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INTRODUCTION

Let  be a real interval and denote by P(I) the set of all positive functions on I,
and by D(I) the set of all real valued functions on / having nonvanishing deriva-

tive.

Let (X, S, p) be a measure space with 0 < u(X) < c0. We say that (X, S, p)
satisfies the condition L if for any natural number z there exists a decomposition
X=4,VB,,A4,,B,eS, 4, N B, = ¢ such that p(4,) > 0 and

lim(u(B,)(A,)) = oo

The number

1y =gt (ALGERESENAL), ([ — [,

is called the integral mean value of x € F (I) corresponding to the mapping
function ¢ € D(I) and the weight function fe P(I). Here F () denotes the set
of those measurable functions x: X — I for which f(x(2)), f(#(2)) ¢(x(2)) are
integrable on X.

We remark that I (x); can be defined under more general circumstances with
respect to f, @, (X, S, p), but our theorems are proved only under the above-
mentioned assumptions.

The aim of this paper is twofold. First, we develop a general theory of these
means. The results for the corresponding discrete means ([6; 9; 11]) can be
generalized to our case. The second aim is to give a thorough investigation of
the homogeneous mean values, generalizing results of [3; 5-9].

The paper consists of five sections. In Section 1 we prove general theorems.
In the second section we determine the homogeneous I (x),-mean values. These

are

| x(z)er du \Vo J %(2)? In x(z) dp
( [y dH‘LL ) , (a = 0) and exp ( T dp ),
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INTEGRAL MEAN VALUES 587

where a, p are real constants. For the sake of simplicity we denote these means by
1,(x), and I(x), , respectively.

The next section deals with the comparison of two homogeneous means.
In Section 4 we study the inequality [ (x + t), < I (x), + £, where ¢ is a
positive scalar. Finally in Section 5 we investigate the sub- and superadditivity
of the homogeneous means.

We give necessary and sufficient conditions for each inequality studied. The
inequalities dealt with in Sections 3-5 had been investigated in the discrete
case [6; 8; 9]. There the variables are in (0, oo) while in this paper we suppose
the range of the “‘variable” function x to be restricted to an interval (m, M) C
(0, ). This makes the situation more difficult but the validity of the inequalities
widens. Because of homogeneity the conditions depend only on the ratio

A = m|M.
1. GENERAL THEOREMS

THEOREM 1.  Suppose that 1, I, , I, are arbitrary intervals, I: I, X I, —~1is a
Sunction differentiable on I, x I, , ¢ € D(I), ¢ € D(I,), x € D(1,); f € P(I), g € P(1}),
h € P(1,), and the condition L is satisfied.

The inequality

1,0, )y < I(x), , (30 (L.1)

is true for all x e Fy (1,), y € Fu(1,) satisfying l(x, y) € F {I) if and only if
el v)) — oll(t, 5)) | fw, 2))

¢'(U(t, 5)) fU, )
oY) — ) g) o 5 x(@) —x(8) k@) o
B R R TR W
is valid for all u,tel, v,sel,.

Equality holds in (1.1) if and only if

(x(2), ¥(2), L(x)y , L(3)n) € H

Sor almost every z € X, where H is the set of those quadruplets (u, v, t, s) for which
the equality sign is valid in (1.2).

Proof. Necessity. Put  x = %(2) = uy, (2) + ixs (2), ¥ =Fu(?) =
vxa, () + sxp (2) into (1.1) where u,tcly, v, sel,, and yz denotes the
characteristic function of a set E. We obtain

o1 ( S (Hu, 2) p(lu, v)) + A f (U2, 5)) (2, 5)) )
U, v)) + 2703, 5))

u) Y(u A, Lk » (s
<ofp (SN, g

where ’\n = /'L(Bn)//‘(An)
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Subtracting {(2, s) from both sides, multiplying by A, , and letting n — o0 we
get (1.2) (for a similar limit see [9, Theorem 1]).

Sufficiency. Substitute u = x(2), v = W(2), t = I, (x),, s =L(y), into
(1.2) and integrate over X. The right-hand side disappers and separating the
cases ¢’ > 0, ¢’ << 0 we obtain (1.1).

The statement concerning equality can be obtained by observing the proof
of sufficiency.

Remark. 1f f, g, h are positive constant functions, then condition (1.2) can be
transformed into a convexity condition using the characterization of differen-
tiable convex functions. See Beck [2] where this convexity condition was obtained
in investigating the discrete inequality corresponding to (1.1) with f=g =
h=1

THEOREM 2. Suppose that the conditions of Theorem 1 are satisfied except that
now [ is differentiable only at (i, s) where t, s are fixed interior points of I, , I, ,
respectively, and in addition f, g, h are continuous on their domains of definition.

