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Aging

The aging process is accompanied by the onset of disease and a general decline in wellness. Insights into the aging
process have revealed a number of cellular hallmarks of aging, among these epigenetic alterations, loss of
proteostasis, mitochondrial dysfunction, cellular senescence, and stem cell exhaustion. Mitochondrial dysfunc-
tion increasingly appears to be a common factor connecting several of these hallmarks, driving the aging process
and afflicting tissues throughout the body. Recent research has uncovered a much more complex involvement of
mitochondria in the cell than has previously been appreciated and revealed novel ways in which mitochondrial
defects feed into disease pathology. In this review we evaluate ways in which problems in mitochondria
contribute to disease beyond the well-known mechanisms of oxidative stress and bioenergetic deficits, and we
predict the direction that mitochondrial disease research will take in years to come.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Mitochondria deteriorate with age, losing respiratory activity,
accumulating damage to their DNA (mtDNA), and producing excessive
amounts of reactive oxygen species (ROS) [1]. While for decades it
was believed that ROS were exclusively toxic molecules causing
damage, it is now accepted that low levels of some ROS species have
signaling roles [2]. Excessive and aberrant ROS generation, nonetheless,
is one of the major consequences of mitochondrial dysfunction. Mito-
chondria are the main source of ROS in the cell, with most stemming
from complexes I and III of the electron transport chain (ETC) [3,4].
Electrons escape at these points as a side-product of oxidative respira-
tion and in turn reduce oxygen, generating superoxide. ROS exert a
plethora of detrimental effects in the cell by causing oxidative damage
to nucleic acids, proteins, and lipids. The mitochondrial free radical
theory of aging postulates that the damage caused by accumulating
ROS produced by mitochondria is the driving force behind aging [5].
This theory is corroborated to some extent by the inverse correlation
between mitochondrial ROS production and lifespan in mammals [6].
Furthermore, mitochondrially-targeted catalase has been found to
have protective effects against cardiac diseases, cancer, and insulin
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resistance in mice [7]. ROS are not the only aspect of flawed mitochon-
dria that contributes to degenerating health though; ATP shortage,
mutations in mtDNA, mitochondrial permeability transition pore
(mPTP) opening, apoptosis, Ca®>" deregulation, inflammation, and
altered fusion/fission dynamics are all mitochondrial factors that,
while not necessarily acting independently, become disrupted in
many diseases.

Studies on caloric restriction, one of the most consistent and power-
ful tools to boost lifespan and healthspan across a variety of organisms,
provide further support for a theory of aging centered around mito-
chondria through the finding that the health benefits of this method
may stem from mitochondria. Genotype has been reported to be an
important determinant of an individual's response to dietary restriction,
particularly when it comes to genes concerning mitochondria [8,9].
Additionally, mitochondrial membrane potential has been found to be
a predictive marker of replicative lifespan in yeast grown on media
with reduced glucose [10]. Mitochondria also appear to be major signal-
ing hubs that in part govern the molecular changes induced by dietary
restriction [11].

Current evidence points to mitochondrial dysfunction as an overarch-
ing mechanism of aging and age-related disease. It is implicated in an
extensive list of aging pathologies such as cancer, intestinal barrier
dysfunction, depression, chronic obstructive pulmonary disease
(COPD), diabetes, and others [12-16]. Here we examine the role of
mitochondrial dysfunction in diseases that are common but are not
typically associated with mitochondrial dysfunction or have more
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mitochondrial involvement than commonly appreciated such as vascu-
lar disease (atherosclerosis), the major neurodegenerative diseases
(Alzheimer's, Huntington's, and Parkinson's), and osteoporosis. We
also look at diseases that we foresee may potentially become more
prominent in society as we solve now-common diseases and extend
our lifespan e.g. stem cell dysfunction and infection. Lastly we review
evidence linking changes in the mitochondrial proteome and metabo-
lome with the commencement of various age-related problems.

2. Mitochondrial dysfunction in common diseases
2.1. Atherosclerosis

Atherosclerosis is commonly thought of as a disease associated with
diets high in fat and cholesterol. However, more recent findings indicate
that mitochondrial dysfunction may in fact play a more integral role
than previously appreciated. Leaks in the respiratory chain create ROS
that set off a chain reaction that gives way to atherosclerosis by multiple
pathways. ROS oxidize low density lipoprotein (LDL), which accumu-
lates in the artery wall, leading to the formation of an atherosclerotic
plaque. ROS also induce inflammation by causing damage to mtDNA.
By a more complex mechanism, the oxidative modification of mito-
chondrial cardiolipins may contribute to progression of cardiovascular
disease as well.

2.1.1. Ox-LDL

LDL functions to deliver cholesterol to cells throughout the body via
the bloodstream. However, when LDL particles leave the vasculature
and enter the arterial intima, they can be exposed to ROS produced by
endothelial cells [17,18]. These ROS convert LDL into its oxidized form,
ox-LDL which binds to the extracellular matrix (ECM) of endothelial
cells more easily than LDL [19,20]. Adhesion of ox-LDL to the ECM
triggers the recruitment of monocytes, which become macrophages to
take up the accumulating lipoprotein and transform into foam cells
[19]. Foam cells secrete apolipoprotein E (apoE) which aids high density
lipoprotein (HDL) in the removal of fats and cholesterol from the cells in
conjunction with various components of the HDL molecule [21,22]. HDL
can then transport the fat and cholesterol back to the liver for process-
ing. However, if the LDL/HDL ratio is too high, the foam cells accumulate
and die. The debris attracts more monocytes, perpetuating the cycle
until a plaque forms composed of monocytes, cholesterol, and fats
[17]. This progression is known as atherogenesis.

Oxidation of LDL has long been known to initiate a series of events
leading to atherosclerosis since it was observed that thiol-dependent
oxidation of LDL had atherogenic properties [23]. The subject of interest
has since shifted to ROS and mitochondria. The ROS produced by
endothelial cells are thought to have important physiological uses e.g.
playing a part in sensing oxygen concentrations, and regulation of
vascular tone, cell growth, and survival [18]. However, uncontrolled
ROS production has damaging effects. In one study, it was found that
decreased levels of the mitochondrial antioxidant enzyme superoxide
dismutase 2 (SOD2) exacerbated oxidative stress and atherosclerosis
in male apoE null mice fed normal chow [24]. When compared to
control mice (apoE(~/7), SOD2(*/H)) fed the same diet, it was found
that lesion formation was independent of cholesterol levels. Cholesterol
is typically focused on as the central component in cardiovascular
disease, but this finding implies that higher concentrations of ROS
have the capacity to drive atherosclerotic development as well. The
results were the same both in mice heterozygous for SOD2 and in an
in vitro model of human vascular endothelial cells where siRNA was
used to lower SOD2 levels. Another study tested the effects of deficiency
in the antioxidant enzyme peroxiredoxin 1 (Prdx1) on apoE(~/~) mice
fed normal chow. Again, larger lesions were observed in the Prdx1
null mice with no difference in cholesterol [25].

2.1.2. mtDNA

There are several enzymes in the cell such as superoxide dismutase,
catalase, and glutathione peroxidase that offer protection against
oxidative damage. Steady state concentrations of superoxide in the
mitochondrial matrix are estimated to be from 10 to 200 pM though
this is difficult to calculate due to the rapid conversion of superoxide
to hydrogen peroxide by SOD [26]. Nonetheless, being the center of
ROS generation, mitochondria often succumb to oxidative stress [20].
Particularly relevant to atherosclerosis is the consequent damage to
mtDNA. mtDNA damage has been known to be correlated with the inci-
dence of atherosclerotic lesions [27]. One possible and unexpected
mechanism by which this may occur is through mtDNA damage-
induced inflammation. While damaged mitochondria are degraded by
autophagy, some mtDNA can escape. A recent study has shown that
damaged mtDNA that avoids autophagy causes an inflammatory
response [28]. THP-1 macrophages were treated with siRNA against
DNase II, the enzyme responsible for degrading damaged mtDNA.
With the resulting rise in damaged mtDNA, an increase in NOD-like
receptor family pyrin domain containing 3 (NLRP3) inflammasome
activation was observed. The study also showed that ROS inhibitors
decrease NLRP3 activation. Collectively, these studies suggest a model
in which ROS cause mtDNA damage that in turn induces inflammation,
exacerbating atherosclerotic disease progression.

