ..* @ At, 
where Ai is a f&y indecomposable matrix (i = I,..., t). Then 

dim F(A) = a(A) - 212 f t. 

Let A be an 12 x n (0, l)-matrix with total support, and let u equal the 
number of vertices of F(A) and d equal the dimension of F(A). We define 
d(A) by d(A) = v - d. Clearly d(A) > 1 with equality if and only if 
F(A) is a simplex. Since ~1 = per A and d = a(A) - 2n + t, where t is the 
number of fully indecomposable components of A, d(A) = per A - 
(a(A) - 2n + t). In particular, we obtain the following inequality, due 
to Mint [13]. 

COROLLARY 2.7. If A is an n x n fully indecomposable (0, I)-matrix, 
then per A > a(A) - 2n + 2. 

In the next section, our study of faces of fi, which are simplices will enable 
us to determine when equality holds in Mint’s inequality. 

Let A be an n x II (0, 1)-matrix with total support which is not a permu- 
tation matrix. Then there exist permutation matrices P and Q such that 
PAQ = A1 @ ... @ A, @ 1, where Ai is a fully indecomposable (0, l)- 
matrix of order at least 2 (i = l,..., s) and I is a (possibly vacuous) identity 
matrix. The matrices A, ,..., A, are called the nontrivial fully indecomposable 
components of A. They are unique up to permutations of their rows and 
columns. Clearly, dim S(A) >, s. 

THEOREM 2.8. Let A be an n x n (0, 1)-matrix with total support having 
s nontrivial fully indecomposable components. Then A(A) > s. Equality holds 
if and only if either s = 2 and each of the nontrivial fully indecomposable 
components corresponds to a face of dimension 1, or s < 1 and 9(A) is a 
simplex. 

Proof. We may assume A = A, @ ... @ A,, where A, is an ni x ni 
fully indecomposable matrix (i = I,..., t) with ni > 1 if and only if 1 < i < s. 
The conclusions of the theorem clearly hold if s = 0. Suppose s > 0. We 
have 

d(A) = per A - (a(A) - 2n f t) 

t 
= fi per Ai - 1 (a(Ai) - 2ni f 1). 

i=l i=l 
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Since ni = 1 for i = s T 1 ,..., t, and per Ai >, 2 for i = l,..., s, it follows 
that 

d(A) = fi per Ai - i co(&) - 24 + 1) 
i=l i=l 

= i d(A,) > s. 
i=l 

The theorem now follows. 
As an immediate consequence we have the following. 

COROLLARY 2.9. Let A be an n x tz (0, 1)-matrix with total support and 
let A be dyerent from a permutation matrix. Then S(A) is a simplex if and 
only if A has exactly one nontrivial fuIIy indecomposable component A, and 
d(A1) = 1. 

The special nature of the polytope a, is pointed out by the fact that the 
only planar faces that can arise are triangles (24mplices) and rectangles. 
Let A be an n x n (0, I)-matrix with total support, and suppose 
dim .9=(A) = 2. Suppose first that A has exactly one nontrival fully inde- 
composable component. Then we may assume A = A1 0 Lj where A, is 
fully indecomposable of order 12~ > 1. From Corollary 2.6 we conclude that 
o(A,) = 212, + 1. Since A, is fully indecomposable, A, has exactly one row 
sum equal to 3 and all others equal to 2. But this implies that per A, = 3 
(see, e.g., [15]). Thus F(A,) is a simplex. 

Now suppose that A has more than one nontrivial fully indecomposable 
component. Then A has exactly two nontrivial fully indecomposable com- 
ponents, and we may assume that A = L1 0 L, @ I, where L1 and Lz 
have the form of the matrix L of (2.4). Let P, and P, be the permutation 
matrices such that I + P, = L1 and I + P, = L, . Then F(A) has exactly 
four vertices, namely, 

V,=I@I@r, vz = PI 0 I @ I, 

v, = P, @ P, @ 1, v, = I @ P, @ I. 

It is easy to verify that VI , V, , V, , V, are the vertices of a polygon with 
consecutive sides orthogonal. Thus F(A) is a rectangle. 

Given a polytope of dimension k, we define a facet to be a face of dimension 
k - 1. For r? > 2, Qn, has exactly nz facets and they correspond to the 
y1 x n (0, I)-matrices obtained from K,,, by replacing a 1 with a 0. However, 
fin, has only two facets, since the replacement of any I in K,,, gives a matrix 

.582a/22/2-6 
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which does not have total support. More generally, we now determine the 
facets of the faces of J2, . Let A be an n x y1(0, 1)-matrix with total support. 
Then the faces of 9(A) are the faces 9(B) of fi, corresponding to (0, l)- 
matrices B for which B < A. Since A has total support, if B is obtained 
from A by replacing a 1 by a 0, then dim F(B) < dim P(A). Hence all of 
the facets of P(A) can be found among the faces 9(B), where B is obtained 
from A by replacing a 1 by a 0. 

THEOREM 2.10. Let A = [aij] be a fully indecomposable (0, l)-matrix 
of order n > 1, and let a,, = 1. Let A’ be the matrix obtained from A by 
replacing ars by 0. Then F(A’) is a facet of F(A) if and only if either A’ is a 
fully indecomposable matrix or there exist permutation matrices P arid Q such 
that 

PAQ = Fi ii3TJ, pA72=!ii ~~~~~it 

where k > 2, A, ,...) Al, are fully indecomposable, and a(EJ = 1 for i = l,..., k. 

Proqf Observe that .F(A’) is a facet of 9(A) if and only if dim F(A’) = 
dim 9(A) - 1. If A’ is fully indecomposable, then by Theorem 2.5, 

dim F(A) = o(A) - 212 + 1 = o(A’) + I - 2n + 1 = dim P(A’) + 1. 

If A’ is not fully indecomposable, then there exist permutation matrices P 
and Q such that 

i 

A, 0 ... 0 Ek 
X2, A, ... 0 0 

PAQ= i ; 
x,&J x,-,,, ‘.. A,-, 

. > 
0 

x,1 x,2 : .I ... x,,,-, Ak 
(2.7) 

: 

Al 0 ... 0 0 
X2, A, ... 0 0 

PA’Q = ; J 

: .I 

X,-,,, A’,-,,, ... A;-, 
> 

6 
XL71 x?& ... Xk,,-1 Al, 

where k > 2 and A, ,..., Al, are fully indecomposabie. From Theorem 2.5, 

dim F(A) = i o(Ai) + c g(Xij) C 1 
i=l j<i 
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Since F(PA’Q) = F(A, 0 ... @ A,), from Corollary 2.6 we have 

dim %(A’) = i o(AJ - 2n + k. 
i=l 

Thus %(A’) is a facet of F(A) if and only if 

C CT&) = k - 1. 
jii 

cw 

Since A is fully indecomposable, there must be a 1 below each of A1 ,..., A,-, 
and a I to the left of each of A, ,..., Al, in the form (2.7). Thus (2.8) holds if 
and only if we have the form (2.6) as given in the statement of the theorem. 

COROLLARY 2.11. Let A = [aij] and B = [bij] be n X n (0, l)-matrices, 
where A is fXy indecomposable and B has total support. Then F(B) is a facet 
of F(A) if and only if one of thefollowing holds. 

(i) B is fully indecomposable and there exist r and s such that ars = 1 
and B is obtainedfrom A by replacing a,, by 0. 

(ii) B is not fully indecomposable and there exist permutation matrices 
P and Q such that 

A, 0 ... 0 Erc 
E1 A, ... 0 0 
i; ;I, 

i 

PBQ = A, @ ... I@ Ai<, (2.9) 
0 0 ... Alzpl 0 
0 0 ... EicpI Ak 

where for i = I,..., k, Ai is fully indecomposable and o(Ei) = 1. 

Proof. Suppose F(B) is a facet of F(A). Then B < A and dim F(B) = 
dim F(A) - 1. Hence there exist r and s such that ars = 1, b,, = 0. Let A’ 
be the matrix obtained from A by replacing ars by 0. Then 

F(B) C g(A’) C p(A), ,S-(A’) f F(A). 

Therefore, since p(B) is a facet of F(A), we conclude that S(B) = S(A’). 
It now follows from Theorem 2.10 that (i) or (ii) holds. 

The converse follows easily using Corollary 2.6. 
If A, ,..., At are fully indecomposable (0, I)-matrices then 

dim F(A, @ ... @ A,) = dim ,F(A,) + ... f- dim R(AJ. 

Thus if A is an IZ x n (0, I)-matrix with total support, Corollary 2.11 
can be used to determine the facets of F(A). 
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Let A = [aij] be a fully indecomposable (0, 1)-matrix of order 72 > 1. 
Let K = ((i, j): aij = I>. The face F(A) consists of all those real n x n 
matrices X = [*xij] satisfying 

We now show how Corollary 2.11 can be used to determine a minimal 
subset M of K such that .9(A) consists of all those real II x iz matrices 
X = [xij] satisfying (2.11) (2.12), and 

Xij 3 0 ((CA E w. (2.13) 

Because .9(A) is a polytope in the linear manifold of Euclidean n2-space 
defined by (2.11) and (X12), there may be several minimal sets AJ, but they 
all have the same cardinality. 

