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1. Introduction

An important feature of a rational conformal field theory (RCFT) is a decomposition of its partition
function

Z(q) =
∑
i, j

mi, jχi(q)χ j(q),

which reflects a decomposition of the state space into a finite sum of irreducible modules over the
left–right chiral algebras. Note that in a given RCFT the left and the right chiral algebras (know in
mathematics as vertex operator algebras) can coincide (which is referred to as non-heterotic case) or
can be different and even can have different categories of modules (heterotic case). Modular invari-
ance of the partition function implies that the matrix of non-negative integers M = (mi, j) is invariant
with respect to the modular group actions on the characters (modular invariant). Traditional approach
in physics for describing possible full RCFTs with given chiral algebras was to classify all modular
invariant matrices, then using some heuristics chose those which can correspond to full RCFTs (so-
called physical modular invariants). This approach has its flows: sometimes it is not enough heuristics
around to separate physical modular invariants from unphysical, sometimes one modular invariant
corresponds to several RCFTs. New mathematical approach utilising a special kind of tensor cate-
gories (called modular categories) was developed recently. It was known for some time that modules
over rational chiral algebras (rational vertex operator algebras) form modular categories [32,20]. Not
so long ago it was realised that the state space, considered as an object of the category of repre-
sentations of the product of the left–right chiral algebras, has a structure of commutative separable
algebra [38,21,22]. Thus the problem of classifying modular invariants (or rather full RCFTs) reduces
to the classification of certain commutative separable algebras in a modular category (see [34] and
the end of Section 2 of this paper).

One of the simplest examples of modular categories are (the categories of representations of) so-
called quantum doubles of finite groups [12], also known as (untwisted) group-theoretical modular
categories. Appearing in conformal field theory as the modular data of holomorphic orbifolds [13,27],
the group-theoretical modular data and corresponding modular invariants were studied extensively
(see for example [7,16]). Relatively recently V. Ostrik classified module categories over group-
theoretical modular categories [35], which theoretically should give the classification of modular
invariants in the case when left and right chiral modular categories coincide (non-heterotic case).
The method, used in [35], is based on the theory of Morita equivalences for monoidal categories, de-
veloped by M. Müger. Being very elegant it is also quite indirect, which unfortunately makes it very
difficult to calculate corresponding modular invariants explicitly.

In this paper we describe modular invariants by classifying commutative separable (special Frobe-
nius) algebras and their local modules in group-theoretical modular categories. Algebras with trivial
categories of so-called local modules (trivialising algebras) correspond to modular invariants. In par-
ticular, we prove that trivialising commutative algebras in the group-theoretical modular category,
defined by a group G correspond to pairs (H, γ ), consisting of a subgroup H ⊂ G and a 2-cocycle
γ ∈ Z 2(H,k∗) (which is in complete agreement with the results of [35]). We then use the charac-
ter theory for group-theoretical modular categories to calculate corresponding modular invariants. It
turns out that the character of the trivialising algebra, corresponding to a pair (H, γ ), has the follow-
ing simple form:

χ( f , g) = 1

|H|
∑

x∈G, xf x−1,xgx−1∈H

γ (xf x−1, xgx−1)

γ (xgx−1, xf x−1)
,
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where f , g are commuting elements of G . By decomposing the character into a sum of irreducible
characters one can get the corresponding modular invariant. We also study trivialising algebras in
a product of two group-theoretical modular categories, corresponding to permutation modular in-
variants. As a result we were able to answer the question when (and in how many ways) two
group-theoretical modular categories are equivalent as ribbon categories (see also [33]).

The paper is organised as follows. We start by listing some basic facts from the theory of modular
categories, general theory of algebras in modular categories and their relations to modular invariants
(Section 2). Then we study commutative separable algebras in group-theoretical modular categories
(Section 3). We finish with the description of modular invariants for group-theoretical modular data
(Section 4). The case of group-theoretical modular data for the symmetric group S3 is treated as an
example.

2. Commutative algebras in modular categories and modular invariants

Here we summarise some properties of and constructions associated with separable commutative
algebras in braided monoidal categories. Then we recall the notions of modular data and modular
invariants and their relations to modular categories and commutative algebras.

Throughout the paper k denotes the field of complex numbers (or any other algebraically closed
field of characteristic zero). Most of our categories will be k-linear (all Hom sets are finite-dimensional
k-vector spaces, compositions are k-bilinear), semi-simple (any object is a sum of simple objects), with
finitely many simple objects. In particular, the endomorphism algebra of a simple object is just k. We
will denote by Irr(C) the set (of representatives) of isomorphism classes of simple objects in the cate-
gory C . Functors are also assumed to be k-linear (effects on morphisms being k-linear maps). A fusion
category is a semi-simple k-linear monoidal rigid category, with k-linear tensor product (i.e. tensor
product on morphisms is k-linear). We also assume that the monoidal unit of a fusion category is sim-
ple. Since it accommodates well all examples considered in this paper, we assume that our monoidal
categories are strict (associative on the nose).

2.1. Modular categories

Slightly changing the definition from [39] we call a fusion category modular if it is rigid, braided,
ribbon and satisfies the non-degeneracy (modularity) condition: for isomorphism classes of simple
objects, the traces of double braiding form a non-degenerate matrix

S̃ = ( S̃ X,Y )X,Y ∈Irr(C), S̃ X,Y = tr(c X,Y cY ,X ).

Here c X,Y : X ⊗ Y → Y ⊗ X is the braiding (see [39,4] for details).
Recall that the Deligne tensor product C � D of two fusion categories is a fusion category with

simple objects Irr(C � D) = Irr(C) × Irr(D) and the tensor product defined by

(X � Y ) ⊗ (Z � W ) = (X ⊗ Z) � (Y ⊗ W ).

It is straightforward to see that the Deligne tensor product of two modular categories is modular.
Let C be a ribbon category. Following [39] define C to be just C as a monoidal category with the

new braiding a ribbon twist:

c X,Y = c−1
Y ,X , θ X = θ−1

X .

Again it is very easy to see that for a modular C , C is also modular.
Examples of modular categories are provided by monoidal centre construction [25]. It was proved

in [31] that if a fusion category S is semi-simple and spherical, then its monoidal centre Z(S) is
modular (see also [6] for more general result).
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2.2. Separable algebras and their modules

An (associative, unital) algebra in a monoidal category C is a triple (A,μ, ι) consisting of an object
A ∈ C together with a multiplication μ : A ⊗ A → A and a unit map ι : 1 → A, satisfying associativity

μ(μ ⊗ I) = μ(I ⊗ μ),

and unit

μ(ι ⊗ I) = I = μ(I ⊗ ι)

axioms. Where it will not cause confusion we will be talking about an algebra A, suppressing its
multiplication and unit maps.

A right module over an algebra A is a pair (M, ν), where M is an object of C and ν : M ⊗ A → M
is a morphism (action map), such that

ν(ν ⊗ I) = ν(I ⊗ μ).

A homomorphism of right A-modules M → N is a morphism f : M → N in C such that

νN( f ⊗ I) = f νM .

Right modules over an algebra A ∈ C together with module homomorphisms form a category C A .
The forgetful functor C A → C has a right adjoint, which sends an object X ∈ C into the free A-module
X ⊗ A, with A-module structure defined by

X ⊗ A ⊗ A
Iμ

X ⊗ A.

Since the action map M ⊗ A → M is an epimorphism of right A-modules any right A-module is a
quotient of a free module.

An algebra (A,μ, ι) in a rigid braided monoidal category C is called separable if the following
composition (denoted e : A ⊗ A → 1) is a non-degenerate pairing:

A ⊗ A
μ

A
ε

1.

Here ε is the composition

A
IκA

A ⊗ A ⊗ A∗ μI
A ⊗ A∗ c A,A∗

A∗ ⊗ A
ev A

1,

where κA and ev A are duality morphisms for A. Non-degeneracy of e means that there is a morphism
κ : 1 → A ⊗ A such that the composition

A
Iκ

A⊗3
eI

A

is the identity. It also implies that the similar composition

A
κ I

A⊗3
Ie

A

is also the identity.
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Using graphical calculus for morphisms in a (rigid) monoidal category [24] one can represent mor-
phisms between tensor powers of a separable algebra by graphs (one-dimensional CW-complexes),
whose end vertices are separated into incoming and outgoing. For example, the multiplication map μ
is represented by a trivalent graph with two incoming and one outgoing ends, the duality ε is an
interval, with both incoming ends etc. It turns out (e.g. it follows from the results of [37]) that sepa-
rability implies that we can contract loops in connected graphs with at least one end.

For a separable algebra A the adjunction

C C A

splits. Indeed, the splitting of the adjunction map M ⊗ A → M is given by the projector M ⊗ A →
M ⊗ A:

M ⊗ A
Iε

M ⊗ A⊗3
IμI

M ⊗ A⊗2
ν I

M ⊗ A.