2.1.3. Cardiolipin oxidation

The oxidation of mitochondrial cardiolipins (CLs) by ROS in the
context of atherosclerosis is another area of research that has been
gaining interest recently. CLs are phospholipids that localize to the
inner mitochondrial membrane where they stabilize the association of
complexes I-V of the ETC and optimize their efficiency [29,30]. Due to
their close proximity to the respiratory chain, however, CLs are vulner-
able to oxidation. Based on their contributions to ETC complex function,
it is not surprising that changes in CL have deleterious effects on ETC
activity. When bovine heart submitochondrial particles were exposed
to increased ROS, cytochrome c oxidase activity was reduced by ~40%.
Cardiolipin content was also reduced by ~40%. This loss of cytochrome
c activity could be completely reversed by addition of exogenous CL,
but not peroxidized-CL, suggesting oxidized CLs and/or their subse-
quent loss from mitochondrial membranes were responsible for the
observed inhibition [31].

With the potential for amplifying mitochondrial dysfunction,
oxidized cardiolipins (0x-CL) could very well be an important contribu-
tor in diseases such as atherosclerosis. Indeed, not only are phospholipid
oxidation products (ox-PL) present in atherosclerotic lesions, but they
appear to contribute to lesion formation as well [32]. The ways in
which ox-CL specifically exacerbates atherosclerosis are only recently
beginning to be uncovered. It has been found that ox-CL increases
mobilization of intracellular Ca?" in human monocyte-derived
macrophages (HMDM) and polymorphonuclear leukocytes (PMN)
[33]. This led to the increased production of leukotriene B4 (LTB4), a
pro-inflammatory agent. Also of note is the finding that treatment of
human umbilical vein endothelial cells (HUVECs) with ox-CL augment-
ed expression of the adhesion molecules intercellular adhesion
molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1).
This may be a significant part of plaque formation in light of the fact
that adhesion molecules are involved in recruiting monocytes to the
arterial intima [33]. The phospholipid-binding protein annexin A5 has
been found to have anti-atherosclerotic attributes [34], and Wan et al.
provide further support for its usefulness by demonstrating that annexin
A5 treatment abolished the effects of ox-CL. In addition to their inflam-
matory influence, evidence is growing that ox-PL plays a part in regulat-
ing gene function in endothelial cells and is implicated in foam cell
development and instigation of apoptosis in macrophages [32].

While work on ox-CLs has opened new doors for atherosclerotic
research, it is as yet unclear if mitochondria are the sole source of
these compounds. Oxidized-CLs can certainly be produced in the



RK. Lane et al. / Biochimica et Biophysica Acta 1847 (2015) 1387-1400 1389

mitochondria, and result in detrimental effects on the respiratory chain.
Oxidized-CLs may also turn cells toward atherogenesis, but it has not
been demonstrated that mitochondria link the two events. It would be
intriguing to investigate whether ox-CL generated in the mitochondrial
membrane can be released into the extracellular milieu, and if this
occurs during the progression of atherosclerosis.

2.2. Neurodegenerative disease

The brain is a center of high energy demand, consuming roughly a
fifth of the body's basal metabolic energy requirements [35]. Because
glycolysis is down-regulated in neurons [36], much of the energetic
needs of neurons are fulfilled by substrates supplied to them by way
of astrocytes, via the so-called astrocyte-neuron lactate shuttle. In this
process, astrocytic lactate produced by glycolysis is shuttled into neu-
rons and then re-converted to pyruvate for entry into the tricarboxylic
acid (TCA) cycle [37]. With such a reliance on mitochondrial respiration,
as well as a high proportion of peroxidizable lipids and a dependence on
astrocytes for key antioxidants, neurons are rendered particularly
sensitive to mitochondrial dysfunction [38]. Mitochondrial dysfunction
contributes to disease in neurons in several ways — by causing oxidative
damage to cell structures through production of excessive ROS, by
reducing oxidative phosphorylation (OXPHOS) capacity and the energy
output of neurons, and ultimately through instigation of apoptotic
pathways that in turn disrupt neuronal circuits [39,40]. Moreover,
RNA oxidation is a widespread event in neurodegenerative disease,
and has been found to occur early in the progression of Alzheimer's
and Parkinson's [41]. In addition, mutations in mtDNA have been linked
to a variety of neurodegenerative diseases [42]. While mitochondria
play an integral part of general neurodegeneration, here we will focus
on mitochondria and their specific role in three major neurodegenera-
tive diseases: Alzheimer's, Huntington's, and Parkinson's.

2.2.1. Alzheimer's disease

Alzheimer's disease (AD) is characterized by extracellular amyloid-p
(AP) aggregates as well as intracellular neurofibrillary tangles (NFTs)
consisting of hyperphosphorylated tau protein. While it was initially
thought that the AB plaques were the cause of the disease, an idea
known as the amyloid cascade hypothesis, there is now controversy as
to whether they are actually causative of AD. There is a considerable
amount of data that do not fit the amyloid model. For example, AR
aggregates have been found in multiple instances to be present in the
brains of cognitively intact elderly in quantities characteristic of the
disease. There is also a poor correlation between plaque density and
disease severity [38]. An alternate hypothesis proposes that rather
than playing a causal role, AP represents a compensatory response to
oxidative stress [43]. Indeed, higher levels of AP are associated with
decreased levels of nucleic acid oxidation [38]. It is thought that AR
achieves this by chelating redox-active metals such as iron and copper,
and there is evidence to suggest that NFTs have a similar function.

A direct connection between AP and mitochondria exists as well.
The amyloid precursor protein APP has both an endoplasmic reticulum
(ER) and a mitochondrial targeting sequence. Upon overexpression
in vitro, mimicking disease conditions, APP is directed to the mitochon-
dria. During import, however, it gets stuck in the mitochondrial double
membrane [44]. At this point APP is cleaved by Omi in the intermem-
brane space and mitochondrial 'y-secretases at the outer mitochondrial
membrane [45,46]. Processing by -y-secretases could possibly generate
AP, though this has yet to be demonstrated. AP itself can be imported
into mitochondria where it complexes heme groups, which are critical
for ETC function, and inhibits AB-binding alcohol dehydrogenase
(ABAD) [47]. In AD, ABAD is upregulated in neurons, and its interaction
with AR results in increased ROS [48,49]. While this conflicts with the
reports of lowered oxidation with elevated AP, it may be explained by
the fact that AP only protects against metal-dependent oxidation [38].
Aberrant ROS generation is not the only deleterious effect of AR on

mitochondria; incubation of mouse brain mitochondria with AR leads
to mitochondrial swelling and apoptosis [50]. Interestingly, AR exerts
these toxic effects despite the presence of PreP, a mitochondrial enzyme
that degrades the amyloid protein [46].

While the status of AP as protective or harmful remains the subject
of debate, it is clear that mitochondria are a central part of AD. Mito-
chondria are visibly affected in AD, presenting a fragmented phenotype
that may be a result of increased fission, presumably for the purpose of
setting aside damaged mitochondria to be degraded by autophagy [47].
Impairment of various mitochondrial enzymes, accumulation of
oxidation products, and a perturbation in antioxidants in brain and
fluid samples of AD patients are also evident [38,40,51]. Mitochondrial
involvement in the disease is further implicated by the observation
that in cell lines overexpressing APP, there is a marked decrease in
ATP production and an increase in ROS generation [52].