Let F1 :..., Fm be the facets of .F(A). From Corollary 2.11 we see that for 
each facet Ft of ,9(A) there exists a nonempty subset St = {(il j jr),..., (ire ,.jJ) 
of K such that if (II, U) E Si then a,,, = 1 and gt = F(B), where B is the 
(0, 1)-matrix with total support obtained from A by replacing airjr by 0 for 
I” = l,...: 7~. Moreover, if X = [Xij] is an Iz X n real matrix satisfying (2.10), 
(2.11), and (2.12), then xiXj, = a.. = xikik . If k = I, then B is a fully inde- 
composable matrix. If k > 1, then A and B have the form of (2.9) where 
ailjl ,..., aikj, are the l’s appearing in El ,..., E, in some order. The sets 
s 1 ,..,, S, are pairwise disjoint. The minimal subsets M of K such that (2.1 l), 
(2.12), and (2.13) are equivalent to (2.10), (2.1 I), and (2.12) are obtained by 
choosing one element from each of S, ,..., S,,, . 

3. MATRICES CORRESPONDING TO SIMPLICES 

In this section we determine all n x n (0, 1)-matrices A with total support 
such that g(A) is a simplex. We do this by determining all faces of S, 
which are two-neighborly polytopes. It turns out that almost all of these 
are simplices. Moreover, we shall see that a face g of Q2, is a two-neighborly 
polytope if and only if S- is two simplicial. 

Let n > 1 and let a = (il ,..., ik) and p = {j, ,..., j,) be nonempty subsets 
of (I,..., 12) of cardinality k < n. Let A be an n x n matrix. Then A[ol; p] 
denotes the k x k submatrix of A lying in rows il ,..., i, and columns.j, ,..., jlo 
and A(a; /3) denotes the n - k x n - k submatrix lying in rows outside 
rows i, ,..., in: and columns outside columns ,jl ,..., j, . We call A[a; /5’] and 
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A(a; ,0) complementary submatrices of A. If A is an n x rz nonnegative matrix 
then A is said to have property N provided for every pair A, , AZ of comple- 
mentary submatrices of A either per Al < 1 or per A, < 1. It is easy to see 
that if A has property N and P and Q are permutation matrices, then PAQ 
has property N. Also, AT has property N whenever A does. A polytope 9 
is said to be two-neighborly [7, pp. 122-1291 provided every pair of distinct 
vertices determines an edge (one-dimensional face) of 9’. Thus 9 is a two- 
neighborly polytope if and only if the vertex-edge graph of B is a complete 
graph. 

If P and Q are distinct 3 x 3 permutation matrices, then it is clear that 
v(P, Q) = 1. Hence J& is a two-neighborly polytope of dimension 4 with 
six vertices. We shall see that fin3 is essentially the only two-neighborly 
polytope which is a face of an L?, but is not a simplex. observe that the 
matrix i& corresponding to G$ has property N. More generally, we have 
the following. 

THEOREM 3. I. Let A be a (0, I)-matrix of order n > 1. Tlzen A has 
property N ifand only ifF(A) is two-neighborly. 

Proof. Suppose A does not have property N. Then there exist comple- 
mentary submatrices A, and AZ of A such that per A, >, 2 and per A, > 2. 
We may assume that 

Since per Ai 2 2, there exist distinct permutation matrices Pi < Ai and 
Qi < Ai (i = 1,2). If P = PI @ P, and Q = Q1 0 Q, , then clearly 
P, Q < A and v(P, Q) > 2. Hence F(A) is not two neighborly. 

Now suppose that F(A) is not two neighborly. Thus there exist permutation 
matrices P < A and Q < A such that v(P, Q) > 2. We may assume that 
P = land Q = Q, @ Q, @ Q3 , where Q, and Q2 are permutation matrices 
which correspond to cycles of length greater than 1. Since per(l$ Q,) >, 2 
and per(l+ QJ 3 2, we see that there exist complementary submatrices 
A, and A, of A such that per A, 3 2 and per A, 3 2. Hence A does not have 
property N. 

Let A = [aii] be an m x n real matrix with row vectors al ,..., CL,. We 
say A is contractible on column (respectively, row) k if column (respectively, 
row) k contams exactly two nonzero entries. Suppose A is contractible on 
column k with aik # 0 # ajlc and i # j. Then the nz -- 1 x II - 1 matrix 
Aii: k obtained from A by replacing row i with ajicui + aikaj and deleiing row j 
and column k is called the contraction of A on column k relative to rows i 
and j. If A is contractible on row k with ski # 0 # akj and i # j, then the 
matrix AkZij = (ALZkJT is called the contraction of A on row k relative to 
columns i and j. We say that A can be contracted to a matrix B if either B = A 
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or there exist matrices A,, A, ,..., A, (t 3 1) such that A, = A, A, = B, 
and A, is a contraction of A,-, for r = l,..., f. We observe that if a (0, 1) 
matrix B is a contraction of a fully indecomposable nonnegative integral 
matrix A, then A is a (0, I)-matrix. On the other hand, a contraction of a 
(0, I)-matrix is not necessarily a (0, l)-matrix. For this reason it is convenient 
to formulate some of our theorems for nonnegative integral matrices even 
though they do not have an obvious geometrical interpretation. 

LEMMA 3.2. Let A be a nonnegative integral matrix of order n > 1 and 
let B be a contraction of A. Then the following hold. 

(i) per A = per B. 

(ii) Let B be obtainedfrom A by a contraction relative to rows (respec- 
tively, columns) i andj, where rows (respectively, columns) i and j each contain 
at least two positive entries. Then A is fully indecomposable if and only if B 
is f&lly indecomposable. 

(iii) If A has property N, then B has property N. 

(iv) Let B be obtained from A by a contraction on a column or row 
whose two nonzero entries are 1’s. If B has property N, then A has property N. 

Proof. It suffices to consider the case where B is the contraction of A 
on column 1 relative to rows 1 and 2. Thus A and B have the form 

A=; ;. [ 1 0 c (3.1) 

where a # 0 # b. 

(i) Using the Laplace expansion of the permanent with respect to 
column 1, we obtain 

per A = a per c c 1 ’ + bper O1 il 1 c . 
Nence by the linearity of the permanent, per A = per B. 

(ii) Suppose B is not fully indecomposable. Then there exists an 
r x s zero submatrix O,,, of B where r j- s = n - 1. If O,,, is a submatrix 
of C, then clearly A has an r x (s + 1) zero submatrix where r + (s + 1) = n. 
Hence in this case A is not fully indecomposable. Suppose Or,, is not a sub- 
matrix of C. Since a and b are positive while 01 and /3’ are nonnegative, A 
has an (r + 1) x s zero submatrix where (r + 1) f s = n. Therefore A 
is not fully indecomposable. 

Now suppose A is not fully indecomposable. Thus A contains an r x s 
zero submatrix O,,, with r + s = n. If O,,, is contained in the last n - 2 
rows of A, then C, and thus B, contains an I’ x (s - 1) zero submatrix 
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with r + (s - 1) = n - 1. Let O,,, not be contained in the last n - 2 rows 
of A. Then, since a and b are positive, O,,, is contained in the last n - 1 
columns of A. Since rows 1 and 2 of A each contain at least two positive 
entries, O,,, is a submatrix of neither 01 nor p. Hence B contains an r - 1 x s 
zero submatrix with r - 1 + s = n - 1. Therefore B is not fully indecom- 
posable. 

(iii) Suppose A has property N. Let B, and B, be complementary 
submatrices of B. We may assume that B, is a submatrix of C. Then there 
exists a submatrix 

I 

A, = ; ;’ 1 1 0 C’ 
of A such that B1 is the contraction of A, on column 1 relative to rows 
1 and 2. From part (i) we see that per B, = per A, . Moreover, A, and B, 
are complementary submatrices of A. Since A has property N, either 
per B, < 1 or per B, < 1. Therefore B has property N. 

(iv) Suppose B has property N. We can assume A and B have the form 
given in (3.1) with a = b = 1. Let A, and A, be complementary submatrices 
of A. If either A, or A, is a submatrix of C, then it follows as in the proof of 
(iii) that there exist complementary submatrices B, and B, of B such that 
per A, = per B, and per A, = per B, . Since B has property N, we conclude 
that per Al < 1 or per A, < 1. Now consider the case where neither A, 
nor A, is a submatrix of C. First, suppose that A, or A, is 1 x 1. It suffices to 
assume that A, = [alj] where 1 < j < n. Then per A, = per B, where B, is the 
submatrix of B complementary to the 1 x 1 submatrix B1 = [alj + a,?]. 
Since B has property N and A is nonnegative, qj < 1 or per A, < 1. Now 
suppose that AI and A2 have order at least 2. We may assume that A, inter- 
sects row 1 and column 1 and A, intersects row 2. Then per A, = per B, , 
where BI is a submatrix of B of order one less than that of A,, and A, < B, , 
where B, is the complementary submatrix of BI in B. Since per A, < per B, 
and B has property N, it follows that per A, < 1 or per A, < 1. 