For a separable algebra A the effect on morphisms C A(M, N) → C(M, N) of the forgetful functor
C A → C has a splitting P : C(M, N) → C A(M, N). For f ∈ C(M, N) the image P ( f ) is defined as the
composition

M
Iε

M ⊗ A⊗2
νM I

M ⊗ A
f I

N ⊗ A
νN

N.

Moreover, the splitting has the properties

P ( f g) = f P (g), P (gh) = P (g)h, f ,h ∈ Mor C A, g ∈ Mor C.

This gives Maschke’s lemma for separable algebras.

Lemma 2.2.1. Let A be a separable algebra in a semi-simple rigid monoidal category C . Then the category C A

of right A-modules in C is also semi-simple.

2.3. Local modules over commutative algebras

Now let C be a braided monoidal category with the braiding c X,Y : X ⊗ Y → Y ⊗ X (see [25] for
definition). An algebra A in C is commutative if μc A,A = μ.

It was shown in [36] that the category A C of left modules over a commutative algebra A is
monoidal with respect to tensor product M ⊗A N over A, which can be defines as a coequaliser

M ⊗A N M ⊗ N M ⊗ A ⊗ N.

(νM 1)(cM,A 1)

1νN

A (right) module (M, ν) over a commutative algebra A is local iff the diagram

M ⊗ A
ν

cM,A

M

A ⊗ M
c A,M

M ⊗ A

ν
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commutes. Denote by C loc
A the full subcategory of C A consisting of local modules. The following result

was established in [36].

Proposition 2.3.1. The category C loc
A is a full monoidal subcategory of C A . Moreover, the braiding in C induces

a braiding in C loc
A .

The following statement was proved in [18].

Proposition 2.3.2. Let (A,m, i) be a commutative algebra in a braided category C . Let B = (B,μ, ι) be an
algebra in C A . Define μ and ῑ as compositions

B ⊗ B B ⊗A B
μ

B, 1
i

A
ι

B.

Then B = (B,μ, ῑ) is an algebra in C .
The map ι : A → B is a homomorphism of algebras in C .
The algebra B in C is separable or commutative if and only if the algebra B in C A is such.
The functor (C loc

A )loc
B → C loc

B

(M,m : B ⊗A M −→ M) �−→ (M,m : B ⊗ M −→ B ⊗A M m−−→ M) (1)

is a braided monoidal equivalence.

Remark 2.3.3. The natural map X ⊗ Y → X ⊗A Y can be seen as a lax monoidal structure on the
forgetful functor C loc

A → C . The commutative diagram

X ⊗ Y
c X,Y

Y ⊗ X

X ⊗A Y
c X,Y

Y ⊗A X

implies that this lax monoidal structure is braided.
It is known that lax monoidal functors preserve structures of algebras and modules. Braided lax

monoidal functors preserve commutative algebras and local modules. This proves a half of Proposi-
tion 2.3.2.

We call a separable indecomposable commutative algebra A in a modular category C trivialising if
C loc

A = V ect.

2.4. Full centre

Details of the constructions and proofs of the results of this section can be found in [18,28] (see
also [10]).

Let A be an algebra in a braided category C . Its left centre Cl(A) is an object in C with a morphism
into A, universal with respect to the following property: for any C → A, such that the diagram
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C ⊗ A

cC,A

A ⊗ A
μ

A

A ⊗ C A ⊗ A

μ

commutes, the morphism C → A factors through a morphism C → Cl(A). Right centre Cr(A) is de-
fined similarly (by swapping C and A in the left column of the diagram). The universal property
implies in particular that Cl(A), Cr(A) are commutative algebras in C . Note that if A is a separable
indecomposable algebra then Cl(A), Cr(A) are images of certain idempotents on A (i.e. are direct
summands of A).

For the next construction we need to recall the fact that for modular C the category C � C contains
a distinguished separable indecomposable commutative algebra T (as an object

⊕
X X � X∨ with the

sum over isomorphism classes of simple objects in C ). Now the full centre of an algebra A ∈ C is
Z(A) = Cl((A � 1) ⊗ T ) (which also equals Cr((1 � A) ⊗ T )).

Theorem 2.4.1. For a separable indecomposable algebra A in a modular category C the full centre Z(A) is a
trivialising algebra in C � C .

Moreover, the full centre construction establishes an isomorphism between the set of Morita equivalence
classes of separable indecomposable algebras in C and isomorphism classes of trivialising algebras in C � C .

Here two algebras in C are Morita equivalent if their categories of modules are equivalent as
module categories over C . Hence the theorem says that the full centre is an invariant of categories of
internal modules in C (i.e. module categories over C ).

2.5. Commutative algebras in products of braided categories and their parents

Let C � D be the Deligne product of two braided categories. For X ∈ C the functor X � − : D →
C � D has a right adjoint HomC (X,−) : C � D → D, which can be defined as the composition

C � D
C(X,−)�I D

V ect � D D.

By the definition, the value HomC (X, Y � Z) of this right adjoint on Y � Z coincides with C(X, Y )Z ,
which is the tensor product over k of the Hom vector space C(X, Y ) and an object Z ∈ D. This allows
us to define a map X �HomC (X, A) → A. The object HomC (X, A) can be characterised by a universal
property: the pair (HomC (X,−), X � HomC (X, A) → A) is terminal among the pairs (Y , X � Y → A),
i.e. for any morphism X � Y → A in C � D there is a unique morphism Y → HomC (X, A), which
makes the triangle

X � HomC (X, A) A

X � Y

commute. This, in particular, can be used to define a functorial map

HomC (X, A) ⊗ HomC (Y , B) −→ HomC (X ⊗ Y , A ⊗ B).

Similarly for HomD(Y ,−) : C � D → C for Y ∈ D.
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In particular, we have braided lax monoidal functors (corresponding to monoidal units in C
and D):

C C � D
HomC (1,−)HomD (1,−)

D.

Now, for a commutative algebra C in C � D, the objects Cl = HomD(1, C) ∈ C , Cr = HomC (1, C) ∈ D
have the structures of commutative algebras. We call them the parents of C . Note that if C is inde-
composable or separable, then so are its parents Cl,r .

The following theorem is a slight generalisation of results from [18], the proof will appear in [11].

Theorem 2.5.1. Let C be a trivialising algebra in a modular category C � D. Then the functor HomC loc
Cl

(−, C)

induces a braided monoidal equivalence

(
C loc

Cl

)op −→ Dloc
Cr

of the categories of local modules. Moreover,

C =
⊕

M∈Irr(C loc
Cl

)

M � HomC (M, C), (2)

where the sum is taken over simple local Cl-modules in C .
Conversely, for any indecomposable separable commutative algebras A ∈ C , B ∈ D and an equivalence of

braided monoidal categories (C loc
A )op → Dloc

B there exists a maximal indecomposable separable commutative

algebra in C ∈ C � D such that Cl = A, Cr = B and the equivalences (C loc
A )op → Dloc

B , (C loc
Cl

)op → Dloc
Cr

coincide
up to isomorphism of algebras and functors.

In particular, the parents of a full centre Z(A) are (left, right) centres Cl(A), Cr(A).

2.6. Modular data and modular invariants

Let SL2(Z) be the modular group, i.e. the group of determinant 1 integer 2 × 2-matrices. It is gener-
ated by the matrices

s =
(

0 −1
1 0

)
, t =

(
1 1
0 1

)
,

with the generating system of relations s4 = 1, (ts)3 = s2.
Let C be a modular category. Define

S = (√
dim(C)

)−1
S̃, T = diag(θX ).

The pair of matrices S , T is often referred to as modular data of C . The proof of the following result
can be found in [39].

Theorem 2.6.1. Let C be a modular category. Then the operators S and T define a (projective) action of the
modular group SL2(Z) on the complexified Grothendieck group K0(C) ⊗ C.
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Remark 2.6.2. Projectivity of the above action manifests itself by a scalar multiple appearing in the
second defining relation:

S4 = 1, (T S)3 = λS2.

Over the complex numbers it is always possible to turn it into a genuine representation, by rescal-
ing T . For the reasons of why one should not do it see [39,4].