Importantly, oxidative damage precedes AP deposition and NFT
formation, suggesting a possible causal role [38,53,54]. Strong support
for involvement of oxidation in AD etiology comes from the finding
that oxidation products cause an increase in production and accumula-
tion of AR and hyperphosphorylation of tau [55-57]. Phosphorylated
tau itself can then be oxidized, leading to fibril formation [38]. Further-
more, supplementation of various anti-oxidizing substances such as
vitamin E, melatonin, copper, and omega-3 polyunsaturated fatty acid
lower levels of AR deposition in transgenic animal models of AD [38].
Conversely, treatment of cells with ETC inhibitors results in tau phos-
phorylation and amyloidogenic APP processing. The use of cytoplasmic
hybrids (cybrids) is another approach that has been used in AD
research. The cybrid assay is one in which a cell that has been depleted
of its mtDNA is fused with an enucleated cell, allowing one to separate
the effects of mtDNA from nuclear genes. Cybrids transplanted with
mitochondria from AD patients overproduce AB42 and exhibit lower
complex IV (cytochrome c oxidase) activity, increased ROS, activated
stress signaling and apoptotic pathways, and reduced mitochondrial
membrane potential, all of which points to the mitochondria as an
underlying mechanism of AD pathology [43].

Several studies reveal that a maternally-inherited factor increases in-
cidence of AD-like traits [58]. It has been hypothesized that part of the
maternal bias may be due to the unequal inheritance of COX genes;
while most subunits are encoded by nuclear DNA, three are inherited
from the mother's mtDNA [43]. Other mitochondrial genes have also
been linked to an increased risk of developing AD — among these a hap-
lotype for the mitochondrial outer membrane translocation protein
TOM40 [59-61]. A recent screen identified several mitochondria-related
genes that are differentially expressed in astrocytes from the posterior
cingulate of AD patients [62]. The results of the screen revealed an altered
regulation of apoptosis, mitochondrial tRNA methylation, decreased PreP
expression, and inhibition of complex I activity in this section of AD
brains. Perhaps the most intriguing finding was the identification of the
first known mitochondrially-encoded pseudogene, MTND1P22. Tran-
script levels of the pseudogene, which may be involved in transcription
regulation, were found to be increased. Little is known about
pseudogenes, but recent studies have suggested an increasing impor-
tance of these molecules and even hint at their involvement in disease
[63,64].

One of the earliest events in disease progression of transgenic AD
mouse models is the emergence of mitochondrial dysfunction in the
form of deregulation of respiratory complexes I and IV, decreased
respiration, and increased oxidative stress [65,66]. However, the conse-
quences of dysfunction in the context of AD are still unclear. It has
recently been shown that in 3-month old 3xTg mice, a transgenic
model of AD overexpressing three mutations commonly associated
with AD, reduced activity of complexes I and IV is concurrent with a
change in cardiolipin composition of synaptic mitochondrial mem-
branes [67]. Another study found that in the brains of 45-week-old
TgCRNDS8 mice (a strain that overexpresses APP), there was reduced
complex I activity but complex IV was unaffected, and no change in
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cardiolipin composition was present in this model at this age [68]. The
effect on complex I was likely due to the reduced expression of one of
its subunits, NDUFBS.

2.2.2. Huntington's disease

Huntington's disease (HD) is caused by expansion of a trinucleotide
repeat in the Huntingtin gene. Mutant huntingtin (mhtt) accumulates
and forms inclusions in the striatum [42]. While this mutation is the
ultimate cause of the disease, mitochondria are not idle spectators.
There is a disturbance of mitochondrial energy metabolism, defects in
complexes I and II, reduced aconitase activity, lowered membrane
potential, abnormal depolarization, and altered structure and number
of mitochondria in diseased brains [42,51]. A bioenergetic deficit is
present before the onset of symptoms, indicating mitochondrial
dysfunction may be an important initiator of pathogenesis [69]. The
impairment of mitochondrial bioenergetics may be due to the role of
mutant huntingtin in regulation of transcription factors that are
required for the transcription of mitochondrial genes. For example, it
has been demonstrated that mhtt represses expression of peroxisome
proliferator-activated receptor gamma coactivator-1ac (PGC-1at), a
transcriptional co-activator of genes involved in mitochondrial biogen-
esis, metabolism, and membrane structure [70,71].

Mhtt directly interacts with mitochondria as well, activating the
fission protein DRP1 and causing mitochondrial fragmentation [72].
Altered fusion/fission dynamics have been found to be a recurring
theme in neurodegeneration [73]. Fragmentation can then result in
reduced Ca®*-buffering capacity. Mitochondria from lymphoblasts of
HD patients do in fact exhibit a lowered membrane potential and
depolarize at lower levels of Ca?* [74]. Mitochondria in a transgenic
rat model of HD also show changes in Ca?* transport and a decreased
Ca®™ threshold for mPTP opening [75]. Furthermore, striatal cells
expressing mhtt showed increased sensitivity to Ca>* and hindered
Ca’™ uptake capacity [76]. Considering the role of Ca®™ signaling in
neuronal synaptic transmission, the changes in mitochondrial
Ca%*-buffering capacity may represent another way in which altered
mitochondrial dynamics impairs neuronal function. In addition to in-
ducing fragmentation and the corresponding changes in Ca> ™ handling,
mhtt also impedes mitochondrial trafficking. Cytosolic mhtt aggregates
physically block the transit of mitochondria along neuronal processes
[77]. The accumulation of mitochondria at these roadblocks may
decrease the effective size of the pool of functional mitochondria,
leading to neurodegeneration.

Inhibition of succinate dehydrogenase in complex II with 3-
nitropropionic acid (3-NP) has been used to model HD. 3-NP cripples
energy production, leads to striatal neuronal degeneration, and invokes
pathophysiological characteristics similar to those of HD [78]. The
toxin's specificity of action on striatal neurons is likely due to a combina-
tion of factors in the local cellular environment [ 79]. Using 3-NP to study
the etiology of the disease reveals that toxin-induced mitochondrial
dysfunction is followed by impaired neuronal excitability and a
decrease in neurotransmitter release [80]. Neurotrophins, which aid in
the survival and function of nerve cells, have been found to amplify
corticostriatal synaptic transmission. However, after exposure to 3-NP,
the neurotrophins BDNF, NT-4/5, and NT-3 had diminished effects on
corticostriatal transmission.

2.2.3. Parkinson's disease

It is well established that mitochondrial dysfunction is associated
with familial Parkinson's disease (PD). Newer studies hint at the possi-
bility that mitochondrial dysfunction might also underlie many cases of
idiosyncratic PD, which account for 90% of all PD cases. PD is character-
ized by a loss of dopaminergic neurons and the formation of inclusions
composed of a-synuclein (a-syn) called Lewy bodies. PD shares many
mitochondria-related characteristics with AD including oxidative
damage in affected regions, inhibited respiratory complex function,
and increased incidence of mtDNA mutations [81-83].

A complex I defect is the most prominent mitochondrial feature in
PD [42,82]. This was first discovered when it was found that the
compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
caused Parkinsonism. MPTP is capable of crossing the blood-brain
barrier, and has a high affinity for a dopamine transporter, allowing it
to act mostly on dopaminergic neurons [84]. At the outer mitochondrial
membrane, MPTP is processed to produce MPP™ which enters into
mitochondria and exerts its toxic effects by binding to and inhibiting
complex L. The consequent reduction of ATP and elevation of ROS can
then activate apoptotic pathways, resulting in neuronal loss [84]. The
pathogenic properties of complex I inhibition are expanded further by
the finding that rotenone, an inhibitor of complex I, causes aggregation
of ai-syn in cell culture [85]. It is thought that this is a consequence of
constrained activity of the ubiquitin-protease system (UPS). Complex [
dysfunction hinders proteasome activity by shrinking the energy supply
and causing a rise in oxidatively damaged proteins, increasing the UPS
burden [84]. As a-syn is degraded by the UPS, deterring the pathway
may allow for aggregation. a-Syn is also capable of inducing dysfunc-
tion. The protein can be targeted to mitochondria under certain
conditions, crippling complex I and spurring an increase in ROS produc-
tion [82].