For an n x 12 matrix A, ri(A) denotes the sum of the entries in row i of A 
(i = I,..., n) and ci(A) denotes the sum of the entries in column i of A 
(i = I,..., 12). 

LEMMA 3.3. Let A = [aij] be a nonnegative integral matrix oforder n > 1, 
arzd let B = [bij] be obtained from A by a contraction on column 1 relative 
to rows I and 2, where a,, = azl = 1. Then o(B) = a(A) - 2, and 

r,(B) = r&4 + r2(A) - 2, 

r@) = r~+@), i=2 )...) n - 1, 

G(B) = cd4 i=l ,..., n - 1. 
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An analogous statement holds for a coiztraction oy1 any row or column whose 
two positive entries are 1’s. 

ProojI The matrices A and B have the form given in (3.1) with a = b = 1. 
It is clear from these forms that the lemma holds. 

Observe that if A is an n x y1 (0, 1)-matrix with total support which has 
property N, then A has at most one nontrivial fully indecomposable com- 
ponent. Thus, when considering property N we shall restrict our attention 
to fully indecomposable matrices. 

THEOREM 3.4. Let A be a filly indecomposabIe nonnegative integral 
matrix of order n 2 2. Then A has property N if and only if one of the following 
holds. 

(i) A can be contracted to K,,, . 

(ii) There exists an integer p with 0 < p < n - 1 and permutation 
matrices P and Q such that PAQ has the form 

FA “I Ai[ 0” (3.2) 

where A, is an n - p x p + I nonnegative integral matrix, and Al and Azr 
are (0, I)-matrices with exactly two l’s in each column. 

ProoJ We first show that if A satisfies (i) or (ii), then A has property N. 
Suppose A can be contracted to K3,3 . As already noted, K3,3 has property N. 
Since K3,3 is a (0, I)-matrix and A is fully indecomposable, A is a (0, I)- 
matrix, and it follows from (iv) of Lemma 3.2 that A has property N. Now 
suppose A satisfies (ii). We show by induction on n that A has property A? 
This is clear for II = 2, since then (3.2) takes one of the two forms 

Let n > 2. We may assume that A is of the form (3.2). First, suppose that 
0 < p < n - 2. Then A1 is not vacuous and the matrix A’ obtained from A 
by a contraction on column n has the form 

’ A,’ rt: 1 0 . 

By Lemma 3.2, A’ is a fully indecomposable nonnegative integral matrix of 
order n - 1. The matrix A,’ is an (n - 1) - p x p + I matrix, where 
0 < p < n - 2. If p = n - 2, then A,’ is vacuous and it follows that A’ 
satisfies (ii) with IZ replaced by YE - 1. Now let 0 < p < n - 3. Then the 
last n - p - 2 column sums of A’ are 2. Since A’ is a fully indecomposable 
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nonnegative integral matrix, A, ’ is a (0, 1)-matrix with exactly two l’s in 
each column. Hence A’ satisfies (ii) with M replaced by IZ - 1. Therefore by 
the inductive assumption A’ has property N. Thus by (iv) of Lemma 3.2, 
A has property N. Ifp = n - 1, then a similar argument using a contraction 
on row n of A shows that A has property N. Therefore if A satisfies (i) or (ii), 
A has property N. 

Now suppose A has property N. We show by induction on n that A satisfies 
(i) or (ii). If n = 2, this is clear. Now let n = 3. Suppose A + K3,3 . Then 
it is easy to see that A = [Q] has a zero entry. It suffices to assume as3 = 0. 
Further, suppose A does not satisfy (ii) withp = 1. Then row 3 or column 3 
contains an entry greater than 1. By symmetry we may assume aI3 = b > 1. 
Then, since A has property NP per A(1 ; 3) = 1. Therefore we may assume A 
has the form 

Since A is fully indecomposable, cgh > 0. By property N at most one of 
c, g, h is greater than 1. Since A does not satisfy (ii) with y = 1, either g > 1 
or h > 1. If g > 1, then c = h = 1 and A satisfies (ii) with p = 2. Using 
property N, we see that if h > 1, then d = 0 and c = g = 1. Hence in 
this case A satisfies (ii) with p = 0. Thus if n = 3 and A has property N, 
then A satisfies (i) or (ii). 

Let A = [aii] be of order n > 3 and have property AT. We first show that 
the inductive assumption implies that A has a row or column with two entries 
equal to 1 and all other entries equal to 0. Suppose A does not have this 
property. Let R (respectively, S) be the set of all i (respectively, j) such that 
there exists a fully indecomposable matrix H where H < A and H has only 
two positive entries in row i (respectively, column j). Since a nearly decom- 
posable matrix has at least one row and column with exactly two positive 
entries, the sets R and S are nonempty. For each i E R let mi be the number of 
positive entries in row i of A. For each j E S let nj be the number of positive 
entries in column j of A. Let 

r = min(mi : iE R}, s = min(ni : j ES>. 

Without loss in generality we may assume s < r. Let k be an element of S 
with nL = s. Thus there exists a fully indecomposable matrix H = [hij] such 
that H < A and H has exactly two positive entries in column k, say, h,, 
and 11,~ . Let A’ be the matrix obtained from A by replacing aiJZ by 0 for all 
i # u, v. Since H < A’ and H is fully indecomposable, we see that A’ 
is fully indecomposable. Since A’ < A and A has property N, it follows that 
A’ has property N. With no loss in generality we assume that. k = u = 1 
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and u = 2. Let B be obtained from A’ by contracting on column 1 relative 
to rows 1 and 2. Then 

By (iii) of Lemma 3.2, B has property N. By the inductive assumption, B 
satisfies property (i) or (ii). Suppose that B can be contracted to J&~. If 
n = 4, then B = K3,3 and it is easy to see that A’ is equal to one of the 
matrices 

Direct verification shows that if either of the O’s in column 1 of these two 
matrices is replaced by a positive integer, then the resulting matrix does not 
have property N. Since A has property N, A = A’. Now suppose n > 4. 
Since B is a fully indecomposable matrix of order y2 - 1 which can be 
contracted to K3,3 , it follows from Lemma 3.3 that o(B) = 2(n - 1) + 3. 
Hence, since n - 1 > 3, B has a column with exactly two entries equal to 1. 
Therefore, whenever B can be contracted to K3,3 , A has a column with two 
entries equal to 1 and all other entries equal to 0. 

Now suppose B satisfies property(ii). Thus there exist permutation matrices 
P and Q such that PBQ has the form (3.2), where A, is an (n - I) - p x 
p + 1 matrix with 0 < p < II - 2. If p # n - 2, then B has a column with 
two entries equal to 1 and all other entries equal to 0. Hence A has a column 
with this property. Now suppose p = n - 2. Then 

where A, is an IZ - 2 x n - 1 (0, 1)-matrix with exactly two l’s in each 
row. If the first row of B corresponds to a row of A,, then the first row of 
A has the property that two entries equal 1 and all other entries equal 0. 
Now suppose that the first row of B corresponds to the row A, of PBQ. 
Thus we may assume that A, = up + ba and A, = C. We now show that 
a,, = 0 for some i = 3,..., 12 by proving that s < 3. Let N be a nearly 
decomposable matrix with H < A. Since H has at least three rows with 
exactly two positive entries, there exists a t E {3,..., n> such that row t of N 
has exactly two positive entries. Hence t E R and s < Y < m, < 3. Since 
n > 3, it now follows that for some i = 3,..., n, ai, = 0 and row i of A has 
two entries equal to 1 and all other entries equal to 0. 
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By what we have just shown, A has a row or column with two entries 
equal to 1 and all other entries equal to 0. Let B be the matrix obtained 
from A by a contraction on a row or column with this property. With no 
loss in generality, we may assume that 

1 a: 
A= 1 p, [ 1 B= &i-P 

0 c 
L I c . 

Since B has property N, by the inductive assumption 3 satisfies property 
(i) or (ii). If B satisfies (i), then it is clear that A satisfies (i). Suppose B 
satisfies (ii). Then there exists an integer q with 0 < q < n - 2 and permu- 
tation matrices P’ and Q’ such that 

P’BQ’ = B’ = [;: 21, 

where B, is an (n - I) - q x 4 + I nonnegative integral matrix and B, 
and BBT are (0, 1)-matrices with exactly two l’s in each column. If the first 
row of B corresponds to one of the first (n - 1) - q rows of B’, then A 
satisfies property (ii), where p = q; that is, A, is an n - q x (I + 1 matrix. 
If the first row of B corresponds to one of the last q rows of B’, then A 
satisfies property (ii), where p = q f 1; that is, A, is an IZ - (q + 1) x 
(q + 1) + 1 matrix. Thus the theorem follows by induction on n. 