An alternative approach to the modular group action was developed in [30] (see also [6]). Recall
that the coend of a monoidal category C is an object C ∈ C with a natural collection of (action) maps
X ⊗ C → X , universal in the following sense: for any other object D ∈ C together with a natural
collection of maps X ⊗ D → X there is a morphism D → C making the diagram

X ⊗ D X ⊗ C

X

commutative. Alternatively (in the autonomous case) the coend can be defined as a colimit
∫ X X∨ ⊗ X ,

which in the case of semi-simple C coincides with the direct sum
⊕

X X∨ ⊗ X over the isomor-
phism classes of simple objects. The coend has a number of nice properties and structures, e.g.
for a braided C the coend becomes an internal Hopf algebra. In the case of a modular category C
the coend gets equipped with a projective action of a mapping class group of a torus with re-
moved disk. The Hom-space C(1, C) carries a projective action of the mapping class group of a
closed torus, i.e. the modular group action (see [30,6] for details). Note finally, that for a semi-
simple modular C , C(1, C) coincides with K0(C) ⊗ C as a module over the modular group. The map
K0(C)⊗ C → C(1, C) is the composition of the character map K0(C)⊗ C → End(idC )∨ with the natural
identification End(idC )∨ 	 C(1, C). Here End(idC ) is the vector space of endomorphisms of the iden-
tity functor on C and the character map sends a class of a simple object X into the function a �→ λ

where a ∈ End(idC ) and aX = λI X .
Now we explain the relation between modular invariants and trivialising algebras. The next theo-

rem is Theorem 4.5 from [29].

Theorem 2.6.3. Let A be an indecomposable separable commutative algebra in a modular category C with
θA = 1. Then C loc

A is a modular category and the map K0(C loc
A ) ⊗Z C → K0(C) ⊗Z C, induced by the forgetful

functor C loc
A → C is SL2(Z)-equivariant.

Corollary 2.6.4. Let Z be a trivialising algebra in a modular category C . Then its class [A] in the Grothendieck
ring K0(C) ⊗Z C is a modular invariant element.

Proof. Since A is a trivialising algebra, the Grothendieck group K0(C loc
A ) is isomorphic to Z and the

homomorphism K0(C loc
A ) → K0(C) sends an integer n into n[A]. Modular invariance of the complexi-

fication of this homomorphism implies that [A] is a modular invariant element. �
It was shown in [19,21], that rational conformal field theories correspond to trivialising algebras

in Cl � C r . Here Cl,r are chiral modular categories of the theory (representation categories of chiral
vertex operator algebras). In particular, the coefficients of the decomposition of the partition function
of the theory into the sum of chiral irreducible characters are the decomposition coefficients of the
trivialising algebra in the basis of simple objects in K0(Cl � C r) = K0(Cl) ⊗ K0(Cr). Traditionally [32]
elements in K0(Cl) ⊗ K0(Cr), invariant with respect to the (anti-)diagonal modular group action, are
called modular invariants. A modular invariant is physical if it corresponds to a rational conformal field
theory, i.e. is the class of a trivialising algebra. Simplest examples in the case when Cl = Cr (non-
heterotic case) are the diagonal modular invariant

⊕
X [X] ⊗ [X∨] and the conjugation modular invariant
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⊕
X [X] ⊗ [X]. Here sums are over isomorphism classes of simple objects of C = Cl = Cr . While the

diagonal modular invariant is always physical (is the class of the full centre Z(1C ) ∈ Z(C) 	 C � C )
the conjugation modular invariant can be non-physical.

3. Commutative algebras in group-theoretical modular categories

3.1. Group-theoretical modular categories

Here we describe the monoidal centre Z(C(G)) of the fusion category C(G) of G-graded finite-
dimensional vector spaces. The results of this section are mostly well known.

A compatible G-action on a G-graded vector space V = ⊕
g∈G V g is a collection of automorphisms

f : V → V for each f ∈ G such that f (V g) = V f g f −1 and ( f g)(v) = f (g(v)).

Proposition 3.1.1. The monoidal centre Z(C(G)) is isomorphic, as braided monoidal category, to the category
Z(G), whose objects are G-graded vector spaces X = ⊕

g∈G Xg together with a compatible G-action and
morphisms are graded and action preserving homomorphisms of vector spaces. The tensor product in Z(G) is
the tensor product of G-graded vector spaces with the G-action defined by

f (x ⊗ y) = f (x) ⊗ f (y), x ∈ X, y ∈ Y . (3)

The monoidal unit is 1 = 1e = k with trivial G-action.
The braiding is given by

c X,Y (x ⊗ y) = f (y) ⊗ x, x ∈ X f , y ∈ Y . (4)

The category Z(G) is rigid, with dual objects X∨ = ⊕
f (X∨) f given by

(
X∨)

f = (X f −1)
∨ = Hom(X f −1 ,k),

with the action

g(l)(x) = l
(

g−1(x)
)
, l ∈ Hom(X f −1 ,k), x ∈ Xg f −1 g−1 .

The category Z(G) is unitarisable with the ribbon twist

θX (x) = f −1(x), x ∈ X f .

The (unitary) trace of an endomorphism a : X → X can be written in terms of ordinary traces on vector
spaces Xg :

tr(a) =
∑
g∈G

trXg (ag),

and the (unitary) dimension of an object X ∈ Z(G) is the dimension of its underlying (graded) vector space

dim(X) =
∑
g∈G

dim(Xg).

Proof. For an object (X, x) of the centre Z(C(G)) the natural isomorphism

xV : V ⊗ X → X ⊗ V , V ∈ C(G)
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is defined by its evaluations on one-dimensional graded vector spaces. Denote by k( f ) such a one-
dimensional graded vector space, sitting in degree f . Then the isomorphism xk( f ) can be seen
as an automorphism f : X → X . The fact, that xk( f ) preserves grading, amounts to the condition
f (Xg) = X f g f −1 :

Xg = (
k( f ) ⊗ X

)
f g

χk( f ) (
X ⊗ k( f )

)
f g = X f g f −1 .

The coherence condition for x is equivalent to the action axioms. The diagram, defining the second
component χ |ψ of the tensor product (X, x) ⊗ (Y , y) = (X ⊗ Y , x|y), is equivalent to the tensor prod-
uct of actions (3).

The description of the monoidal unit in a monoidal centre corresponds to the answer for the
monoidal unit in Z(G).

Clearly, the braiding c(X,x),(Y ,y) = xY in the centre Z(C(G)) corresponds to (4).
The answer for the dual object in Z(G) follows from the general construction of dual objects

in monoidal centres of spherical categories (see [31]). In our concrete case it can also be verified
directly. Indeed, the evaluation map ev X : X∨ ⊗ X → 1 pairs (X∨) f with X f −1 via ev X (l ⊗ x) = l(x). Its
G-invariance follows form the definition of the G-action on X∨:

ev X
(

g(l ⊗ x)
) = ev X

(
g(l) ⊗ g(x)

) = g(l)
(

g(x)
) = l

(
g−1(g(x)

)) = l(x).

The coevaluation map κX : 1 → X ⊗ X∨ is defined as follows: projected to Xg ⊗ (X∨)g−1 = Xg ⊗ X∗
g it

coincides with coevaluation κXg . The duality axioms are straightforward.
Note that the inverse to θ has the form θ−1(x) = f (x). Indeed,

θ−1θ(x) = θ−1( f −1(x)
) = f

(
f −1(x)

) = x.

The balancing axiom for θ can be checked directly. Indeed, the effect of the double braiding on x⊗ y ∈
X f ⊗ Y g is

x ⊗ y �−→ f (y) ⊗ x �−→ f g f −1(x) ⊗ f (y),

while θ−1
X⊗Y (θX ⊗ θY ) acts as

x ⊗ y �−→ f −1(x) ⊗ g−1(y) �−→ ( f g)
(

f −1(x) ⊗ g−1(y)
)

= ( f g)
(

f −1(x)
) ⊗ ( f g)

(
g−1(y)

) = (
f g f −1)(x) ⊗ f (y).

The self-duality for the ribbon twist θX∨ = (θ−1
X )∨ is straightforward.

The formula for the trace follows from the fact that the duality structure in Z(G) is the same as
in the category of finite-dimensional (G-graded) vector spaces. �
Remark 3.1.2. Note that Z(G) coincides with the category of modules over Drinfeld double D(G) =
D(k[G]) of the group G . Thus Proposition 3.1.1 follows from the statement Z(H −Mod) ∼= D(H)−Mod,
which is true for any finite-dimensional Hopf algebra H (see [26] for details).

In the next statement we describe simple objects and the S-matrix of the category Z(G) (see
also [1,7]).

Proposition 3.1.3. Simple objects of Z(G) are parametrised by pairs (g, U ), where g ∈ G and U is a simple
module over the group algebra k[CG(g)].

The dimension of the category Z(G) is |G|2 .



1332 A. Davydov / Journal of Algebra 323 (2010) 1321–1348
The category Z(G) is modular with the S- and T -matrices:

S( f ,ψ),(g,ξ) = 1

|G|
∑

u∈ f G , v∈gG , uv=vu

ψ
(
xv−1x−1)ξ(

yu−1 y−1),

where u = x−1 f x, v = y−1 gy, and

T( f ,ψ),( f ,ψ) = ψ( f )

ψ(e)
. (5)

Proof. Clearly the support of a simple object V in Z(G) should be an indecomposable G-subset in G
(with conjugation action), i.e. a conjugacy class of G . Let g be an element of the support. The axioms
of the action imply that V is induced from the k[CG (g)]-module V g . Finally, for V to be simple, the
k[CG (g)]-module V g must be simple as well.