MitoPark mice illustrate the capacity of mitochondrial dysfunction
to drive pathogenesis of PD. These mice were designed using Cre/Lox
technology and have the mitochondrial transcription factor Tfam
removed exclusively from dopaminergic neurons. Impaired mtDNA
transcription in these cells leads to a loss of mtDNA-encoded respiratory
complex subunits and ultimately loss of the respiratory chain. Without
such a critical cellular component, the neurons die. Beginning in adult-
hood, the animals develop Parkinsonian symptoms and molecular
markers of the disease. It should be noted that while these mice have
been found to have intraneuronal inclusions, the aggregates did not
contain a-syn [86]. Nonetheless, due to their ability to reproduce a
large portion of the PD phenotype, MitoPark mice are widely used as a
model to study PD.

A number of the proteins known to be key players in familial PD are
either mitochondrial proteins or associated with mitochondria [51,
87-89]. One that has gained much interest in recent years is the
mitochondrial protein PINK1. Mutations in the PINK1 gene are the
main cause of one variety of familial PD [90]. Under normal conditions,
PINKT1 aids in regulation of mitophagy. Studies have shown that a loss of
mitochondrial membrane potential causes PINK1 to accumulate at the
membrane and phosphorylate Parkin, another protein that is implied
in PD pathology. This then leads to mitochondrial degradation by
mitophagy [90]. A PINK1 deficiency inhibits respiratory complex I,
decreasing mitochondrial membrane potential and impairing transmis-
sion at neuromuscular junctions in Drosophila. This is not the only effect;
dysfunction of a Na™/Ca?™ exchanger at the inner mitochondrial
membrane has also been found to result from PINK1 deficiency [91].
The accumulated Ca®™ lowers the threshold for mPTP opening which
can elevate ROS production through a conformational change in com-
plex I [92]. Alternatively, complex I deficiency may result in increased
ROS, which can inhibit the Na*/Ca?* exchanger [93]. Hence, the
findings of the two studies may be interrelated, but more research is
needed to determine which is the primary effect of PINK1 deficiency,
complex I inhibition or a Na™/Ca?* exchanger defect. Inflammation is
another feature of PD, and it has recently been discovered that PINK1
may play a pro-inflammatory role as well [90]. It therefore appears
that the protein may contribute to pathology of the disease by multiple
pathways.

Alzheimer's, Huntington's, and Parkinson's diseases all share two
major things in common: mitochondrial dysfunction and the formation
of soluble oligomers that often result in insoluble protein aggregates
[94]. Mitochondrial dysfunction is an early event in each case, suggest-
ing malfunctioning mitochondria may in fact be at the root of these
diseases with protein oligermization or precipitation following as a
consequence. It is possible that for many age-related diseases a similar
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pathological trajectory involving mitochondria and misfolded proteins
is followed, but this has yet to be recognized. Impairment of mitochon-
drial processes in any cell type of any tissue could potentially create an
environment in which deposition of proteins that are prone to aggrega-
tion is favored. This may occur by inhibition of the UPS, as discussed in
the context of PD, or some other mechanism. In this regard, it is interest-
ing to note that proteins that are not associated with any known
deposition disease can be induced to aggregate in vitro [95]. Thus, we
speculate that all tissues are likely to have their own aggregation-
prone set of proteins which may vary from cell type to cell type depend-
ing on the particular proteome and cellular environment, and which
may or may not be toxic. In those cases where the aggregate proteins
have a toxic effect, disease would ensue. This concept is best exempli-
fied by the MitoPark mice, which exhibit disease characteristics similar
to those of PD despite the absence of a-syn from intraneuronal
inclusions. This indicates there is almost certainly more than one path-
way to disease, and that the main problem is not the aggregate protein
itself, but rather the common factor of mitochondrial dysfunction.

2.3. Osteoporosis

The skeletal system provides the framework upon which our body's
overall structure is centered. Disruption of this framework can lead to
increased risks of injury, debilitation, infection, and potentially death
[96]. With age, the skeletal system naturally decays, experiencing
decreased bone mineral density and bone mass, which is the cumulative
effect of multiple physical, hormonal, and nutritional factors. Osteopo-
rosis is a disease defined by the increasing loss of bone mass which
leads to a porous bone structure and increased risk of fracturing
[97-99]. With over 50% of people over 50 being affected, understanding
the underlying causes of this disease is of great importance [100].

Normal adult bone growth is characterized by a balance between
bone resorption and formation. Bone resorption is the breaking down
of existing bone into base components (mainly type I collagen and
inorganic salts) by osteoclast cells located on the surface of dissolving
bone [101,102]. Bone matrix formation and mineralization is undertak-
en by osteoblasts located on the surface of a new bone, which use the
broken down components made available by osteoclasts to form new
bone matrices [101,103]. These newly formed matrices are mineralized
by osteoblasts that, as they get trapped within the forming matrix, then
populate the matrix as osteocytes [104,105]. Osteocytes comprise
90-95% of all bone cells, and direct the bone's formation response to
strain [106-108]. Osteoclasts and osteoblasts both come from bone
marrow. With the need for nutrient metabolism required for bone
remodeling, mitochondria play an important part in the creation of
bone. This section will focus on the role of mitochondrial dysfunction,
in particular mtDNA deletions and mitochondrial ROS, in osteoporosis.

2.3.1. mtDNA damage

Findings from several sources, including genome-wide association
studies (GWAS) in humans, studies on mice with increased mtDNA
mutation rates, and from studies using cells that are defective for
dysfunctional mitochondria disposal, all suggest that increasing
amounts of damage to mitochondria or mtDNA are connected with
osteoporosis [109-114]. In one example, a study of 2286 US Caucasian
men and women of Northern European origin from the mid-west
found a significant association with single nucleotide polymorphisms
in the mtDNA-encoded NADH dehydrogenase 2 and cytochrome b
genes [109]. Although it is unclear precisely how these alterations trans-
late into increased risk of osteoporosis, it is telling that both of these
genes form essential parts of the mitochondrial respiratory chain.

An early hypothesis by Varanasi [113], based on data from 15 men
with symptomatic vertebral fractures, suggested that mtDNA deletions,
and not oxidative stress, were the cause of osteoporosis. Varanasi sug-
gested that the buildup of lactate following mitochondrial electron
transport chain dysfunction stimulated bone resorption in osteoclasts.

The link between mtDNA deletions and osteoporosis has also received
support by a 2004 study from Trifunovic and colleagues [112]. That
study used homozygous knock-in mice that expressed a proof-
reading-deficient version of PolgA, the nucleus-encoded catalytic
subunit of mtDNA polymerase.. Such mice exhibited advanced aging
phenotypes, including loss of bone mineral density and whole body
bone mineral content, both characteristic of osteoporosis in humans
[112].

Additional evidence from mice shows that osteoporosis can occur fol-
lowing mitochondrial dysfunction. HTRA2/OMI is an ATP-independent
serine protease located in the intermembrane space of the mitochondria
and is thought to function as a protein quality control protease. Its loss
has been specifically shown to result in several age-related pathologies,
including elevated mtDNA deletions, oesteoporosis, and neurodegenera-
tion, among other phenotypes [110]. Mutant mitochondria in these
animals are prevented from being marked for mitophagy. It is thought
that as a consequence mtDNA deletions are allowed to replicate and in
turn the buildup of defective mitochondria leads to impaired ATP produc-
tion and an inability to meet the energy demand of normal cellular
function [110]. One effect of this decrease in ATP production may be an
increased rate of osteoclast resorption, leading to a decrease in bone
mineral density [111].