Using Theorem 3.4, we can now characterize faces of G5; which are 
simplices. Because of Corollary 2.9 we may restrict ourselves to faces corre- 
sponding to fully indecomposable matrices. 

THEOREM 3.5. Let A be a fully indecomposable (0, I)-matrix of order 
n > 2. Then S(A) is a simplex if and only if A satisfies property (ii) 
of Theorem 3.4 with 1 < p < n - 2. 

Proof. First suppose F(A) is a simplex. Then F(A) is clearly two 
neighborly, and hence by Theorem 3.1 A has property N. Thus A satisfies 
properties (i) or (ii) of Theorem 3.4. Assume that A satisfies (i). It follows 
from Lemmas 3.2 and 3.3 that d(A) = d(&,). Therefore d(A) = 2, which 
contradicts F(A) being a simplex. Thus A satisfies property (ii) with 
0 < p < n - 1. Suppose A satisfies (ii) withp = 0. Then Al is an n x n - 1 
(0, I)-matrix with exactly two l’s in each column. Hence, since A is a fully 
indecomposable (0, I)-matrix, there exists an i with 1 < i < n such that 
row i of A, contains exactly one 1 and it follows that the entry in row i 
of A, is a 1. Hence A satisfies (ii) with p = 1. A similar argument shows that 
if A satisfies (ii) with p = n - 1, then it also satisfies (ii) with p = II - 2. 
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Therefore if a(A) is a simplex, A satisfies property (ii) of Theorem 3.4 
with1 G-p <n-2. 

The converse follows from the fact that if A satisfies (ii) of Theorem 3.4, 
then per A = g(A,). More generally, it can be shown by induction on IZ 
that if A is an II x n fully indecomposable nonnegative integral matrix 
which satisfies (ii) of Theorem 3.4, then per A = (~(4~). Since the induction 
is essentially the same as the induction used in the proof of Theorem 3.4 
to conclude that such a matrix has property N, we omit it. From 
per A = u(A3) we see that d(A) = 1, and thus by Theorem 2.8 F(A) is a 
simplex. 

We now characterize faces of Q?, which are simplices but which are not 
properly contained in any other face which is a simplex. The r x s matrix, 
all of whose entries are 1, is denoted by KT,S . 

THEOREM 3.6. Let A be a (0, I)-matrix of order n > 2 with total stipport 
such that F(A) is a simplex. Then there does not exist a (0, 1)-matrix B of 
order n such that F(B) is a simplex, and F(A) is a proper subface of F(B) 

tf and only if 

(*) A is fully indecomposable and there exist an integer p with 1 < p < 
n - 2 and permutation matrices P and Q such that PAQ has the form 

(3.3) 

where A, and AzT haue exactly two l’s in each column. 

Proof. Suppose (*) holds. Since 1 < p < n - 2, each row and column 
sum of Kn--z),n+-l is at least 2. Let B be an n x n matrix obtained from A by 
replacing at least one 0 by a 1. Then B is fully indecomposable, and the 
total number of rows and columns of B with exactly two l’s is at most IZ - 2. 
Hence by Theorem 3.5 F(B) is not a simplex. 

Conversely, suppose (*) is not satisfied. If A is not fully indecomposable, 
it is not difficult to show that there exists a (0, 1)-matrix B of order IZ such 
that F(B) is a simplex and S(A) is a proper subface of 9(B). Suppose A is 
fully indecomposable. By Theorem 3.5, A satisfies (ii) of Theorem 3.4 with 
I < p < n - 2. Since (*) does not hold, A, # K,-,,D+, . Let B be an /Z x II 
matrix obtained by replacing a 0 of A corresponding to a 0 of A3 by a 1. 
Then B is fully indecomposable, and it follows from Theorem 3.5 that P(B) 
is a simplex. Since S(A) is a proper subface of F(B), this proves the theorem. 

For a real number X, [x] denotes the greatest integer which does 
not exceed x. From Theorem 3.6 we obtain the following upper bound for the 
number of vertices of a face of Sz, which is a simplex. 
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CQROLLARY 3.7. Let A be a (0, l)-matrix of order 11 > 2 such that S(A) 
is a simplex. Then 

per A < [(n + !)/2]” 

with equality if and only ifA satisfies (*) of Theorem 3.6 with tz -- 2p - 1 1 < 1. 

Corollary 3.7 gives an upper bound for the permanent of a fully indecom- 
posable (0; I)-matrix of order IZ > 2 for which equality holds in Mint’s 
inequality (Corollary 2.7). We now show that Mint’s inequality can be 
extended from (0, I)-matrices to nonnegative integral matrices and charac- 
terize those matrices for which equality holds. 

THEOREM 3.8. Let A be a jiiIIy indecomposable nonnegative integral 
matrix of order n 3 2. Then 

perA>a(A)-2n+2, 

with equality /fund otzly if A satisfies (ii) of Theorem 3.4. 

(3.4) 

Proof: We prove by induction on 5(A) that per A 3 a(A) - 2n + 2 
and if equality holds then A has property N. First suppose that A is a (0, l)- 
matrix. By Corollary 2.7, (3.4) holds. If equality holds, 9(A) is a simplex 
and by Theorems 3.4 and 3.5, A has property N. Now suppose A = [aif], 
where a,.$ > 1. Let B be the matrix obtained from A by replacing a,., by 
a T 8 - I. Then B is a fully indecomposable nonnegative integral matrix with 
5(B) = o(A) - 1. Since A is fully indecomposable, per A(v; s) > 1. Hence 
using the inductive assumption, we see that 

per A = per B + per A(r; s) 2 O(A) - 2n + 2. 

Suppose equality holds in this inequality. Then per A@; s) = 1 and by the 
inductive assumption B has property N. Let A, and A, be complementary 
submatrices of A. If CI,,~ appears in neither a nonzero term of per A, nor a 
nonzero term of per A,, then since B has property N, per A, < 1 or 
per A, < 1. Now suppose that ars appears in a nonzero term of per A, or 
per A, , say per A, . Let A,’ be the submatrix of A, which is complementary 
to the 1 x 1 submatrix [a,,] of A,. Then A,’ and A, are complementary 
submatrices of A(r; s) with per A I’ > 1. Thus since per A(r; s) = I, we see 
that per A, < 1. Hence, by induction on n, (3.4) holds with equality only if 
A has property N. Suppose equality holds in (3.4). Then A has property N, 
and it follows that A satisfies (i) or (ii) of Theorem 3.4. However, as we saw 
in the proof of Theorem 3.5, (i) does not hold. Hence (3.4) holds with equality 
only if A satisfies (ii) of Theorem 3.4. Xow suppose A satisfies (ii) of Theorem 
3.4. Then as we pointed out in the proof of Theorem 3.5, per A = a(&), 

and it follows that equality holds in (3.4). 
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We now characterize those matrices satisfying (ii) of Theorem 3.4 which 
are fully indecomposable. In view of Theorem 3.5 this characterization shows 
how to construct all faces of Q2, which are simplices. Later we shall charac- 
terize fully indecomposable matrices which can be contracted to &a . 
It follows from Theorems 3.1, 3.4, and 3.5 that this will show how to deter- 
mine all two-neighborly faces of 9, which are not simplices. 

Let G be a simple graph [3] with vertices v1 ,..., ck and edges e, ,..., e,, . 
Then the vertex-edge incidence matrix of G is the k x m (0, I)-matrix 
C = [cij], where cij = 1 if and only if vi is incident with ej . Observe that C 
has exactly two I’s in each column. If G is a tree [3], then m = k - 1. 

THEOREM 3.9. Let n and p be integers with n > 2 and 0 < p < n - 1, 
and let A be an n x n matrix with 

where A3 is an n - p x p + 1 nonnegative integral matrix and A, and AzT 
are (0, I)-matrices with exactly two l’s in each column. Then A is fully inde- 
composable if and only sf A, and AzT are vertex-edge incidence matrices of 
trees and A has at least two positire entries in each row and column. 

Proof. First suppose that A is fully indecomposable. Then clearly A has 
at least two positive entries in each row and column. If p = n - 1, then A, 
does not appear in A. Assume that p < n - 2. Since A, is a (0, I)-matrix 
with exactly two l’s in each column, Al is the vertex-edge incidence matrix 
of a graph G. Suppose G is not a tree. Since G has n - y vertices 
and n -p - 1 edges, G is not connected. Thus the vertices of G can be 
partitioned into two nonempty sets so that no edge of G joins a vertex of 
one set with a vertex of the other. This implies that there exist permutation 
matrices P and Q such that 

where B, is an r x s matrix with 0 < r < n - p. Hence A contains an 
n - r x s zero matrix and a p + r x (n - p - 1) - s zero matrix. Observe 
that IZ _ r + s > n if s > r, while p + r + (n - p - 1) - s > IZ if 
s < r - 1. This contradicts the fact that A is fully indecomposable. Hence 
G is a tree. A similar argument shows that if A, appears in A then AZT is 
the vertex-edge incidence matrix of a tree. 