For g ∈ G the sum
∑

U dim(U )2 over isomorphism classes of irreducible k[CG(g)]-modules is equal
to |CG(g)|. Since

dim(g, U ) = dim
(

IndG
CG (g)(U )

) = [
G : CG(g)

]
dim(U )

we have

dim
(

Z(G)
) =

∑
g,U

[
G : CG(g)

]2
dim(U )2 =

∑
g

[
G : CG(g)

]2∣∣CG(g)
∣∣

= |G|2
∑

g

∣∣CG(g)
∣∣−1

,

where g runs through representatives of conjugacy classes of G . It is well known in group theory that
the last sum is equal to |G|2.

The formula for the S-matrix can be obtained by calculating the trace of the double braiding
c(g,ξ),( f ,ψ)c( f ,ψ),(g,ξ) in the category Z(G). �

The next result describes Deligne products and mirrors of group-theoretical modular categories.

Proposition 3.1.4.

Z(G1) � Z(G2) 	 Z(G1 × G2), Z(G) 	 Z(G).

Proof. Follows from the straightforward equivalences:

Z(C) � Z(D) 	 Z(C � D), Z(C) 	 Z
(

C op)
. �

For the case C = Z(G) the space of characters has the following description (see [3,2]). It is the
space of k-valued functions on

C2(G) = {
( f , g) ∈ G×2, f g = g f

}
.

In this realisation the SL2(Z)-action is given by

S(χ)( f , g) = χ
(

g, f −1), T (χ)( f , g) = χ( f , f g).
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For an object X the character map K0(Z(G)) ⊗Z C → Hom(C2(G),k) sends the class [X] into the
function (the character):

χX ( f , g) = trX f (g).

In particular, the character of the dual object (the dual character) has a form:

χX∨( f , g) = χX
(

f −1, g−1).
As in the ordinary character theory, the space of characters of Z(G) comes equipped with a scalar

product (see [3])

(χ,ψ) = 1

|G|
∑

f ,g∈G

χ( f , g)ψ( f , g),

which calculates dimensions of corresponding Hom-spaces in Z(G):

(χX ,χY ) = dim
(

Z(G)(X, Y )
)
.

In particular, for irreducible X, Y , (χX ,χY ) = 1 iff X = Y and zero otherwise.

3.2. Algebras in group-theoretical modular categories

We start by expanding the structure of an algebra in the category Z(G) in plain algebraic terms.
Recall that a G-graded vector space A = ⊕

g∈G Ag is a G-graded algebra if the multiplication preserves
grading A f Ag ⊂ A f g .

Proposition 3.2.1. An algebra in the category Z(G) is a G-graded associative algebra together with a G-action
such that

f (ab) = f (a) f (b), a,b ∈ A. (6)

An algebra A in the category Z(G) is commutative iff

ab = f (b)a, ∀a ∈ A f , b ∈ A. (7)

The twist θA is trivial iff

f (a) = a, a ∈ A f .

Proof. Being a morphism in the category Z(G) the multiplication of an algebra in Z(G) preserves
grading and G-action (hence the property (6)). Associativity of multiplication in Z(G) is equivalent to
ordinary associativity.

The formula (4) for the braiding in Z(G) implies that commutativity for an algebra A in the
category Z(G) is equivalent to the condition (7). �

By G-algebra we mean an algebra (in V ect) with an action of G by algebra homomorphisms (i.e. an
algebra in the category Rep(G) of G-modules). Note that the degree e part Ae of an algebra A in the
category Z(G) is a G-algebra and A is a module over Ae . Moreover the algebra Ae is commutative if
A is a commutative algebra in the category Z(G).
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Proposition 3.2.2. An algebra A in the category Z(G) is separable iff

A f ⊗ A f −1
μ

Ae
ε

k

defines a non-degenerate bilinear pairing for any f ∈ G. In particular, the algebra Ae is separable if A is a
separable algebra in the category Z(G).

Proof. Being a graded homomorphism the separability map A → 1 is zero on A f for f �= e. Hence the
separability bilinear form is zero on A f ⊗ Ag unless f g = e. In particular, the restriction of ε to Ae

makes it a separable algebra in the category of vector spaces. �
3.3. Commutative separable algebras in trivial degree and their local modules

We start with a well-known (see for example [29]) description of indecomposable commutative
separable G-algebras. We give (a sketch of) the proof for completeness.

Lemma 3.3.1. Commutative separable G-algebras are function algebras on G-sets. Indecomposable G-algebras
correspond to transitive G-sets.

Proof. A separable commutative algebra over an algebraically closed field is a function algebra k(X)

on a finite set X (with elements of X corresponding to minimal idempotents of the algebra). The
G-action on the algebra amounts to a G-action on the set X . Obviously, the algebra of functions
k(X ∪ Y ) on the disjoint union of G-sets is the direct sum of G-algebras k(X) ⊕ k(Y ) and any direct
sum decomposition of G-algebras appears in that way. �

Let k(X) be an indecomposable G-algebra. By choosing a minimal idempotent p ∈ X , we can iden-
tify the G-set X with the set G/H of cosets modulo the stabiliser subgroup H = StG(p).

Theorem 3.3.2. The category Z(G)loc
k(G/H) , of local left k(G/H)-modules in Z(G), is equivalent, as a ribbon

category, to Z(H).

Proof. For a right k(G/H)-module M the product Mp with a chosen idempotent is a G-graded vector
space with H-action. For a local M the support of Mp (elements of G , whose graded components are
non-zero) is a subset of H . Indeed, for m ∈ M f the locality condition implies that mp = mf (p) and
mp = mp2 = mpf (p). Thus if mp �= 0 the product pf (p) is also non-zero and f (p) = p. Hence for a
local H the subspace Mp is an object of Z(H), which defines a functor

Z(G)loc
k(G/H) −→ Z(H), M �−→ Mp.

The functor is obviously monoidal (M ⊗A N)p = Mp ⊗ Np, braided and balanced.
Now let U ∈ Z(H). The tensor product k(G)⊗H U (which is spanned by pg ⊗ u, modulo pgh ⊗ u =

pg ⊗ h(u)) is naturally equipped with the G-grading

|pg ⊗ u| = g|u|g−1

and the G-action f (pg ⊗ u) = p f g ⊗ u, making it an object of Z(G). The homomorphism of algebras
k(G/H) → k(G) (induced by the quotient map G → G/H) makes k(G) ⊗H U a right k(G/H)-module.
Explicitly, for a coset x ∈ G/H

(pg ⊗ u)px = δg,x pg ⊗ u.
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Here δg,x is the δ-function, which is equal to 1, if g belongs to x, and zero otherwise. Moreover,
k(G) ⊗H U is a local left k(G/H)-module: the value of the product map on px ⊗ (pg ⊗ u) coincides
with the value on

(c ◦ c)
(

px ⊗ (pg ⊗ u)
) = g|u|g−1(px) ⊗ (pg ⊗ u) = pg|u|g−1x ⊗ (pg ⊗ u).

Indeed, g belongs to x (i.e. x = g H) iff g belongs to g|u|g−1x = g|u|g−1 g H = g|u|H = g H . Thus we
have a functor

Z(H) −→ Z(G)loc
k(G/H), U �−→ k(G) ⊗H U .

Finally, the maps

U −→ (
k(G) ⊗H U

)
p, u �−→ pe ⊗ u,

k(G) ⊗H M −→ M, pg ⊗ mp �−→ g(mp)

are isomorphisms. �
Remark 3.3.3. It follows from the proof of Theorem 3.3.2 that the category Z(G)k(G/H) of right k(G/H)

modules can be identified with the category of G-graded vector spaces equipped with H-actions.

Remark 3.3.4. Theorem 3.3.2 in combination with Proposition 2.3.2 gives an interpretation of the
transfer, defined in [40]. The transfer turns an algebra from Z(H) into an algebra in Z(G). Indeed, by
Theorem 3.3.2 an algebra from Z(H) is an algebra in Z(G)loc

k(G/H) , which by Proposition 2.3.2 gives an
algebra in Z(G).

Corollary 3.3.5. For an indecomposable separable algebra A in Z(G) there is a subgroup H ⊂ G such that A
is the transfer of an indecomposable separable algebra B in Z(H) with Be = k.

Proof. The subalgebra Ae is an indecomposable commutative G-algebra. By Lemma 3.3.1 it is iso-
morphic to k(X) for some transitive G-set X . By Proposition 2.3.2, A is a commutative algebra in
Z(G)loc

Ae
. Thus, by Theorem 3.3.2, A is the transfer of the indecomposable separable algebra B = p A

from Z(H) (here p is the minimal idempotent of Ae , corresponding to an element of X , with the
stabiliser H = StG(p)). Finally, Be = p Ae = k by minimality of p. �
3.4. Commutative separable algebras trivial in trivial degree and their local modules

Here we describe indecomposable commutative separable algebras B in Z(H) with Be = k.