2.3.2.ROS

In a shift from Varanasi's hypothesis, in vitro studies and a progeric
mouse model point toward mitochondrial-derived ROS as a key factor
in the etiology of osteoporosis [98,100,115,116]. Mice with homozygous
SOD2 deficiency in connective tissue display early onset aging pheno-
types, including decreased levels of bone mineral density [116]. Other
studies show that the control of H,0, is a crucial part of osteoporosis
[115]. H,0, production in cells is amplified by the adapter protein
p66°"¢, which is released from an inhibitor complex in the inner mito-
chondrial membrane in response to a variety of pro-apoptotic stimuli
and acts as a redox enzyme catalyzing the reduction of O, to H0,
through electron transfer from cytochrome c [117]. High levels of
H,0, in osteoblastic cells result in apoptosis and initiate osteoporosis
by impairing osteoblast formation [98,115]. A buildup of H,0, converse-
ly induces osteoclast proliferation and is required for osteoclast matura-
tion. The attenuation of H,0, by forkhead box O transcription factors
(FoxOs) and estrogen administration promotes osteoblast formation,
leading to bone growth. Increased levels of H,0, inactivate FoxOs, and
the effectiveness of these defenses decreases with age [118]. Thus, in
youth, our body's normal ROS defenses are able to maintain the balance
between bone formation and resorption. However, as we age, our
defenses become less effective and lead to the dominance of resorption
by osteoclasts, resulting in decreased bone mineral density and
osteoporosis.

The effect of oxidized cholesterol, or oxysterols, is another avenue by
which mitochondria can influence osteoporosis [100]. Oxysterols are
generated from cholesterol by P450 enzymes, the most important of
which are located in mitochondria and endoplasmic reticulum (ER).
Different types of oxidized cholesterol have different systemic effects
and, relevant to osteoporosis, oxysterol 20(S)-hydroxycholesterol, in
combination with either the 22(S) or 22(R) versions, upregulates oste-
oblasts and strengthens bone through increased alkaline phosphatase
activity, osteocalcin gene expression, and enhanced cell mineralization
[119]. Other forms of oxidized cholesterol, such as cholestan-3 3,5 o.,6
{3-triol, inhibit osteoblast formation [120].

3. Age-related diseases with mitochondrial components that are
likely to become more prevalent in society in the future

3.1. Stem cell failure

Stem cells are generally grouped into two classes: pluripotent stem
cells and tissue-specific stem cells. The more versatile pluripotent stem
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cells are capable of differentiating into any cell type from all three
embryonic germ layers, and are found naturally in the inner cell mass
of developing embryos. Tissue-specific stem cells, on the other hand,
are much more limited in their differentiating capabilities and their
possible fates are restricted to cell types of their tissue of origin. Almost
all tissues retain cell populations with stem cell-like characteristics and
these act to replenish lost cells and retain tissue function [121]. Other
stem cells, called induced pluripotent stem cells (iPS cells), are artificially
re-programmed somatic cells that adopt pluripotent stem cell-like
characteristics. Since it is well established that tissue function declines
with age, one question that comes to mind is what happens to stem cell
function in the tissues of elderly individuals? Do stem cells themselves
show signs of aging, does the niche in which these specialized cells reside
bear the brunt of time and in turn become incapable of supporting these
potentially immortal cells, or does something else occur?

Current studies indicate that aging limits the ability of stem cells to
divide, self-renew, and respond to environmental signals [122]. With
the stem cell differentiation pathway being determined by environmen-
tal cues, the ability of certain stem cell types to differentiate into specific
tissues is affected by age. The differentiation of mesenchymal stem cells
into adipogenic, chondrogenic, or osteogenic cell lines is one notable
example [123]. Disruption of stem cell function underlies an increasing
number of age-related pathologies, including atherosclerosis, osteopo-
rosis, and mitochondrial respiratory chain deficiency [124-126].
Mitochondria are actively involved in the proper function of stem cells,
namely by meeting varying metabolic requirements and controlling cell
fate with ROS signaling [127]. Many studies now point to mtDNA
mutations, altered ROS production, impaired mitochondrial metabolism,
and structurally compromised mitochondria as contributing factors for
some stem cell-related pathologies [128,129].

3.1.1. Characteristics of mitochondria in differentiating cells

The remarkable changes to mitochondria in stem cells can best be
seen by comparing them to those in dividing somatic cells. During mito-
sis in somatic cells, mitochondria are pulled to the cleavage furrow via
microtubules where they undergo fusion and fission to homogenize
mtDNA distribution and proteome composition of the two daughter
cells [130]. Cells that have defects in the mitochondrial fusion and
fission proteins have a heterogeneous mitochondrial proteome, leading
to reduced genetic stability, the accumulation of mtDNA mutations, and
respiratory chain dysfunction [131]. Aside from the flux in organelle
dynamics, there is no evidence showing a change in somatic cell mito-
chondria during division.

The alterations to stem cell mitochondria are in stark contrast to the
relatively stable somatic cell mitochondria. Studies on mitochondrial
remodeling in stem cell differentiation and reprogramming show that
non-differentiating, or naive, pluripotent cells have rounded, less
mature mitochondria. When pluripotent stem cells differentiate, their
mitochondria become elongated and develop more mature, defined
cristae [132]. As shown by studies using embryoid bodies, mitochondri-
al morphology appears to be a key factor in proper stem cell function.
Embryoid bodies are spheres of pluripotent stem cells floating in
suspension and their construction is currently the most accurate
method of representing embryogenesis and studying stem cell differen-
tiation. One study showed that the disruption of mitochondrial net-
works in embryoid bodies undergoing cardiac differentiation inhibited
sarcomere formation [133]. The importance of morphology reflects
the shift from glycolysis as the main source of energy to OXPHOS during
differentiation, as an intact network is important for construction of the
respiratory chain [132,134].

It has been observed that when embryonic stem cells differentiate,
mitochondrial mass and amount of mtDNA both increase [135].
Interestingly, unmodified, in vitro, human embryonic stem cells have
large mtDNA deletions that are carried through to the final differentiated
cells, but they do not impact the differentiation capability of the cell [136].
Human embryonic stem cells contain fewer mitochondria, produce less

ATP and ROS, and have elevated ROS defenses compared to differentiat-
ing pluripotent stem cells [ 137]. Moreover, mitochondria in differentiated
cells are tubular and located throughout the cytoplasm, while undifferen-
tiated cell mitochondria are globular and perinuclear [138]. All these
changes are important aspects of stem cell differentiation and are
reversed during the reprogramming process [135]. There is no definitive
answer to whether these mitochondrial changes are the same for all
differentiation pathways, or if there are cell-type specific modifications.

3.1.2. Mitochondrial role in stem cell differentiation

While absolute mitochondrial mass increases during differentiation
as mentioned above, it has been reported that the ratio of mitochondria
to total cell protein mass does not change. In fact, pluripotent and
differentiated cells have similar oxygen consumption rates, suggesting
their mitochondria have comparable metabolic activity [139]. How is
it then that stem cells produce lower amounts of ATP compared to
their differentiated counterparts? The answer lies in the metabolic
programming of each cell type. Despite having fully-functioning mito-
chondria, pluripotent stem cells produce most of their ATP by glycolysis.
This is achieved by preventing the entry of pyruvate into the TCA cycle,
instead diverting glucose into other metabolic pathways, including
lactate fermentation and the pentose phosphate pathway (Fig. 1A)
[140]. This shunting process is mediated by uncoupling protein 2
(UCP2). UCP2 is activated by phosphatidylinositol phosphates (PIPs)
[141]. During stem cell differentiation, the mitochondrial phosphatase
Protein Tyrosine Phosphatase, Mitochondrial 1 (PTPMT1) dephosphor-
ylates PIPs, inactivating UCP2 and allowing the necessary transition to
mitochondrial respiration to take place (Fig. 1B) [141]. Deletion of the
PTPMT1 gene, rendering the protein catalytically inactive, or removing
the mitochondrial localization signal all resulted in the failure of hema-
topoietic stem cells to differentiate. In agreement with these findings,
ectopic UCP2 expression has also been shown to impede differentiation
[139]. Together these studies show that PTPMTT1 is a part of the mecha-
nism by which stem cells undergo metabolic reprogramming, serving to
inactivate UCP2 and facilitate the transition to aerobic metabolism that
is seen in differentiating cells.