Now suppose that Al and A,= are vertex-edge incidence matrices of trees 
and A has at least two positive entries in each row and column. We show by 
induction on n that A is fully indecomposable. This is clearly so if fz = 2 
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or 3. Let n > 3. Then either A, has at least two columns or A, has at least 
two rows. It suffices to assume that A1 has at least two columns. Let G be 
a tree with vertex-edge incidence matrix A, . There is no loss in generality 
in assuming the last column of Al corresponds to a pendant edge of G and 
that the vertices incident with this edge correspond to the first two rows of A, . 
Let B be the matrix obtained from A by a contraction on column n relative 
to rows 1 and 2. Then 

Since A,’ is obtained from A, by a contraction on a column of A, corre- 
sponding to a pendant edge of the tree G, it is clear that Al’ is the vertex- 
edge incidence matrix of a tree. Since A 2T is the vertex-edge incidence matrix 
of a tree, every column of A2 contains at least one 1. Suppose that column 
k of A, contained only one 1. Then column k of A,, and hence column k 
of As’, contains at least one positive entry. Therefore the first p -t 1 columns 
of B each contain at least two positive entries. Moreover, since A,’ is the 
vertex-edge incidence matrix of a tree, the other columns of B each contain 
at least two positive entries. Since A has at least two positive entries in each 
row, it is clear that each row of B other than possibly row 1 contains at least 
two positive entries. Since row 1 or row 2 of A, corresponds to a pendant 
vertex of G, either row 1 or row 2 of A, contains a positive entry. Therefore 
row 1 of A,’ contains a positive entry, and it follows that row 1 of B contains 
at least two positive entries. Hence by the inductive assumption B is fully 
indecomposable. Since A has at least two positive entries in each row, it 
follows from (ii) of Lemma 3.2 that A is fully indecomposable. This completes 
the proof of the theorem. 

From Theorem 3.9, and Cayley’s formula for the number of labeled trees, 
we conclude that the number of fully indecomposable matrices of the form 
(3.3), where A, and AtT have exactly two l’s in each column, is equal to 
(p $ l)p-l(lz - ,)n-,-2. 

Let B = [&I be a nearly decomposable (0, I)-matrix of order IZ > 2 
such that per B = o(B) - 212 + 2. It follows from Theorem 3.5 that there 
exist permutation matrices P and Q such that PBQ = A = [aij] is a nearly 
decomposable matrix satisfying the hypotheses of Theorem 3.9. Let ars = 1. 
If a,,, corresponds to an entry of A, , then column s of A contains exactly 
two 1’s. If a,., corresponds to an entry of A,, then row I’ of A contains 
exactly two 1 ‘s. Suppose that ars corresponds to an entry of A,. If row I 
and column s of A each contain at least three I’s, then it follows from 
Theorem 3.9 that the matrix A’ obtained from A by replacing ars by 0 is 
fully indecomposable. Therefore since A is nearly decomposable, either row 
or column s of A contains exactly two 1’s. Hence b<j = 1 implies either row i 
or column j of B contains exactly two 1’s. This property was obtained also 
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by Hedrick [lo], and it forms part of his characterization of nearly decom- 
posable (0, I)-matrices B of order n for which per B = a(B) - 212 + 2. 

A polytope is called two-simplicial provided every two-dimensional face 
is a simplex. Let 9 be a polytope which is not two-simplicial. Hence 9 has 
a two-dimensional face 9 which is not a simplex. Thus two vertices of .F 
do not determine an edge of g, so that .Y is not two-neighborly. Hence if 
a polytope is two-neighborly, it is two-simplicial. For faces of Q, the converse 
holds. 

THEOREM 3.10. A ,face 9 of fi, is two-simplicial if and only if it is two- 
neighborly. 

Proof. Suppose F is not two-neighborly. Then there exist vertices P and 
Q of 9 such that v(P, Q) >, 2. Hence there exist vertices P’ and Q’ of .F 
such that v(P’, Q’) = 2. Thus .F has a two-dimensional face which is a 
rectangle, and 9 is not two-simplicial. In view of the discussion preceding 
the theorem, this completes the proof. 

THEOREM 3.11. Let A be an n x IZ (0, lj-nzatrix with total support such 
that A cannot be contracted to K3,3 . Then the following are equivalent. 

(i) .9(A) is two-simplicial. 

(ii) F(A) is two-neighborly. 

(iii) .F(Aj is a simplex. 

This theorem is a direct consequence of Theorem 3.1, 3.4, 3.5, and 3.10. 
We conclude this section with a characterization of those (0, 1)-matrices 

which can be contracted to K3,3 . 

THEOREM 3.12. Let A be a fully indecomposable nonnegative integral 
matrix of order n 3 3. The following are equivalent. 

(i) A can be contracted to K3,3 . 

(ii) per A = 6, a(A) = 2tz + 3, and there exist permutation matrices 
P and Q such that H = PAQ, where per H[l,..., n - 3; l,..., n - 31 > 0 
(for n > 3), arzd the last three roll’ and column sums of H each equal 3. 

Proof. We first prove by induction on n that (i) implies (ii). If n = 3, 
this is trivial. Now let n > 4 and suppose A,, , A, ,..., A,-, are matrices such 
that A, = A, An-3 = K3,3, and A, is a contraction of A,-, for r = l,..., n - 3. 
Since K3,3 is a (0, lj-matrix, A must be (0, 1)-matrix. Hence it follows from 
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Lemmas 3.2 and 3.3 that per A = 6 and a(A) = 2n + 3. Without loss in 
generality we may assume that 

1 01 
A= 1 p, A,= “ZP. i 1 0 c 

[ 1 
Since A, can be contracted to K3,3 , it follows by the inductive assumption 
that there exist permutation matrices PI and Q1 such that 

where G,, is 3 x 3, the last three row and column sums of G each equal 3, 
and per G,, > 0. If a(ol + p) = 3, then we may assume that o(a) = 1 and 
@) = 2. It is then not difficult to show that A satisfies (ii). Now suppose 
suppose IJ(O~ + /3) = 2, so that U(E) = @) = 1. It is clear that there 
exist permutation matrices P and Q such that 

where H,, is a 3 x 3 matrix, the last three row and column sums of H each 
equal 3, and G,, is a contraction of HII . Since per G,, > 0, it follows from 
(i) of Lemma 3.2 that per H,, > 0. Therefore (i) implies (ii). 

We now prove by induction on n that (ii) implies (i). Let ?z = 3. Suppose 
A = [aif] satisfies (ii) but A # K3,3 . Then A must have an entry equal to 0. 
There is no loss in generality in assuming that a,, = 0. Moreover, since A 
is fully indecomposable with first row sum and first column sum equal to 3, 
we may assume that aI2 = azl = 1 and aI3 = asI = 2. Now since all other 
row and column sums of A equal 3, we see that A must be one of the two 
matrices 

Since neither of these matrices has permanent equal to 6, this is a contra- 
diction. Thus (ii) implies (i) for IZ = 3. Now let n >, 4, and suppose that A 
satisfies (ii). It follows that the matrix H = ‘[hii] of (ii) is a fully indecom- 
posable nonnegative integral matrix of order y1 > 4 with g(H) = 2n + 3 
and the last three column sums of H each equal to 3. Therefore there exist 
integers Y and s with 1 < Y < s < y1 such that h,, = h,, = 1 and hi, = 0 
for i # r, s. Let G be the matrix obtained from H by a contraction on 
column 1 relative to rows s and r. Using Lemmas 3.2 and 3.3, we see that G 
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is a fully indecomposable nonnegative integral matrix with per G = 6, 
a(G) = 2(n - 1) + 3, and the last three column sums each equal to 3. 
Let H1 = H[l,..., II - 3; l,..., n - 31 and G1 = G[l,..., II - 4; I,..., n - 41 
(for n > 4). Since per Ei, > 0, we see that r < y1 - 3. Therefore by 
Lemma 3.3 it follows that the last three row sums of G each equal 3. If 
n = 4, then G satisfies (ii). Let y1 > 4. First suppose that s > n - 3. Then 
h,, is the only positive entry contained in the first column of HI , and it 
follows that per H,(r; 1) = h,, per H,(r; 1) = per Hr > 0. Therefore, since 
G1 = H,(u; 1), G satisfies (ii). Now suppose that s < n - 3. Then G1 is a 
contraction of HI . By (i) of Lemma 3.2, per G1 = per HI > 0. Therefore G 
satisfies (ii). By the inductive assumption G can be contracted to &&. Hence 
H, and thus A, can be contracted to KS.3 . Therefore (ii) implies (i). 

Observe that Theorem 3.12 implies that a fully indecomposable nonnegative 
integral matrix of order y1 3 3 which satisfies (ii) must be a (0, 1)-matrix. 

4. ~-DIMENSIONAL FACES WITH k + 2 VERTICES 

In Section 3 it was shown that if 9 is a two-neighborly face of Q’, which is 
not a simplex, then F has dimension 4 and six vertices. In this section all 
k-dimensional faces of Qn with k + 2 vertices are determined. 