Lemma 3.4.1. Let B be a separable algebra in Z(H) such that Be = k. Then

dim(Bh) � 1, ∀h ∈ H .

Moreover the support of B

F = { f ∈ H | B f �= 0}

is a normal subgroup of H.
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Proof. By Proposition 3.2.2 an algebra B , such that Be = k, is separable iff the multiplication de-
fines the non-degenerate pairing m : B g ⊗ B g−1 → Ae = k. Thus, associativity of multiplication implies
that, for any a, c ∈ B g and b ∈ B g−1 , m(a,b)c = am(b, c). For non-zero a, c, choosing b such that
m(a,b),m(b, c) �= 0, we get that a and c are proportional.

Now, it follows from the non-degeneracy of m : B g ⊗ B g−1 → Ae = k, that a generator of a non-zero
B f is invertible. Thus, for non-zero components B f , B g the product B f B g is also non-zero. �

Let F � H be a normal subgroup and γ ∈ Z 2(F ,k∗) be a normalised 2-cocycle, i.e. γ (e, g) =
γ ( f , e) = 1 and

γ ( f , g)γ ( f g,h) = γ (g,h)γ ( f , gh).

Note that for a 2-cocycle γ ∈ Z 2(G,k∗) the expression

γ f (g) = γ ( f , g)γ (g, f )−1

defines a multiplicative map (a character) γ f : CG ( f ) → k∗ of the centraliser CG ( f ).
Denote by k[F , γ ] an H-graded associative algebra with the basis e f , f ∈ F , graded as |e f | = f ,

and with multiplication defined by e f eg = γ ( f , g)e f g .

Proposition 3.4.2. An indecomposable commutative separable algebra B in Z(H) with Be = k has a form
k[F , γ ] with the H-action given by

h(e f ) = εh( f )ehf h−1 ,

for some ε : H × F → k∗ satisfying

εgh( f ) = εg
(
hf h−1)εh( f ), g,h ∈ H, f ∈ F , (8)

γ ( f , g)εh( f g) = εh( f )εh(g)γ
(
hf h−1hgh−1), h ∈ H, f , g ∈ F , (9)

γ ( f , g) = ε f (g)γ
(

f g f −1, f
)
, f , g ∈ F . (10)

Proof. Indeed, action axiom requires that (gh)(e f ) = εgh( f )eghf h−1 g−1 should coincide with

g
(
h(e f )

) = εh( f )εg
(
hf h−1)eghf h−1 g−1 ,

which gives the first identity. Multiplicativity of the action amounts to the equality between

h(e f eg) = γ ( f , g)εh( f g)ehf gh−1

and

h(e f )h(eg) = εh( f )εh(g)γ
(
hf h−1,hgh−1)ehf gh−1 ,

which gives the second identity. Finally, commutativity implies that e f eg = γ ( f , g)e f g is equal to

f (eg)e f = ε f (g)e f g f −1 e f = ε f (g)γ
(

f g f −1, f
)
e f g . � (11)

Denote by k[F , γ , ε] an indecomposable commutative separable algebra in Z(H), defined in Propo-
sition 3.4.2.
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Lemma 3.4.3. Two algebras k[F , γ , ε] and k[F ′, γ ′, ε′] in the category Z(H) are isomorphic iff there is a
cochain c : F → k∗ such that

c( f g)γ ( f , g) = γ ′( f , g)c( f )c(g), εh( f )c
(
hf h−1) = c( f )ε′

h(g).

Proof. Isomorphic algebras in Z(H) have to have the same supports. Thus F = F ′ . Since the com-
ponents of both k[F , γ , ε] and k[F ′, γ ′, ε′] are all one-dimensional, an isomorphism k[F , γ , ε] →
k[F ′, γ ′, ε′] has a form e f �→ c( f )e f for some c( f ) ∈ k∗ . Finally, multiplicativity of this mapping is
equivalent to the first condition, while H-equivariance is equivalent to the second. �

For the sake of keeping it short we will not give complete description of the category of local mod-
ules over the algebra k[F , γ , ε] (which will be given in a subsequent paper). Instead we characterise
those algebras which have trivial category of local modules (i.e. trivialising algebras).

Theorem 3.4.4. The algebra k[F , γ , ε] in the category Z(H) is trivialising iff F = H.

Proof. The structure of a right k[F , γ , ε]-module on an object M = ⊕
h∈H Mh of Z(H) amounts to a

collection of isomorphisms e f : Mh → Mhf (right multiplication by e f ∈ k[F , γ , ε]) such that

ee = I, e f e f ′ = γ
(

f , f ′)e f ′ f , he f h−1 = εh( f )ehf h−1 , f , f ′ ∈ F , h ∈ H .

Here h : Mh′ → Mhh′h−1 is the projective H-action on M . The k[F , γ , ε]-module M is local iff e f =
εh( f )hf h−1ehf h−1 on Mh . Indeed, the double braiding in Z(H) transforms an element m ⊗e f ∈ M ⊗ A
(with m ∈ Mh) as follows

m ⊗ e f �−→ h(e f ) ⊗ m = εh( f )ehf h−1 ⊗ m �−→ εh( f )hf h−1(m) ⊗ ehf h−1 .

An equivalent way of expressing the locality condition is:

f = εh
(
h−1 f h

)−1
γ

(
h−1 f h, f −1)γ (

f , f −1)−1
eh−1 f hf −1 = εh( f )e[h−1, f ].

In particular, F acts trivially on Me .
Now if F = H the action map Me ⊗ A → M is an isomorphism, i.e. any local module is free. Con-

versely for F �= H take a non-trivial H/F -representation U and define an H-action on the H-graded
vector space

M = V ⊗ A =
⊕
f ∈F

M f , M f = V ⊗ e f

by

h(v ⊗ e f ) = εh( f )h(v) ⊗ ehf h−1 .

Then M is a right k[F , γ , ε]-module

v ⊗ e f ⊗ e f ′ �−→ γ
(

f , f ′)v ⊗ e f f ′ ,

which is local and non-free. �
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3.5. Commutative separable algebras and their local modules

In this section we combine the previous results on commutative separable algebras in group-
theoretical modular categories and on their local modules.

Define A(H, F , γ , ε) as a vector space, spanned by ag, f , with g ∈ G, f ∈ F , modulo the relations

agh, f = εh( f )ag,hf h−1 , ∀h ∈ H,

with the G-grading, given by |ag, f | = g f g−1, the G-action g′(ag, f ) = ag′ g, f and the multiplication

ag, f ag′, f ′ = δg,g′γ
(

f , f ′)ag, f f ′ .

Theorem 3.5.1. Any indecomposable separable commutative algebra in Z(G) has a form A(H, F , γ , ε).
Thus indecomposable separable commutative algebras in Z(G) correspond to quadruples (H, F , γ , ε), where
H ⊂ G is a subgroup, F � H is a normal subgroup, γ ∈ Z 2(F ,k∗) is a cocycle and ε : H × F → k∗ satisfies the
conditions (8)–(10).

Proof. Follows from Corollary 3.3.5 and Propositions 3.4.2 and 2.3.2. �
Remark 3.5.2. Note that the twist θA is always trivial on the algebra A = A(H, F , γ , ε). Indeed,

θ−1
A (ag, f ) = (

g f g−1)(ag, f ) = ag f g−1 g, f = ag f , f = ε f ( f )ag, f

with ε f ( f ) = γ ( f , f )γ ( f , f )−1 = 1 by (10).

Theorem 3.5.3. The algebra A(H, F , γ , ε) in the category Z(G) is trivialising iff F = H.

Proof. Follows from Theorems 3.3.2, 3.4.4 and Proposition 2.3.2. �
Note that when F = H the map ε is completely determined by γ . Thus trivialising algebras in

Z(G) correspond to pairs (H, γ ), where H ⊂ G is a subgroup and γ ∈ Z 2(H,k∗) is a 2-cocycle.

Remark 3.5.4. It follows from the theorem that trivialising algebras in Z(G) � Z(G) 	 Z(G × G)

correspond to pairs (U , γ ), where U ⊂ G × G is a subgroup and γ ∈ Z 2(U ,k∗) is a 2-cocycle. This
coincides with the parametrisation of module categories obtained in [34], which illustrates the fact
(formulated in Section 2.4) that the full centre defines a bijection between equivalence classes of
indecomposable module categories over Z(G) and maximal indecomposable separable commutative
algebras in Z(G) � Z(G).

3.6. Trivialising algebras in products of group-theoretical module categories and equivalences between
group-theoretical module categories

In this section we describe the parents of maximal indecomposable commutative separable alge-
bras in Z(G) � Z(Q ) and use this description to analyse braided monoidal equivalences between
Z(G) and Z(Q ).