The importance of the metabolic state of a stem cell to its differenti-
ation capacity is further exhibited by the finding that murine embryonic
stem cells that have lower rates of metabolism, as measured by
mitochondrial membrane potential and oxygen consumption, have
higher differentiation capabilities in vitro and decreased tumorigenic
properties in vivo [ 142]. This study also characterized a mechanistic tar-
get of rapamycin (mTOR)-mitochondria axis. mTOR activity correlated
with metabolic activity, and when cells were treated with the mTOR
inhibitor rapamycin, there was a decrease in mitochondrial oxygen con-
sumption and an increased ability of the cells to differentiate. It has been
proposed that this connection may be mediated by the interaction of
mTOR with PGC-1q, a transcription factor for genes associated with
mitochondrial biogenesis.

Different cell lines also have different amounts of mtDNA transcrip-
tion associated with their differentiation. The timing of the increase in
mtDNA transcription factors and the mitochondrial replication process
is critical for the specific cell type differentiation [143]. The increase in
mtDNA transcription can be timed in conjunction with changes in ROS
signaling, which affects proliferation and differentiation in some stem
cells, especially hematopoietic stem cells [127]. ROS signaling as a
marker for differentiation was seen in Drosophila as well; lowering
ROS concentrations led to delayed differentiation in fly hematopoietic
stem cells, and an increase had the opposite effect [144]. Somatic
mtDNA mutations can cause stem cell dysfunction and cause premature
aging in mice with impaired mtDNA proofreading [124]. The effects
manifest at different points in the differentiation process for different
cell lineages but there is an overall inhibition of differentiation, impaired
tissue replenishment, and a reduction in lifespan. It is thought that
somatic mtDNA mutations are able to affect stem cells by changing
ROS signaling based on the observation that a ROS scavenger was able
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Fig. 1. ROS as determinants of stem cell differentiation. Depending on concentration, ROS can either cause a stem cell to differentiate, or guide it into a senescent state.

to rescue stem cell function [124]. It is well established that mtDNA
damage accumulates with age [1]. There is a link then between mito-
chondrial dysfunction and ailments that result from an age-dependent
decline in stem cell function.

3.1.3. Mitochondria in regulation of the stem cell life cycle
Modulating differentiation is not the only way in which mitochondria
are active in stem cells; they are also important regulators of the cell

cycle. p53 and p38 signaling pathways control the increase of mitochon-
drial mass, membrane potential, and ROS production in cells. The effect of
ROS on stem cells was tested by exposing human endometrium-derived
mesenchymal stem cells to non-lethal doses of hydrogen peroxide, which
led to senescence via the p53/p21/pRb and p38/MK2 DNA damage
response pathways. Within one hour of exposure, intracellular ROS levels
increased and remained high over nine days after exposure, maintaining
cells in a state of senescence [145]. Inhibition of the p38 pathway resulted



1394 RK. Lane et al. / Biochimica et Biophysica Acta 1847 (2015) 1387-1400

inincreased levels of stem-cell proliferation. Interestingly, the recovery of
proliferative ability caused by p38 inhibition was not as successful when
inhibitors were added later in the senescence process, suggesting a
time-sensitive ability to recover stem cell functionality [145]. This study
shows that endometrium-derived mesenchymal stem cells seem to rely
on increased levels of ROS to maintain the DNA damage response path-
ways and remain in a senescent state (Fig. 2). Surprisingly, activation of
the p53/MAPK pathway also led to mitochondrial dysfunction that in-
creased ROS levels, DNA damage, and continued use of the p53/MAPK
pathway, creating a feedback loop resulting in the loss of pluripotency
and self-renewal capabilities of adipose-derived stem cells [122].

The growth factor TGF-3, commonly used to induce cardiomyocyte
differentiation in bone marrow-derived mesenchymal stem cells, also
induces senescence of these cells, partly by decreasing the expression
of mitochondrial SOD2, resulting in a rise in ROS [146]. ROS levels
were also found to regulate stem cell quiescence and self-renewal in he-
matopoietic stem cells [140]. Collectively, these results show that ROS
are major signaling molecules involved in controlling multiple parts of
the stem cell cycle.

The integrity of mitochondria in undifferentiated embryonic stem
cells is also important in avoiding apoptosis. Disrupting the ETC or
membrane permeability led to increased rates of mitochondria-
mediated apoptosis [147]. Excessive mitochondrial fragmentation also
results in decreased cell survival in mouse embryonic stem cells [148].

3.1.4. Mitochondria in stem cell-mediated tissue repair

Loss of tissue-specific stem cell function, including a decreased ability
to differentiate, or outright death, all lead to a decrease in the ability of a
tissue to recover following homeostatic challenge [149]. Reprogramming
tissue-specific stem cells or somatic cells into iPS cells has the ability to
rejuvenate cells to a more youthful state, providing an avenue for stem
cell-based therapies. During iPS reprogramming, cells undergo metabolic
re-structuring to attain a pluripotent-like state [134,137]. Mitochondrial
morphology during the transition consists of both tubular and globular
type mitochondria. While iPS cells are reliant on glycolysis, evidence
suggests they have different expression profiles of genes involved in
glucose metabolism and O, consumption relative to normal pluripotent
(embryonic) stem cells [138]. Nonetheless, iPS cells exhibit many of the
characteristics seen in these cells, including elongated telomeres and
gross gene expression profiles, but often display varying levels of rejuve-
nation, even between cells from the same donor [137]. Some of these
differences seem to stem from the reprogramming process. One inherent
issue with reprogramming has been the appearance of nonspecific point
mutations in mtDNA. Oddly, no phenotype has been identified from
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Fig. 2. Metabolic reprogramming of differentiating stem cells. A. In undifferentiated
pluripotent stem cells, UCP2 is activated by phosphatidylinositol phosphates (PIPs) at
the inner mitochondrial membrane (IMM), which prevents entry of pyruvate into the
TCA cycle. Glucose is consequently shunted into alternate metabolic pathways such as
the pentose phosphate pathway (PPP). B. During differentiation, the mitochondrial phos-
phatase PTPMT1 dephosphorylates PIPs, downregulating UCP2 and allowing pyruvate to
be metabolized by the TCA cycle to fuel OXPHOS.

these mutations, and they do not seem to affect the reprogrammed
stem cell [134]. While it has not been fully determined whether the orig-
inal age of the reprogrammed tissue-specific stem cell affects the severity
of these mutations, the restructuring of mitochondria to the underdevel-
oped embryonic-like state described above is independent of the original
cell's age [137].

Amazingly, stem cells have their own method of restoring the
respiratory function of somatic epithelial cells. Mesenchymal stem
cells can target cells that have respiratory dysfunction and transfer
their mitochondria through gap junctions via tunneling nanotubes
made of actin, restoring mitochondrial function and decreasing ROS
production. Respiratory dysfunction in the receiving cell is required
for transfer to take place, both in vivo and in vitro. Miro1, an enzyme
involved in mitochondrial transport along microtubules, was shown to
be needed for the transfer between cells [150].