We shall use the following lemma in obtaining our characterization of 
k-dimensional faces of Q2, with k + 2 vertices. Its statement and proof are 
similar to those of Theorem 3.9. 

LEMMA 4.1. Let n and r be integers with n 3 2 and 1 < r < n - 1, 
and let A be a nonnegative integral matrix of the form 

A, AI A, 
i 1 A, 0 0, (4.1) 
A, 0 1 

where A, is an r x n - r matrix, and A, and A,= are (0, I)-matrices with 
exactly two l’s in each column. Then A is fully indecomposable if and only if 
A, and A,= are vertex-edge incidence matrices of trees, A has at least two 
positive entries in each row and column, and at least one entry of A, is positive. 

Proof. First suppose that A is fully indecomposable. Then it follows that 
A has at least two positive entries in each row and column and that A, is 
not a zero matrix. As in the proof of Theorem 3.9, it follows that Al and AzT 
are vertex-edge incidence matrices of trees. 

Now suppose that AI and A,= are vertex-edge incidence matrices of trees, 
A has at least two positive entries in each row and column, and at least one 
entry of A, is positive. We show, by induction on n, that A is fully indecom- 
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posable. It is not difficult to verify this for n = 2 and 3. Now let y1 > 3. 
First suppose that A, has at least two columns. Let G be the tree whose vertex- 
edge incidence matrix is A, . Let B be the matrix obtained from A by a 
contraction on a column of A corresponding to a pendant edge of G. As in 
the proof of Theorem 3.9. it follows that we can apply the inductive assump- 
tion to B to conclude that B is fully indecomposable. Using (ii) of Lemma 3.2, 
we conclude that A is fully indecomposable. If A, has at least two rows, a 
similar argument can be used to show A is fully indecomposable. The only 
case left to consider is when n = 4 and r = 2. In this case it can be verified 
that a contraction on column 3 yields a fully indecomposable matrix. Hence 
the theorem follows. 

Let A be an n x N nonnegative integral matrix. We define rl”(A) to be 
per A - (o(A) - 2,” + 1). It follows from Theorem 3.8 that if A is fully 
indecomposable, A(A) 3 1. It follows from Section 2 that if A is a fully 
indecomposable (0, I)-matrix, then A(A) = A(A), where A(A)I was defined 
to be ZI - d for z, and d, respectively, the number of vertices and the 
dimension of S(A). 

LEMMA 4.2. Let A be a fully indecomposable nonnegative integral matrix 
of order n > 2. Let b be a positive integer, and let r, s be integers with 1 < r, 
s < n. Let B be the matrix obtained by adding b to the (r, s)-entry of A. Then 
J(B) 2 A(A) with equality ifand only ifper A(r; s) = 1. 

ProoJ Using elementary properties of the permanent, we see that 

J(B) - J(A) = b(per A(r; s) - 1). 

Since A is fully indecomposable, per Jr; s) 2 1 and the lemma follows. 

LEMMA 4.3. Let n and r be integers with n > 1 and 1 < r < n, and let A 
be an n x n nonnegative integral matrix with 

where A, is an r x (n - r) + 1 matrix, and A, and A,= are vertex-edge 
incidence matrices of trees. Then per A = G(AJ and A’(A) = 1. 

The lemma follows by induction on n using a contraction on a row or 
column of A corresponding to a pendant edge of a tree associated with 
A, or A,=. 

THEOREM 4.4. Let A be a fully indecomposable nonnegative integral 
matrix of order n > 2. Then A”(A) = 2 if and only if one of the following holds. 
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(i) A can be contracted to K3,3 . 

(ii) There exist positive integers r, s, and t with r f s + t =L: n + I 
andpermutation matrices P and Q such that PAQ has the form 

where M, is an r X s matrix, M, is a t X t (0, I)-matrix with u(MJ = 2t - 1, 
M, , and MST are (0, I)-matrices with exactly two l’s in each column, and the 
first column sum of ill4 and MST is 2 and all other column sums of M4 and 
M5T are 0. 

Proof. We first show that if A satisfies (i) or (ii), then d(A) = 2. If A 
can be contracted to K3,3 , then d(A) = A(A) = 2. Now suppose A satisfies 
(ii). Let B be the matrix given in (4.2). Suppose t > 1. Since B is fully 
indecomposable and a(M,) = 2t - 1, a contraction on the last column of B 
results in a fully indecomposable matrix satisfying (ii) with t replaced by 
t - 1. Hence we may assume that t = 1. Let B’ be the matrix obtained from 
B by replacing the 1 in the (n, n)-position of B by 0. Then 

per B = per B(n, rz) + per B’ 

= per B(n, M) t per[MI n/c,] per J42 [ 1 M . 
5 

Using Lemmas 4.1 and 4.3, we see that 

per B = u(M3) i- o(M,) o(A4,) = o(M3) f 4. 

Since o(B) = o(M,) + 212 - 1, it follows that J(B) = 2. Therefore if (i) or 
(ii) holds, J(A) = 2. 

Now suppose z(A) = 2. We show by induction on n that A satisfies 
(i) or (ii). Suppose IZ = 2. Then 

where a, b, c, and dare positive integers. Since z(A) = 2, it follows that 

(a - l)(d - 1) + (b - I)(c - 1) + 1 = 2. 

Therefore there exist permutation matrices B and Q such that 

where x is a positive integer. Hence A satisfies (ii) with r = s = t = 1. 
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Let IZ > 3. We first show that if A # K3,3, then A has a row or column 
which contains exactly two positive entries. Suppose A # K,,, and every 
row and column of A contains at least three positive entries. Let G be the 
(0, 1)-matrix obtained from A by replacing each positive entry by 1. Then G 
is fully indecomposable and each row and column of B contains at least 
three 1’s. Suppose that n = 3. Then G = K3,3. Since A i K3,3, some 
entry of A is greater than 1. Using Lemma 4.2, we conclude that 
d(A) > J(K& = 2. Therefore n > 3. Let H be a fully indecomposable 
matrix obtained from G by replacing some 1 by a 0. Since n > 3, it follows 
from Theorem 3.5 that F(H) is not a simplex. Hence J(H) = d(H) 3 2. 
Since each row of the fully indecomposable matrix G contains at least three 
l’s, it follows from Hall’s inequality [8] that per G(i,j) > 2 for i, j = I,..., n. 
Hence by Lemma 4.2, z(A) 3 z(G) > J(H) 2 2. Therefore if A # K3,3, 
some row or column of A contains exactly two positive entries. 

We now show that the inductive assumption implies that if A cannot be 
contracted to K3,3 , then A has a row or column with two entries equal to 1 
and all other entries equal to 0. Assume A cannot be contracted to K3,3 . 
Without loss in generality we may assume that the first two entries in column 1 
of A are positive and all other entries in column I are 0. Let B be the matrix 
obtained from A by a contraction on column 1 relative to rows 1 and 2. 
Then 

A=; ;, i 1 0 c B=,ra;ba], 

It is easy to verify that 

J(A) - ii(B) = (a - I)(c@) - 1) + (b - I)(o(ol) - I). (4.3) 

Hence 2 = d”(A) > ii”(B) > 1. Suppose first that d”(B) = 1. Then by 
Theorem 3.8, B satisfies property (ii) of Theorem 3.4. In this case it follows 
that A has a row or column with two entries equal to 1 and all other entries 
equal to 0. Now suppose that J(A) = z(B) = 2. We consider two cases 
according to whether n = 3 or n > 3. Let n = 3. Since A is a fully indecom- 
posable nonnegative integral matrix, it follows from (4.3) that a = I or 
o(~)=l,andb=loro(ol)=l.Henceifa=1orb=l,Ahasarowor 
column with two entries equal to 1 and all other entries equal to 0. Suppose 
that a > 1 and b > 1. Then o(a) = u(p) = 1 and we may assume A equals 

al 0 

[ 1 b0 I. 
0 Cl c2 
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Since A(A) = 2, it follows that (a - l)(c, - 1) + (b - l)(cZ - 1) = 1. 
Hence c1 = 1 or c2 = 1, and A has a column with two l’s and one 0. Now 
suppose n > 3. Since A cannot be contracted to i’&, by the inductive 
assumption B satisfies (ii). If r > 1, then Ml of (4.2) is nonvacuous, and each 
column of M, corresponds to a column of B with two entries equal to 1 
and all other entries equal to 0. Ifs > 1, then each row of M, corresponds 
to a row of B with two entries equal to 1 and all other entries equal to 0. 
Since 11 > 3, if r = s = 1, then t >, 2 and the last column of M, corresponds 
to a column of B with two entries equal to 1 and all other entries equal to 0. 
It follows that A has a row or column with two entries equal to 1 and all 
other entries equal to 0. 