Let G , Q be finite groups. It is straightforward to see that the functor, defined in Section 2.5,

HomZ(G)(1, ) : Z(G × Q ) 	 Z(G) � Z(Q ) −→ Z(Q )

sends X into subspace of invariants (
⊕

q∈Q X(e,q))
G×{e} . Let U ⊂ G × Q be a subgroup and γ ∈ Z 2(G ×

Q ,k∗) be a normalised 2-cocycle. The pair (U , γ ) defines a maximal indecomposable commutative
separable algebra A(U , γ ) in Z(G × Q ) 	 Z(G) � Z(Q ).
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Theorem 3.6.1. The parent HomZ(G)(1, A) ∈ Z(Q ) of the maximal indecomposable commutative separable
algebra A(U , γ ) in Z(G)� Z(Q ) is isomorphic to A(pr2(U ), K , γ |K , ε), where pr2(U ) ⊂ Q is the projection
of U ⊂ G × Q onto the second factor, K is the kernel of the homomorphism

γ : U ∩ ({e} × Q
) −→ ̂U ∩ (

G × {e}), (e,q) �−→ γ(e,q),

and ε : pr2(U ) × K → k∗ is given by

εq(v) = γ
(
(g,q)|v) = γ

(
(g,q), v

)
γ

(
(g,q)v(g,q)−1, (g,q)

)
, q ∈ pr2(U ), v ∈ K .

Here ̂U ∩ (G × {e}) is the character group of U ∩ (G × {e}).

Proof. As was noted in Section 2.5, the algebra B = HomZ(G)(1, A) is an indecomposable commuta-
tive separable algebra in Z(Q ). Thus, by Theorem 3.5.1, it should have a form A(H, F , γ , ε) for some
F � H ⊂ Q . To find H we need to look at the trivial degree component Be . Since

Be = AG×{e}
(e,e) = k(G × Q /U )G×{e} = k

((
G × {e}) \ G × Q /U

)
,

H can be defined as the stabiliser of (e, e) with respect to the (transitive) Q -action on (G ×{e}) \ G ×
Q /U , which coincides with

{
q ∈ Q

∣∣ ∃g ∈ G: (g,q) ∈ U
} = pr2(U ).

Thus as a Q -algebra Be = k(Q /pr2(U )). To determine the rest of the defining data for B we need
to look at pB , where p is a minimal idempotent of Be . Let p ∈ Be be the minimal idempotent, cor-
responding to the unit element e ∈ Q . As an element of A(e,e) it has the following decomposition
p = ∑

g∈G g(p̃), where p̃ is the minimal idempotent in A(e,e) corresponding to (e, e). Hence

pB =
(∑

g∈G

g(p̃)

)(⊕
q∈Q

A(e,q)

)G×{e}
=

(⊕
q∈Q

p̃ A(e,q)

)(G×{e})∩U

.

Now, since p̃ A = k[U , γ ], we have that
⊕

q∈Q p̃ A(e,q) = k[U ∩ ({e} × Q ), γ ]. The conjugation action of
U ∩ (G × {e}) on U ∩ ({e} × Q ) is trivial, so the only non-triviality comes from γ : for u ∈ U ∩ (G ×
{e}), v ∈ U ∩ ({e} × Q )

u(ev) = euev e−1
u = γ (u|v)ev , γ (u|v) = γ (u, v)γ (v, u)−1.

Note that, restricted to (U ∩ (G × {e})) × (U ∩ ({e} × Q )), γ ( | ) is a bi-multiplicative pairing. Hence
ev is an invariant iff γ ( |v) is trivial. Thus

pB = k
[
U ∩ ({e} × Q

)
, γ

](G×{e})∩U = k[K , γ |K ].

Finally, to determine ε : pr2(U ) × K → k∗ we need to write the conjugation action of pr2(U ) on
k[K , γ |K ] in the form (g,q)(ev) = εq(v)eqvq−1 for q ∈ pr2(U ), v ∈ K . Since

(g,q)(ev) = e(g,q)ev e−1
(g,q) = γ

(
(g,q), v

)
γ

(
(g,q)v(g,q)−1, (g,q)

)
eqvq−1

we have the description for ε. Note that for q ∈ pr2(U ), v ∈ K the value of γ ((g,q)|v) does not depend
on the choice of g . �
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Remark 3.6.2. Similarly, the parent HomZ(Q )(1, A) ∈ Z(G) of A(U , U , γ ) ∈ Z(G) � Z(Q ) is isomor-
phic to A(pr1(U ), K , γ |K , ε), where pr1(U ) ⊂ G is the projection of U ⊂ G × Q onto the first factor,
K is the kernel of the homomorphism γ : U ∩ (G × {e}) → ̂U ∩ ({e} × Q ), induced by γ ( | ), and
ε : pr1(U ) × K → k∗ is given by

εg(v) = γ
(
(g,q)|v) = γ

(
(g,q), v

)
γ

(
(g,q)v(g,q)−1, (g,q)

)
, g ∈ pr1(U ), v ∈ K .

Ribbon equivalences of group-theoretic modular categories were recently described in [33]. Here,
as a bi-product of our classification of trivialisng algebras, we give an alternative description. We plan
to compare two descriptions in a subsequent paper.

Corollary 3.6.3. An equivalence between Z(G) and Z(Q ), as ribbon categories, corresponds to a subgroup
U ⊂ G × Q , such that pr1(U ) = G, pr2(U ) = Q , together with a 2-cocycle γ ∈ Z 2(U ,k∗), such that γ ( | )

induces a non-degenerate pairing

(
U ∩ (

G × {e})) × (
U ∩ ({e} × Q

)) −→ k∗. (12)

Proof. As was mentioned before (Section 2.5) ribbon equivalences between Z(G) and Z(Q ) corre-
spond to algebras A(U , U , γ ) in Z(G) � Z(Q ) with trivial parents. By applying Theorem 3.6.1 we get
the conditions of the corollary. �

The next auxiliary result, describing subgroups of direct products, will be used to get a different
presentation for ribbon equivalences.

Lemma 3.6.4. Subgroups in G × Q correspond to diagrams of groups

G P Q

M

i

N

j
(13)

The diagram, corresponding to a subgroup U ⊂ G × Q has a form:

G P Q

pr1(U )

i

pr2(U )

j
(14)

Conversely, the subgroup, corresponding to a diagram (13), is

U = M ×P N = {
(g,q) ∈ M × N

∣∣ i(g) = j(q)
} ⊂ G × Q .

Proof. The group P and the surjections in the diagram (14) are defined as follows. First note that, as
a subgroup of G , U ∩ (G × {e}) is a normal subgroup of pr1(U ). This, indeed, follows from the fact
that for (g,q), ( f , e) ∈ U

(g,q)( f , e)(g,q)−1 = (
g f g−1, e

)
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lies in U . Similarly, U ∩ ({e} × Q ) is a normal subgroup of pr2(U ). Moreover, there is an isomorphism
of quotient groups

pr1(U )/U ∩ (
G × {e}) −→ pr2(U )/U ∩ ({e} × Q

)
, (15)

given by the assignment on cosets g(U ∩ (G ×{e})) �→ q(U ∩ ({e}× Q )) each time (g,q) belongs to U .
Thus, in the diagram (14), we can set P = pr1(U )/U ∩ (G × {e}) with i being the quotient map and j
being the composition of the quotient map with the inverse of (15).

The fact that the constructions, described in the lemma, are mutually inverse can be verified di-
rectly. �
Remark 3.6.5. With the help of Lemma 3.6.4, the statement of Corollary 3.6.3 can be reformulated as
follows. Equivalences between Z(G) and Z(Q ), as ribbon categories, correspond to diagrams

P

G Q

S

i j

with abelian S , where the inclusions are normal and such that the actions of P on S , induced by the
extensions, coincide; together with the coboundary γ ∈ C2(U ,k∗) on U = G ×P Q

d(γ ) = 1,

such that γ ( | ) induces a non-degenerate pairing i(S) × j(S) → k∗ .
Here we defined S to be U ∩ (G ×{e}) with the obvious inclusion i and with j defined by a choice

of isomorphism S → Ŝ followed by the map Ŝ → U ∩ ({e} × Q ), induced by the pairing (12).

Remark 3.6.6. It is well known that the category Z(G) is equivalent to the monoidal centre
Z(Rep(G)) of the category Rep(G) of (finite-dimensional) representations of G . In particular,
a monoidal equivalence Rep(G) → Rep(Q ) gives rise to an equivalence of ribbon categories Z(G) →
Z(Q ). Monoidal equivalences between categories of representations of finite groups were described
in [8,9] (see also [15]). According to [9], monoidal equivalences Rep(G) → Rep(Q ) correspond to the
following data: a diagram of groups

P

G Q

S

i j

with abelian S (such that the actions of P on S , induced by the extensions, coincide); together with
a P -invariant cohomology class γ ∈ H2(S,k∗)P and a homomorphism

G ×P Q −→ N(P , S, γ ) = {
(p,π) ∈ P × C1(S,k∗) ∣∣ p(γ )γ −1 = d(π)

}
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(here γ ∈ Z 2(S,k∗) is a representative of the class γ ) fitting into the commutative diagram with exact
rows and columns:

P = P
↑ ↑

S → G ×P Q → N(P , S, γ )

‖ ↑ ↑
S → S × S → Ŝ,

where S → S × S is the diagonal embedding and S × S → Ŝ is a skew-diagonal projection given by
the pairing γ ( | ) : S → Ŝ .