3.2. Infections

One of the concerns that arises with aging is the increased suscepti-
bility to infections. In future research on treating immunological
deficits, a mitochondria-centered approach may be in order. Beyond
mediating apoptosis of infected cells, mitochondria are emerging as
critical components of the innate immune response. It has been
shown that the ATP needed for purinergic signaling, T-cell regulation,
and initial activation of neutrophils comes from mitochondria [151,
152]. ATP production and mitochondrial Ca>™ buffering are needed for
antigen presentation and processing, and ROS are a part of the signaling
pathway that activates inflammatory proteins [153,154]. With the
current rise of multidrug-resistant “superbugs”, other ways of combating
infections grow increasingly crucial [155]. Based on accumulating
evidence, mitochondria may be viable therapeutic targets.

3.2.1. Bacterial and fungal infections

ROS form an integral component of innate immunity signaling
pathways. One study found that signaling by cell surface toll-like recep-
tors (TLRs) resulted in recruitment of mitochondria to macrophage
phagosomes and stimulated mitochondrial ROS production with the
aid of TLR adapter protein TRAF6 [156]. Mitochondrial ROS production
was dependent on translocation of TRAF6 to mitochondria and its
subsequent ubiquitination of ECSIT (evolutionarily conserved signaling
intermediate in Toll pathways). ECSIT is a part of respiratory complex I
assembly and typically localizes to the inner mitochondrial membrane
but there is a fraction that associates with the outer membrane. TRAF6
triggered an increase in the proportion of outer membrane ECSIT.
When mitochondrial ROS levels were dampened, either by mitochon-
drial expression of catalase or by the absence of ECSIT or TRAF6,
macrophages showed an accumulation of infecting bacteria. TRAF6
and ECSIT are therefore critical to the mitochondrially-mediated
immune response [156]. ROS serve other infection-fighting functions
as well. Management of mitochondrial ROS concentrations by SOD2
aids in innate immunity by regulating the production of phagocytes
and facilitating bacterial clearance. Importantly, a mitochondrial ROS
scavenger mitoTEMPO can make up for SOD2 deficiency, opening up
new possibilities for the treatment of bacterial infections [157]. In line
with the idea that mitochondria may be an influential focal point of
future antibacterial research endeavors, one group has found that
experimentally inducing ROS production in Escherichia coli increases
the bacteria's vulnerability to antibiotics [158]. Another recent study
found that the essential oil of Monarda punctata, known for its antibac-
terial effects, acts at least in part by triggering an increase in bacterial
ROS production, causing damage to the membrane [159]. Whether the
ECSIT pathway can be exploited as a means for pharmaceutically-
controlling mitochondrial ROS generation to enhance bacterial killing
remains an open possibility.

Microorganisms may, however, have begun to evolve a way to not
only protect themselves from their host's immune response, but use it
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to their advantage. One strain of the fungus Cryptococcus gattii infects
healthy individuals by subverting the host's ROS-mediated defense.
Within host macrophages, some of the infecting fungi are able to
convert their own mitochondria into a tubular conformation in
response to oxidative stress. These cells do not divide very frequently
but are resistant to killing and appear to allow co-infecting cells that
do not tubularize their mitochondria to divide rapidly [160].

3.2.2. Viral infection

Viral RNA is detected by pattern recognition receptors (PRRs) such
as retinoic acid-inducible gene I (RIGI)-like receptors (RLRs) and TLRs.
Once activated, these proteins interact with mitochondrial anti-viral
signaling protein (MAVS), which inserts its caspase activation and
recruitment domain (CARD) into the outer mitochondrial membrane.
This causes a signaling cascade that activates proteins of the innate
immune system [161]. During infection, there is an increased associa-
tion of the endoplasmic reticulum with mitochondria, particularly
elongated mitochondria. It is thought that mitochondrial elongation
promotes RLR signaling by allowing interaction of MAVS with an ER
protein, stimulator of interferon genes (STING). For example, a lack of
mitochondrial fission proteins results in elongation and increased RLR
signaling, whereas fragmentation diminishes signaling [162]. However,
fission may still be important for antiviral response. A recent study
established a RIP1-RIP3-DRP1 signaling axis in which the serine-thre-
onine kinases RIP1 and RIP3 form a complex in response to infection
by various RNA viruses and activate DRP1. DRP1 translocates to mito-
chondria and promotes activation of the NLRP3 inflammasome by
inducing mitochondrial fission and ROS production [163].

Mitochondrial cell death pathways also exhibit anti-viral properties.
A new model now suggests that there are two pathways by which
cell-death mediators Bax and Bak can potentially act: the cell death
pathway, and the viral resistance pathway. In the cell death pathway,
permeabilization of the mitochondrial outer membrane by Bax and
Bak causes the release of cytochrome c, leading to apoptosome and cas-
pase activation. Alternately, it has recently been found that in caspase
knockout mice, permeabilization by Bax and Bak can also instigate an
antiviral response by allowing the release of mtDNA into the cytosol
to activate the cGAS/STING pathway, resulting in the production of
type I interferons (IFNs) [164]. This pathway is inhibited by caspases,
though it is not known how, nor is it known in which cells mtDNA-
mediated activation of the cGAS/STING pathway occurs in vivo.

As mediators of immunity, mitochondria are consequently targeted
by several viruses: Influenza A viral protein PB1-F2 induces mitochondri-
al dysfunction as a mechanism of crippling the innate immune response.
The protein translocates across the outer membrane, accumulates in the
inner membrane space, and causes a drop in mitochondrial membrane
potential. This results in mitochondrial fragmentation, inhibits NLRP3
activation, and induces apoptosis [165,166]. Accordingly, PB1-F2
translocation correlates with subdued innate immunity [166]. The
SARS virus also targets mitochondria. The virus-encoded protein
ORF-9b localizes to mitochondria and triggers degradation of DRP1,
MAVS, TRAF3, and TRAF6, thus evading the host immune responses
[167]. There is also evidence that hepatitis C affects mitochondria by
suppressing mitophagy, triggering mitochondrial fission, and preventing
apoptosis [168,169].

Not only are mitochondria targeted for attack by invading viruses,
but they contribute to virulence. For example, mitochondria are key
devices in HIV-1 infection. When an HIV-1 infected T cell makes contact
with an uninfected cell, mitochondria are actively recruited by the
infected cell to the site of cell-cell contact and these mitochondria
buffer intracellular Ca®?™, an important signal for the infection
process. Perhaps most importantly, it was found that disrupting
mitochondrial re-localization by inhibiting mitochondrial trafficking
and Ca?* dynamics impaired the spread of the virus at the virological
synapse [170].

4. Novel ways in which mitochondrial disruption results in age-
related problems

4.1. Covalent modification

Post-translational modifications represent one way in which cells
respond to an ever-changing environment. The epigenetic landscape
changes with age, and a disruption of epigenetic dynamics can culmi-
nate in metabolic disease [171,172]. In mitochondria, we have only
just begun to unveil the post-synthetic changes that define this
organelle's DNA, RNA and protein landscapes. Already, disruptions to
these processes have been linked with disease. There is a great amount
of acetylation, succinylation, and malonylation of mitochondrial pro-
teins (Table 1). Covalent modifications such as these are regulated by
the activity of sirtuins. Sirtuins have arisen as anti-aging genes, provid-
ing a link between aging and metabolism with mitochondria as a focal
point [176]. There are three sirtuins that are active in mitochondria:
SIRT3, SIRT4, and SIRT5. SIRT3 deacetylates many major enzymes
involved in lipid metabolism and the TCA cycle, SIRT4 is a lipoamidase
acting on pyruvate dehydrogenase, and SIRT5 has demalonylase,
desuccinylase, and deglutarylase activity in mitochondria [174,
177-179].