We now show that the inductive assumption implies that if A does not 
satisfy (i), then A satisfies (ii). Suppose that A cannot be contracted to & . 
With no loss in generality, we may assume that the first two entries in 
column 1 of A are 1 and all other entries in column 1 are 0. Let B be the matrix 
obtained from A by a contraction on column 1 relative to rows 1 and 2. 
From (4.3), it follows that J(B) = 2. Since B cannot be contracted to K3,3 , 
by the inductive assumption there exist positive integers U, v, and w with 
u+u+ w = II and permutation matrices P’ and &’ such that 

where B, is a u x D matrix, B, is a w x w (0, l)-matrix with o(B,) = 2w -- 1, 
B1 and BST are (0, I)-matrices with exactly two l’s in each column, and the 
first column sum of B, and BST is 2 and all other column sums of B4 and BST 
are 0. If the first row of B corresponds to one of the first u rows of B’, then 
A satisfies property (ii) with I* = 11 + 1, s = U, t = w. If the first row of B 
corresponds to one of rows u + I,..., u + v - 1 of B’, then A satisfies (ii) 
with r = U, s = v + 1, t = w. If the first row of B corresponds to row 
u+vofB’,thenAsatisfies(ii)withr=u,s=v+l,t=worwithr=u, 
s = v, t = w + 1. If w > 1 and the first row of B corresponds to one of 
the last w - 1 rows of B’, then A satisfies (ii) with r = II, s = v, t = w + 1. 
Thus the theorem follows by induction on n. 

The d-dimensional faces of 52, with d + 1 vertices (the simplices) were 
characterized in Section 3. We now characterize those d-dimensional faces 
of Q, which have d + 2 vertices. 

THEOREM 4.5. Let B be a (0, I)-matrix of order n > 3 with total support. 
Then F(B) is a d-dimensional face qf Q, with d + 2 vertices if and only if 
one of the following is satisfied. 
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(i) d = 2 and P(B) is a rectangle. 
(ii) d > 3, B has exactly one nontricialfully indecomposahle component 

A, and one of the following holds: 

(a) A can be contracted to K3,3 ; 
(b) A satisjies (ii) of Theorem 4.4 with r > 2 and s > 2. 

Proolf. Let k be the number of nontrivial fully indecomposable com- 
ponents of B. Suppose that F(B) is a d-dimensional face of Q, with d + 2 
vertices. Clearly k > 1. By Theorem 2.8, k < 2 with k = 2 only if each 
of the nontrivial fully indecomposable components of B corresponds to a 
face of dimension 1. Therefore if k = 2, (i) holds. Suppose k = 1 and let A 
be the nontrivial fully indecomposable component of B. It follows that 
&A) = d(A) = d(B) = 2. H ence A satisfies (i) or (ii) of Theorem 4.3. 
Suppose A satisfies (ii) of Theorem 4.4. Since the first column sum of M4 
and MST is 2 and A is a (0, I)-matrix, r > 2 and s >, 2. Thus if P(B) is a 
d-dimensional face of .Q, with d + 2 vertices, (i) or (ii) holds. The converse 
readily follows. 

Let A be a fully indecomposable (0, I)-matrix of order n > 3. If A satisfies 
(i) of Theorem 4.4, then dim F(A) = 4 and P(A) has six vertices. If A 
satisfies (ii) of Theorem 4.4, then n > 4 and an easy calculation shows that 
dim F(A) = a(M,) + 2, and 9(A) has o(MJ + 4 vertices. Let F(A) have 
dimension d and d + 2 vertices. It follows that 

d < [(n" + 8)/41. (4.4) 

If n = 3, then A = K3,3 and equality must hold in (4.4). Let n 3 4. Then 
equality holds in (4.4) if and only if A satisfies (ii) with t = 1, / Y - s j < 1, 
and M, = K,.,, . For IZ > 3 let j$z) be the maximum d such that there exists 
a d-dimensional face of &?;2, with d + i vertices. From Corollary 3.7 and (4.4) 
we see that 

.A(4 = W + 21 - 3Y41, .ht$ = Kn" f W41, 

and hence thatf+) <fI(n) if and only if n < 6. 
Let n > 4 and let d be an integer with 2 < d <f&n). Then there exists 

a d-dimensional face 3 of Q, with d + 2 vertices. For d = 2,9 is a rectangle. 
Let d > 3. We construct a matrix A to satisfy (ii) of Theorem 4.4 as follows. 
Choose r and s to be integers such that r + s = n and / r - s / < 1 and let 
t = 1. Let M,(MzT) be a vertex-edge incidence matrix of a path. Then two 
of the row sums of MI (MzT) equal 1 and the other row sums equal 2. Choose 
the two l’s of M4 (MST) so that A must have at least two l’s in each row and 
column. Choose AI3 to be any r x s (0, 1)-matrix with a(M,) = d - 2. 
By Lemma 4.1, A is fully indecomposable. Hence F(A) is a d-dimensional 
face of Qn, with d + 2 vertices. 
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Note from Theorem 4.5 that there are three possible types for d-dimensional 
faces of 52, with d + 2 vertices. For d = 4, two different types may occur. 
For each d > 2, d # 4, only one type may occur. For each n > 3 all three 
types occur as faces of Q, . 

From our results it is not difficult to see that for each positive integer MI, 
there exist positive integers d and n such that Q, has a d-dimensional face 
with d + m vertices. Let m > 3. Select an n x y1 fully indecomposable 
(0, 1)-matrix A of the form (4.2) satisfying (ii) of Theorem 4.4 with Y = nz 
and t = 1. Let B be the matrix obtained from A by replacing M4 by Km,l . 
If P(A) has dimension k, then F(B) has dimension k + (m - 2). Let 
d = k + (m - 2). It follows that F(B) is a d-dimensional face of Qsz, with 
d + nz vertices. 

5. FURTHER CHARACTERIZATIONS OF FACES 

In previous sections we have characterized four types of faces, namely, 
those that are simplices, two-neighborly, two-simplicial, or k-dimensional 
with k + 2 vertices. We now show that a k-dimensional face of 8, has at 
most 2’i vertices, and characterize all k-dimensional faces which have at 
least 2”-l + 1 vertices. Faces of Q, which are pyramids are also determined. 
We conclude by describing all three-dimensional faces of B, . 

We recall from Theorem 2.5 that if A is an n x n fully indecomposable 
(0, I)-matrix, then dim 9(A) = o(A) - 2n + 1. Hence, from Foregger’s 
theorem [6] we immediately obtain the following. 

THEOREM 5.1. Let A be a fully indecomposable (0, I)-matrix of order 
12 > 1 and let dim P(A) = k. Then 

per A < 2’c-1 + 1. 

Equality holds if and oniy if 

(*) there exist permutation matrices P and Q such that PAQ has the form ! El Cl 0 0 . . C, 0 0 0 . . ‘.. ... ... ... c;-, ET-, 0 0 E, C, 0 0 

I 
Cr 3 21, (5.1) 
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where o(EJ = 1 fov i = l,..., r, and I’ - k + 1 of the Cd’s equal the 1 x 1 
matrix [l] while the other k - 1 Ci’s are matrices of order at /east 2 of the 

f arm 

1 0 ... 0 1 
1 1 “’ 0 0 
ii i;. (5.2) 
0 0 ... 1 0 
0 0 ‘.. 1 1 1 

The following lemma is easily proved. 

LEMMA 5.2. Let t >, 2 and n, ,...j nt be positive integers. Then 

(2”l + 1) . . . (2% + 1) < p+...+nt+(t-1) + 1 

with equality if and only if t = 2 and n, = n2 = 1. 

Let A be a (0, 1)-matrix of order y1 > 1, and suppose that 9(A) has 
dimension d and v vertices. If A is fully indecomposable, then according 
to Theorem 5.1, ZI < 2d-1 + 1. Our next theorem shows that there are at 
most d possible values of 2: with v > 2d-1 + 1. 

THEOREM 5.3. Let d and v be positive integers with v > 2d-X $ 1. There 
exists a d-dimensional face with v vertices of some D, if and only if 
v E {2d-1 + 2”: m = 0, l,..., d - l}. 

For m = 0, l,..., d - 1, let v, = 2d-1 + 2” and let 9m be a d-dimensional 
face of 9, with v, vertices. Let B, be the n x n (0, 1)-matrix with total 
support corresponding to flm . 

(i) If m = d - 4, then B, satisjes one of the following. 

(a) It has exactly m + 1 nontrivial fully indecomposable components, 
where m of these components are of the form (5.2) and the other one satisfies (*) 
of Theorem 5.1 with k = d - m. 

(b) It has exactly m $ 2 nontrivial fully indecomposable components, 
where m of these components are of the form (5.2) and the other two satisfy (*) 
of Theorem 5.1 with k = (d - m)/2 = 2. 

(ii) If m # d - 4, then B, satisfies (a). 

Proof. For m = 0, I,..., d - 1, let B, be an n x 72 (0, 1)“matrix with 
total support. If either (a) or (b) holds, it follows from Corollary 2.6 that 
dim -9(B,) = d. If (a) holds, using Theorem 5.1 we see that 

per B, = 2nz(2d-m-1 + 1) = Zd-1 + 2”. 
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Similarly, if (b) holds, then IYE = d - 4 and 

per B, = 2”(2 + I)” = 2m(23 $ 1) = 2d-1 + 2”. 