The group-theoretical data of the corresponding ribbon equivalence Z(G) → Z(Q ) is given by the
2-class γ̃ ∈ H2(G ×P Q ,k∗), which can be constructed using the short exact sequence S → G ×P Q →
N(P , S, γ ). The details will appear elsewhere.

Remark 3.6.7. Since the category Z(G) is isomorphic to the monoidal centre Z(C(G)), any monoidal
equivalence C(G) → C(Q ) gives a ribbon equivalence Z(G) → Z(Q ). Monoidal equivalences C(G) →
C(Q ) correspond to isomorphisms φ : G → Q together with a cocycle γ ∈ C2(G,k∗), d(γ ) = 1.
It is straightforward to see, that the corresponding subgroup U ⊂ G ×P Q is the graph of φ,
U = {(g, φ(g)) | g ∈ G} and that the coboundary γ̃ ∈ C2(U ,k∗) is given by γ̃ (( f , φ( f )), (g, φ(g))) =
γ ( f , g).

4. Modular invariants for group-theoretical modular data

In this section we calculate characters (and thus classes in the Grothendieck ring) of indecom-
posable separable commutative algebras in (untwisted) group-theoretic modular categories. As was
explained in Section 2.6, characters of trivialising algebras are invariant with respect to the modu-
lar group action on the Grothendieck ring. Thus here we give the description of physical modular
invariants for (untwisted) group-theoretical modular data.

4.1. Characters of commutative algebras and their local modules

Proposition 4.1.1. The map K0(Z(H)) ∼= K0(Z(G)k(H)) → K0(Z(G)), induced by the transfer Z(H) ∼=
Z(G)k(H) → Z(G), sends a character χ ∈ K0(Z(H)) into

χ( f , g) = 1

|H|
∑

x∈G, xf x−1,xgx−1∈H

χ
(
xf x−1, xgx−1).

Proof. The proof is completely analogous to the proof of the induction formula in character theory
(see for example [23]). By the definition, the character χ( f , g) is the trace tr(k(G)⊗H U ) f (g) of g acting
on the graded component (k(G) ⊗H U ) f . By the definition of the transfer, the graded component
(k(G) ⊗H U ) f coincides with

⊕
x px ⊗ Ux−1 f x , where the sum is taken over cosets {x: x−1 f x ∈ H}/H

(with respect to the H-action on the set {x: x−1 f x ∈ H} by left multiplications). So that

tr(k(G)⊗H U ) f (g) =
∑

x

trpx⊗Ux−1 f x
(g).

Note that g preserves px ⊗ Ux−1 f x iff x−1 gx is in H :

g(px ⊗ Ux−1 f x) = pgx ⊗ Ux−1 f x = pxx−1 gx ⊗ Ux−1 f x = px ⊗ x−1 gx(Ux−1 f x),
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and that, in this case, the restriction of g to px ⊗ Ux−1 f x coincides with px ⊗ x−1 gx. Thus

trpx⊗Ux−1 f x
(g) = χ

(
xf x−1, xgx−1). �

Corollary 4.1.2. The character of a trivialising algebra A(H, γ ) has the form:

χA(H,γ )( f , g) = 1

|H|
∑

x∈G, xf x−1,xgx−1∈H

γ
(
xf x−1

∣∣xgx−1). (16)

Proof. By the definition the algebra A(H, γ ) is the image of the algebra k[H, γ ] under the transfer
Z(H) ∼= Z(G)k(H) → Z(G). Thus the corollary follows from Proposition 4.1.1 and the fact that the
character of k[F , γ ] is χ(x, y) = γ (x|y), which can be checked directly. Indeed, x-graded component
of k[F , γ ] is spanned (over k) by ex , with the action of y on it

y(ex) = εx(y)e yxy−1 = γ (x, y)

γ (xyx−1, x)
ex.

Thus, for commuting x, y, we have that

trk[F ,γ ]x(y) = γ (x, y)

γ (xyx−1, x)
= γ (x|y). �

We finish this section with examples of trivialising algebras in Z(G) with the same character (the
same class in K0(Z(G))). By the formula (16), to construct such example it is enough to have a finite
group H with a non-trivial 2-class γ ∈ H2(H,k∗), such that γh is a trivial character of C H (h) for any
h ∈ H . We will use the well-known correspondence between second cohomology classes and central
extensions (see [5], for example) to give a group-theoretic conditions, which guarantee existence of
such class.

Lemma 4.1.3. Let H̃ be a finite group with a central cyclic subgroup Z ⊂ Z(H̃), which does not contain com-
mutators, and such that the extension Z ∩ [H̃, H̃] → [H̃, H̃] → [H̃, H̃]/Z ∩ [H̃, H̃] is non-trivial. Let k be
an algebraically closed field of characteristic zero. Then the class γ ∈ H2(H,k∗), extended from the extension
class γ ∈ H2(H, Z) with respect to an embedding Z → k∗ , is non-trivial and such that γh is a trivial character
of C H (h) for any h ∈ H. Here H = H̃/Z .

Proof. We begin by showing that the absence of commutators in Z implies that γh is a trivial char-
acter of C H (h) for any h ∈ H . Indeed, it is straightforward to see that for any commuting x,h ∈ H the
commutator [h̃, x̃] of (any of) their preimages in H̃ lies in Z and coincides with γ h(x). So if Z does
not contain commutators, then γ h is trivial for any h ∈ H , which implies the triviality of γh .

Next we show non-triviality of the extended class γ ∈ H2(H,k∗). We identify Z with the n-torsion
subgroup of k∗ (n = |Z |). It follows from the long exact sequence, corresponding to the coefficient
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extension Z → k∗ ×n−−→ k∗ , that the kernel of the coefficient extension H2(H, Z) → H2(H,k∗) coincides
with the image of the connecting map ∂ : H1(H,k∗) → H2(H, Z), which fits into a diagram

H2([H̃, H̃], Z)

H1(H,k∗)
∂

H2(H, Z) H2(H,k∗)

H1(Hab,k∗) H2(Hab, Z)

Here Hab = H/[H, H]. The commutative square implies that the image of ∂ coincides with the image
of H2(Hab, Z) → H2(H, Z). So if the image of γ ∈ H2(H, Z) in H2([H̃, H̃], Z) is non-trivial, then
γ cannot be in the image of H2(Hab, Z) → H2(H, Z) and thus cannot be killed by H2(H, Z) →
H2(H,k∗). �
Example 4.1.4. Let p � 5 be a prime and H̃ be the free meta-abelian group of period p2, generated
by x1, x2, x3, x4. Let Z be the central subgroup, generated by ([x1, x2][x3, x4])p . Note that V = H̃ab is
the free abelian group of period p2, with four generators e1, e2, e3, e4, and [H̃, H̃] can be identified
with the exterior square Λ2 V . In this presentation the commutator pairing corresponds to the wedge
product V × V → Λ2 V so the set of commutators in [H̃, H̃] corresponds to the Plücker quadric {x ∈
Λ2 V , x ∧ x = 0} ⊂ Λ2 V . The element v = p(e1 ∧ e2 + e3 ∧ e4) is not on the quadric, which shows that
Z does not contain (non-trivial) commutators. The inclusion 〈v〉 → Λ2 V does not split, which implies
that the extension Z ∩ [H̃, H̃] → [H̃, H̃] → [H̃, H̃]/Z ∩ [H̃, H̃] is non-trivial.

Applying the lemma we get a desired example.

4.2. S3 modular data and modular invariants

Here we describe modular invariants for modular data of S3 (the symmetric group acting on 3 el-
ements). Below A3 will denote the alternating group (the group of even permutations) and C2 will
denote (the conjugacy class of) a subgroup, generated by a transposition.

Recall that H2(H,k∗) is trivial for any subgroup H of S3 (including S3 itself). The classes of simple
objects are labelled by

(e, ξ0), (e, ξ1), (e, ξ2),
(
(123),π0

)
,

(
(123),π1

)
,(

(123),π0
)
,

(
(12),ψ0

)
,

(
(12),ψ1

)
.

Here ξi ∈ Irr(S3), πi ∈ Irr(C3), ψi ∈ Irr(C2).