4.1.1. Sirtuins

Research in this area has shown that an imbalance in the regulation
of post-translational modifications in mitochondria may be an impor-
tant factor in cancer [180]. Lower levels of SIRT3 and SIRT4 expression
occur in multiple cancers, and overexpression of SIRT3 has been found
in others [181,182]. One clue as to how differential SIRT3 expression
exerts these effects may lie in its regulation of SOD2, respiratory
complex I, and complex III and therefore ROS concentrations and
energy homeostasis [183-185]. Furthermore, hyperacetylation in
mitochondria is another characteristic of cancer as well as cardiac
hypertrophy [173].

Abnormal lysine deacetylase activity in mitochondria has been
linked to neurodegeneration as well. Acetylation is important for
modulating mitochondrial morphology, biogenesis, trafficking, and
mitophagy, all of which are affected in neurodegenerative diseases
[186]. In a PINK1 knockout and a-syn overexpression double mutant
mouse model of PD, there is a marked increase in deacetylation of
mitochondrial matrix proteins in the brain. Since these changes in
acetylation precede mitophagy and neuronal loss, the development of
antibodies to detect such changes may be a useful tool for diagnosing
PD early on [181]. SIRT3 has been shown to have neuroprotective
properties in AD, guarding against the many deleterious effects of ROS
[187].

Disruption of post-translational modification by SIRT3 appears to
contribute to a variety of widespread age-related maladies. SIRT3 levels
are known to decline with age [188]. A loss of SIRT3 in mice results in
many markers of mitochondrial dysfunction, and these mice are more
prone to developing age-related pathologies after being treated with
stress factors [182]. Among these pathologies are cardiac hypertrophy,
carcinogenesis, fatty liver, radiation-induced liver damage, and
age-related hearing loss. It has recently been found that a decrease in
SIRT3 expression also contributes to dysfunction of the central auditory
system by causing an accumulation of ROS [188]. Additionally, the
ability to recover from ischemia-reperfusion injury is reduced in cells
depleted of SIRT3 [189]. These cells also showed low rates of oxygen
consumption, and decreased complex [ and SOD2 activity.

Manipulation of sirtuin expression poses an intriguing therapeutic
option. Initial studies suggest that compounds that upregulate sirtuins
have positive effects on metabolic, neurodegenerative, cardiovascular,
and cancer conditions [172]. However, so far only a limited number of
compounds that increase sirtuins have been identified and those that
exist have limited effectiveness [190].
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Table 1
Post-translational modifications of mitochondrial proteins.
Type of Enzymes Targets Reference
modification
Phosphorylation PKA, Src-kinases, c-Src, EGFR, ErbB2, TFAM, CREB, complexes I-V, aconitase hydratase, citrate synthase, glycerol-3-phosphate [173]
Fgr, PDH-kinase, PINK1, Abl dehydrogenase, hexokinases 1 & 2, PDH, MPTP, DRP1, Miro, Parkin, BAD, BCL-XL
Deacetylation SIRT3, SIRT4, SIRT5 Cyclophilin D, mitoribosome, complex I, II, & V, LCAD, acetyl-CoA synthetase 2, HMGCS2, [172,173]
AceCS2, MCD, OTC, PDH, GDH1, CPS1, UOX, IDH2, SOD1, SOD2, aldehyde dehydrogenase 2,
MPTP, OGG1, Foxo3, LBK1, Ku70
Desuccinylation SIRT5 Complex II, PDH, SOD1 [172]
Ubiquitination Parkin, RNF5, Usp30, Huwe1, DRP1, Fis1, Mfn 1&2, BNIP1, p62, SOD1, Akt 1 & 2, MCL-1, MPTP, MAVS, RIG-1, [173]
MARCH5, RNF185, Usp9x STING/MITA, TANK
Deglutarylation SIRT5 CPS1, HADHA, GOT2 [174]
ADP ribosylation SIRT4 GDH [172]
Sumoylation MULAN, SENP2 DRP1 [173,175]

Abbreviations: PKA — protein kinase A; TFAM — transcription factor A, mitochondrial; CREB — cAMP response element-binding protein; EGFR — epidermal growth factor receptor; PDH-
kinase — pyruvate dehydrogenase kinase; PINK1 — PTEN induced putative kinase 1; PDH — pyruvate dehydrogenase; BAD — BCL2-associated agonist of cell death; BCL-xL — B-cell lym-
phoma-extra large; LCAD — long-chain acyl CoA dehydrogenase; HMGCS2 — 3-hydroxy-3-methylglutaryl CoA synthase 2; AceCS2 — acetyl-CoA synthetase 2; MCD — malonyl CoA decar-
boxylase; OTC — ornithine transcarbamoylase; GDH — glutamate dehydrogenase; CPS1 — carbamoyl phosphate synthetase 1; UOX — ureate oxidase; IDH2 — isocitrate dehydrogenase 2;
SOD1 — superoxide dismutase 1; SOD2 — superoxide dismutase 2; 0GG1 — 8-oxoguanine-DNA glycosylase 1; Foxo3 — forkhead box O 3; LBK1 — serine/threonine kinase 1; RNF5 — ring
finger protein 5; Huwe1 — HECT, UBA, and WWE domain containing 1; MCL-1 — myeloid cell leukemia 1; MARCH5 — membrane-associated ring finger (C3HC4) 5; RNF185 — ring finger
protein 185; STING (also known as MITA) — stimulator of interferon genes; TANK — TRAF family member-associated NF-KB activator; HADHA — hydroxyacyl-CoA dehydrogenase/3-
ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit; GOT2 — glutamic-oxaloacetic transaminase 2; MULAN — mitochondrial ubiquitin ligase activator of

NF-KB; SENP2 — SUMO1/sentrin/SMT3 specific peptidase 2. (2 column widths).

4.1.2. The TCA cycle and covalent modification

Beyond sirtuins, there are other ways in which mitochondria and
epigenetic changes are interconnected. The TCA cycle intermediates
a-ketoglutarate, succinate, and fumarate exert regulatory functions
on demethylases [171]. a-ketoglutarate is a co-substrate of the
2-oxoglutarate Fe-dioxygenase (2-OGDO) class of enzymes that
demethylate DNA and histones, while succinate and fumarate act
as inhibitors. It has been shown that loss-of-function mutations, or
chemical inhibition, of succinate dehydrogenase and fumarate
hydratase, exacerbate cancer progression due to the resulting
accumulation of succinate and fumarate, leading to alterations in
histone methylation. It has also been found that there is hypermethyla-
tion of cytosine residues in AD brains [191]. Given that priming for
cytosine demethylation is controlled by enzymes of the 2-OGDO family
known as TETs [192], this may reflect yet another way in which
mitochondrial dysfunction contributes to AD progression. Dysfunctional
TCA enzymes are also implicated in cancer due to their link with TET
activation. Specifically, mutations in isocitrate dehydrogenase and
succinate dehydrogenase result in improper DNA methylation and can
promote tumorigenesis [193]. Citrate is another important mitochon-
drial metabolite. Its activation of ATP-citrate lyase (ACLY) results in
increased acetyl-CoA levels which, in turn, lead to histone acetylation
and thereby alterations in gene expression [171]. A recent study has
found that ACLY knockdown triggers cellular senescence and activation
of tumor-suppressor p53 [194]. Maintenance of mitochondrial
metabolites and enzymes and their role in covalent modifications may
therefore be one aspect of cancer treatment in need of further
investigation.

5. Conclusions

Mitochondria have emerged as focal constituents of different
aging-related pathologies. A recurring theme in many diseases is
mitochondrial dysfunction, mainly in the form of mtDNA mutations
and ETC inefficiencies that give way to the loss of energy production
and excessive ROS formation. The result of such shortcomings is
differing pathologies, depending on the affected cell type. The exact
link between mitochondrial dysfunction and aging has not been fully
elucidated, but understanding this connection is certain to be an
important step toward developing better methods of prevention and
treatment of the multitude of ailments that loom over our ever-aging
population.
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