Now let B be an n x n (0, l)-matrix with total support, and suppose 
that F(B) has dimension d and v > 2 d - l $ 1 vertices. Let P and Q be permu- 
tation matrices such that PBQ = A, @ .*. 0 A, @ I, where A, ,..., A, 
are fully indecomposable matrices of order at least 2. Let di = dim F(AJ 
for i = I,..., s. Observe that s < d. Suppose that di = 1 for i = l,..., s. 
Then s = d and each of A, ,..., A, can be permuted to obtain a matrix of 
the form (5.2). In this case B satisfies (a) with m = d - 1. Now suppose 
that di > 1 for at least one i. We may assume that for some 1 < t < s, 
di > 1 for i = l,..., t and di = 1 for i = t + l,..., s. Let m = s - t. Then 
d-m = d,+ .*. + dt . Applying Theorem 5.1 and Lemma 5.2, we see that 

perB = fiper& 
i=l 

< fi (2+l + 1) 
i=l 

= 2S-t fi (p-l + 1) 

i=l 

< 2s-t(2di+...-l-dt-l + 1) = 2yp-l+ 1). 

Suppose that per Ai < 2di-1 + 1 for some 1 < i < t. It then follows that 

fi (2d”-1 + 1) - 1 
i=l 

,< pvp-n2--1 = p1. 

Since v = per B, this contradicts v > 2d-1 + 1. Thus, per Ai = 2+l i 1 
for i = l,..., t. Hence Ai satisfies (*) of Theorem 5.1 with k = di for 
i = l,..., t. Now suppose that t > 2 or t = 2 with dl > 2 or d, > 2. Then 
by Lemma 5.2, 

per B < 2m2d-m-1 = 26-1 

and this again contradicts v > 2”-l + 1. Thus t = 1 or t = dl = dz = 2. 
If t = dl = dz = 2, then m = d - 4 and (b) holds. If t = 1, then (a) holds. 
Hence the theorem follows. 



APPLICATIONS OF THE PERMANENT 227 

COROLLARY 5.4. Let A be an n x n (0, I)-matrix with total support and 
let k = dim F(A). Then 

per A < 2”. 

Equality holds tf and only tf there exist permutation matrices P and Q such 
that PAQ = L, @ ... @ Lk @ I, where Li is of the form (5.2) for i = l,..., k. 

A rectangular k-dimensional parallelotope is called a k-box [2, p. 1871. 

THEOREM 5.5. Let F be a face of DR, with dimension k and v vertices. 
Then v ,( 2” with equality tf and only tfF is a k-box. 

Proof. Let A be an n x n (0, I)-matrix with total support which corre- 
sponds to F. By Corollary 5.4, v < 2”. If 9 is a k-box, then v = 2”. Now 
assume v = 2”. By Corollary 5.4 we may assume A = L1 0 ... @ LI, $ I, 
where Li is of the form (5.2) for i = l,..., k. Let Pi be the permutation 
matrix such that Li = I + Pi for i = l,..., k. For each i = I ,..., k, let Qi 
be the matrix obtained from A by replacing Li by Pi and all other Li 
by I. Denote the line segment joining I and Qi by Si for i = l,..., k. Then 
s 1 ,..., & are mutually orthogonal line segments with a common point and 
9 is their vector sum. Hence 9 is a k-box. 

Let 9’ be a polytope in Euclidean d-space Rd and x a point in Rd not in 
the affine hull of 8. Then the pyramid [7, p. 541 with basis B and apex x is 
defined to be the convex hull 9 of B u (x}. Observe that 9 has exactly one 
more vertex than 9. Conversely, if .Y and 9 are polytopes sudh that 9 is a 
face of 9 and 9 has exactly one more vertex than 9, then 9 is a pyramid 
with basis 8. Hence we have the following. 

THEOREM 5.6. Let A and B be n x n (0, I)-matrices with B < A. Then 
F(A) is a pyramid with basis F(B) tf and only ifper A = per B + 1. 

THEOREM 5.7. Let A be an n x n (0, 1)-matrix with total support such 
that S(A) is a pyramid with basis some face of .C?-(2, . If A is not a permutation 
matrix, then A has exactly one nontrivial fully indecomposable component. 

Proof Suppose A is not a permutation matrix. Then A has at least one 
nontrivial fully indecomposable component. Let B < A be a (0, I)-matrix 
such that S(A) is a pyramid with basis F(B). Without loss in generality we 
may assume that 

A=A,@...@A,@I; B=B,@...@B,@I, 

where B, # A, while Ai is a fully indecomposable matrix of order at least 2 
and Bi < Ai for i = l,..., t. Suppose t > 2. Since B, < Al, B, # A,, 
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there exist Y and s such that the (r, s)-entry of AI is 1 while the (u, s)-entry 
of BI is 0. Since A, is fully indecomposable, per A,(u; s) 3 1. Moreover, 
since A, is a fully indecomposabje (0, I)-matrix of order at least 2, per A, 3 2. 
Hence per A(r; s) 3 2. It follows that 

per A >, per B + per A(r; s) 3 per B + 2. 

Therefore by Theorem 5.6, t = 1. 
We now characterize (0, 1)-matrices A and B with total support such that 

F(A) is a pyramid with basis F(B). By Theorem 5.7 it suffices to assume that 
A is fully indecomposable. We adopt the convention that if A is a matrix 
of order one, then per A(1 ; 1) = 1. 

THEOREM 5.8. Let A = [aij] and B = [bij] be ra x n (0, I)-matrices, 
where A is fully indecomposable and B has total support. Then .F(A) is a 
pyramid with basis F(B)zfand only if one of the following holds. 

(i) B is ftdIy indecomposable and there exist Y and s such that 
per A(r; s) = 1, a,., = 1, and B is obtainedfrom A by replacing a,,S by 0. 

(ii) B is not fully indecomposable and there exist permutation matrices 
P and Q such that 

A, ... 0 0 
2 PBQ = A, @ ... @A, , (5.3) 

where,for i = I,..., k, Ai is fully indecomposable, o(EJ = 1, the (1, I)-entry 
ofEi is 1, andper A?(l; 1) = 1. 

Proof. First, suppose (i) holds. Then per A = per B + per A(r; s) = 
per B + 1. By Theorem 5.6, g(A) is a pyramid with basis F(B). Now suppose 
(ii) holds. Then 

perA = perB+ nperAi(l; 1) = perB+ 1, 
i=l 

and it follows from Theorem 5.6 that 9(A) is a pyramid with basis F(B). 
Conversely, suppose that P;(A) is a pyramid with basis F(B). Then 

F(B) is a facet of .9(A). Suppose B is fully indecomposable. By Corollary 2.11 
there exists r and s such that urs = 1 and B is obtained from A by replacing 
am by 0. Since per A = per B + per A(r; s), it follows from Theorem 5.6 
that per A(r; s) = 1. Now suppose that B is not fully indecomposable. It 
follows from Corollary 2.11 that there exist permutation matrices P and Q 
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such that (5.3) holds, where for i = l,..., k, Ai is fully indecomposable, 
o(&) = 1, and the (1, 1)-entry of Ei is 1. Since per A = per B + !Jf=, 
per A,@; l), it follows from Theorem 5.6 that per A#; 1) = 1 for i = I,..., k. 
Hence (i) or (ii) holds. 

As a consequence of Theorems 5.3, 5.5, 5.8, and Corollary 5.4 we have the 
following. 

THEOREM 5.9. Let F be a face of Q, with dimension d and v vertices 
where v 3 2d-1 + I. Then either F is the orthogonat vector sum of an m-box 
and a pyramid, with basis a (d - m - I)-box for some m with 0 < m < d - 1; 
or F is the orthogonal vector sum of a (d - 4)-box and two triangles. 

To conclude this part of the paper we describe the three-dimensional faces 
of Q, . For n < 5 some of these do not occur. Let 9 be a three-dimensional 
face of Q!, with v vertices, and let B be a (0, I)-matrix with -total support 
such that 9 = -F(B). Then v >, 4. Let v = 4. Then F is a tetra.hedron and B 
has exactly one nontrivial fully indecomposable component A, where A 
satisfies (ii) of Theorem 3.4 with (T(A& = 4. Now suppose v 3 5. Then it 
follows from Theorem 5.3 that v E (5, 6, S} and A satisfies (a) of Theorem 5.3 
for m = 0, I, or 2. From Theorem 5.9 we conclude the following. If v = 5, 
then .F is a pyramid with basis a rectangle. If v = 6, then 9 is a prism with 
basis a triangle and sides orthogonal to the basis. If v = 8, then F is a 3-box. 
Therefore, if n > 6, the three-dimensional faces of 8, are of four different 
combinatorial types. From our description of these faces we conclude that 
if S1 is a three-dimensional face of Q, and ZKS is a three-dimensional face 
of Q, such that Fj and gz have the same combinatorial type, then F1 and Fz 
are affinely equivalent. 
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