The S- and T -matrices have the following form:

S = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 2 2 2 3 3
1 1 2 2 2 2 −3 −3
2 2 4 −2 −2 −2 0 0
2 2 −2 4 −2 −2 0 0
2 2 −2 −2 −2 4 0 0
2 2 −2 −2 4 −2 0 0
3 −3 0 0 0 0 3 −3
3 −3 0 0 0 0 −3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T = diag
(
1,1,1,1,ω,ω−1,1,−1

)
, 1 + ω + ω2 = 0.
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Table 1

H � F H/F Z(S3)loc
A(H,F )

S3 � S3 {e} χ0 + χ3 + χ6

A3 � A3 {e} χ0 + χ1 + 2χ3

C2 � C2 {e} χ0 + χ2 + χ6

{e} � {e} {e} χ0 + χ1 + 2χ2

S3 � A3 C2 χ0 + χ3, χ1 + χ3, χ6, χ7

C2 � {e} C2 χ0 + χ2, χ1 + χ2, χ6, χ7

A3 � {e} A3 χ0 + χ1, χ2, χ3, χ4, χ5

S3 � {e} S3 χ0, χ1, χ2, χ3, χ4, χ5, χ6, χ7

In Table 1 we list all indecomposable commutative separable algebras in Z(S3) together with the
characters of their simple local modules (the first character is the character of the algebra itself):

Note, that in the case A3 � {e}, for each i = 2, . . . ,5 there are two different simple local modules
with the character χi .

According to Lemma 3.6.4, there are 22 conjugacy classes of subgroups in S3 × S3. Sixteen of them
have a form A × B for A, B ⊂ S3 and correspond to diagrams (we omit the embeddings into S3)

{e}

A B;

four have the form

δ(C2), δ(C2)
({e} × A3

)
, δ(C2)

(
A3 × {e}), δ(C2)(A3 × A3)

and correspond to diagrams

C2

A B

with A, B = C2 or S3; and two remaining are δ(A3), δ(S3), corresponding to the diagrams:

A3

A3 A3,

S3

S3 S3

respectively. Here δ : G → G × G stand for the diagonal embedding. Only six of them:

C2 × C2, S3 × S3, C2 × S3, S3 × C2, A3 × A3, δ(C2)(A3 × A3)

have non-trivial cohomology H2(U ,k∗). For the first four H2(U ,k∗) is cyclic of order 2 and for two
remaining it is cyclic of order 3. In the last two cases the conjugation action of the normaliser in
S3 × S3 permutes two non-trivial cohomology classes. Thus, in all cases, there is just one (up to
conjugation) non-trivial cohomology class, which, somewhat loosely, will be denoted γ .
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Maximal commutative algebras in Z(S3) � Z(S3) 	 Z(S3 × S3) are depicted as edges of the fol-
lowing four graphs:

(C2, C2)

C2×C2

C2×{e}
C2×S3

C2×A3

({e}, {e})

{e}×C2

{e}×A3

{e}
{e}×S3

(S3, S3)

S3×{e}

S3×A3

S3×C2

S3×S3

(A3, A3)

A3×C2 A3×S3

A3×{e}

A3×A3

(C2, {e})

δ(C2)

(C2×C2,γ )

δ(C2)({e}×A3)

(C2×S3,γ )

(S3, A3)

δ(C2)(A3×{e})

(S3×C2,γ )

δ(C2)(A3×A3)

(S3×S3,γ )

(A3, {e})

δ(A3)

(A3×A3,γ )

(S3, {e})

δ(S3)

(δ(C2)(A3×A3),γ )

Vertices are labelled by the (conjugacy classes of) pairs of subgroups F � H ⊂ S3, which correspond to
indecomposable commutative separable algebras in Z(S3); edges are labelled by (conjugacy classes
of) (H, γ ), where H ⊂ S3 × S3 and γ ∈ H2(H,k∗) is a cohomology class (omitted if trivial), which
correspond to maximal indecomposable commutative separable algebras in Z(S3 × S3). An edge goes
from A to B if for the corresponding algebra C ∈ Z(S3 × S3)

Hom1�Z(S3)(1, C) = A, HomZ(S3)�1(1, C) = B.

Table 2 contains characters of maximal indecomposable commutative separable algebras in Z(S3 ×
S3), written in the (traditional) form of a partition function, ordered by the rank of the corresponding
modular invariant.

5. Concluding remarks

It is known that modular categories give rise to 3-dimensional topological field theories
(see [39,4]). In particular, group-theoretical modular categories correspond to Dijkgraaf–Witten topo-
logical field theories [14,17]. Equivalent modular categories give rise to equivalent topological field
theories and, in particular, to the same invariants of closed 3-manifolds. It follows from the results
of [14,17] that the invariant of a 3-manifold M , defined by the modular category Z(G), has the form

ZG(M) = |Hom(π1(M), G)|
. (17)
|G|
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Table 2

A(H, γ ) Z

A(S3 × S3) |χ0 + χ3 + χ6|2
A(S3 × A3) (χ0 + χ3 + χ6)(χ0 + χ1 + 2χ3)∗
A(S3 × C2) (χ0 + χ3 + χ6)(χ0 + χ2 + χ6)∗
A(S3 × {e}) (χ0 + χ3 + χ6)(χ0 + χ1 + 2χ2)∗
A(A3 × A3) |χ0 + χ1 + 2χ3|2
A(A3 × S3) (χ0 + χ1 + 2χ3)(χ0 + χ3 + χ6)∗
A(A3 × C2) (χ0 + χ1 + 2χ3)(χ0 + χ2 + χ6)∗
A(A3 × {e}) (χ0 + χ1 + 2χ3)(χ0 + χ1 + 2χ2)∗
A(C2 × C2) |χ0 + χ2 + χ6|2
A(C2 × S3) (χ0 + χ2 + χ6)(χ0 + χ3 + χ6)∗
A(C2 × A3) (χ0 + χ2 + χ6)(χ0 + χ1 + 2χ3)∗
A(C2 × {e}) (χ0 + χ2 + χ6)(χ0 + χ1 + 2χ2)∗
A({e} × {e}) |χ0 + χ1 + 2χ2|2
A({e} × S3) (χ0 + χ1 + 2χ2)(χ0 + χ3 + χ6)∗
A({e} × A3) (χ0 + χ1 + 2χ2)(χ0 + χ1 + 2χ3)∗
A({e} × C2) (χ0 + χ1 + 2χ2)(χ0 + χ2 + χ6)∗
A(δ(C2)(A3 × A3)) |χ0 + χ3|2 + |χ1 + χ3|2 + |χ6|2 + |χ7|2
A(S3 × S3, γ ) |χ0 + χ3|2 + (χ1 + χ3)χ∗

6 + χ6(χ1 + χ3)∗ + |χ7|2
A(δ(C2)(A3 × {e})) (χ0 + χ3)(χ0 + χ2)∗ + (χ1 + χ3)(χ1 + χ2)∗ + |χ6|2 + |χ7|2
A(S3 × C2, γ ) (χ0 + χ3)(χ0 + χ2)∗ + (χ1 + χ3)χ∗

6 + χ6(χ1 + χ2)∗ + |χ7|2
A(δ(C2)) |χ0 + χ2|2 + |χ1 + χ2|2 + |χ6|2 + |χ7|2
A(S3 × S3, γ ) |χ0 + χ2|2 + (χ1 + χ2)χ∗

6 + χ6(χ1 + χ2)∗ + |χ7|2
A(δ(C2)({e} × A3)) (χ0 + χ2)(χ0 + χ3)∗ + (χ1 + χ2)(χ1 + χ3)∗ + |χ6|2 + |χ7|2
A(C2 × S3, γ ) (χ0 + χ2)(χ0 + χ3)∗ + (χ1 + χ2)χ∗

6 + χ6(χ1 + χ3)∗ + |χ7|2
A(δ(A3)) |χ0 + χ1|2 + 2|χ2|2 + 2|χ3|2 + 2|χ4|2 + 2|χ5|2
A(A3 × A3, γ ) |χ0 + χ1|2 + 2χ2χ

∗
3 + 2χ3χ

∗
2 + |χ4|2 + |χ5|2

A(δ(S3)) |χ0|2 + |χ1|2 + |χ2|2 + |χ3|2 + |χ4|2 + |χ5|2 + |χ6|2 + |χ7|2
A(δ(C2)(A3 × A3), γ ) |χ0|2 + |χ1|2 + χ2χ

∗
3 + χ3χ

∗
2 + |χ4|2 + |χ5|2 + |χ6|2 + |χ7|2

It follows from Corollary 3.6.3 that for G and Q , satisfying the conditions of the corollary, the invari-
ants coincide

ZG(M) = Z Q (M)

for all closed 3-manifolds M . In particular, the number of homomorphisms π1(M) → G is equal to
the number of homomorphisms π1(M) → Q , for G and Q satisfying the conditions of Corollary 3.6.3.
In other words, fundamental groups of 3-manifolds do not detect the difference between such G and Q .
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