In order that the inequality

L(I(x, )y <12, 5) (1.3)
holds for all x e Fy (I,), v € Fy(I,) satisfying l(x, v) € F {I) and the conditions
I(x), = 1, "
Ly =,

it is necessary and sufficient that (1.2) is valid for alluel, ,vel,.
Equality occurs in (1.3) exactly when

(x(2), (=) € H.,

for almost every z € X where H , is the set of all pairs (u, v) for which the equality
holds in (1.2).

Proof. Necessity. Substitute x = x,%(2) = ux, (2) + t.xs,(2), ¥ =
Yn*(?) = vx4 (2) + $uxp () into (1.3) where uel,, vely, and ¢,, s, are
chosen such that (1.4) is satisfied. This is possible for n large enough, since

Iw(xn*)y =1

means that

—g() ($(t) — H(@)) = Aug(tn) () — Pl(2,)). (1.5)
Let G,, be defined by
G(T) = 2.8(T) ((1) — H(T))
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where T is in a closed bounded interval [ = [t —a, ¢ + a] C ;. Obviously

lim inf G (T') = —ono,
Tel

n-oxc Je
lim sup G(T) = -+ o0;
n>Tored

hence for n == N,
inf G,(T) < —gu)((t) — #(u)) < sup Gy(T).

G, is a continuous function on [; therefore it takes on the value —g(u) ((2) —
Y(u)) at some T =t, € J. This means that for n > N there exists ¢, €, and
similarly s, €I, such that (1.4) is satisfied by x,*, ¥,*. Moreover,

t,—>t and S, —>S$

as n — oo. For {#,} is bounded; thus it has at least one limit point ¢. Were
t* == t another limit point, then an appropriate subsequence {t,,} would tend
to #*. Taking the limit as £ — oo of (L.5) (with n = ;) we get a contradiction.

Equation (1.4) and the integrability conditions x,* €F,(I)), etc., being
satisfied, we may substitute v = x,,*, y = »,,* into (1.3). We get

]w(x'n*’ yn*)f < l(t’ s)
or

o (S, 2) @l ©) + A f(Htn s 52) @ty $2) ) ey
v ( Fl(u, v)) + 2, f(01@, , s,) ) < I, s).

Hence, provided that ¢’ > 0, we have

F(¥(w, v)) (pl(u, v)) — @(Ut, $))) <SF(Utn , 5a)) (@UUE 5) — @20, $0))) A - (1.6)
By the differentiability of / at (¢, 5) we may write
((l(t, $)) — @l(tn » 52))) An == (@'(Ut, $))@]01) U2, 5) + 21) At — 1)

+ (Pt )NE/05) U2, 5) + 2y) Auls — 5,)

where £, , £, — 0 as n— oo.
If u =~ ¢, then ¢, 5 ¢; thus

M) — ()
At — 1) = (@) — SN — t2)

_ 1 Ang(U)(f(1) — Pltn)) | ) — (1) g(w)
() — @Dt — 2)  8(w) + Aag(tn) QR (O
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as 7 — oo and the same is true if u == 1, #, = ¢. Similarly

x(©) — x(s) h(2)
X A

Let n— oo in (1.6); then after dividing by f()(2, 5)) ¢'(I(2, 5)) we get (1.2). The
case ¢’ <C 0 can be settled similarly.

Sufficiency. Suppose x € Fy (1), y € F,,(1,) satisfy I(x, y) € F (I) and (1.4).
Substitute ¥ = x(2), © = () into (1.2) and integrate over X. The right-hand
side disappears and after multiplying by ¢'(I(, 5)) f(i{, 5)) we get (1.3).

The statement concerning equality can be proved by scrutinizing the proof of
sufficiency.

An(s — §p) —

Remark. For discrete mean values a similar theorem can be found in [11,
Theorem 3}.

TueorREM 3. Let I be an open interval, let fe P(I) be differentiable on I, let
@ & D(I) be twice differentiable on I, and suppose that condition L is satisfied. Denote
by I, the set of those ¥'s for which t + x(2) €1 for all z € X.

The inequality

1t + x(2)), < ¢ + L(x(2)); (1.7)

holds for all x e F,(I) and t € I, N [0, o0) with t + x(2) € F (1) if and only if for
all u,vel

P — ¢@) | p)— @) [fW) FE)  ¢6)
e o (C i (i W AL O

If in (1.8) strict inequality is valid for u + v, then in (1.7) too strict inequality
holds except when t = 0 and x(z) = a constant almost everywhere in X.

Proof. 'To prove the necessity let «, vel, and &,(2) = ux, (2) + 2xz,(3)-
t + & (x)el for all ze X if t 4+ u, ¢t + vel Therefore substituting x = &, ,
t > 0 such that ¢ +u, t + v el into (1.7) we get

o (f(u 1)y ol 4 1) + A f(u + 1) olo -+ t))
? flu 0+ X fle+9)

(@) o) + Mf(@) ¢(o)
<ot (e )

Substracting v - ¢, multiplying by A, , and letting n — o0 we have

Glu +t,v +t) < G(u, v) (u,v,t +ut +~vel t =0) (1.9)
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where G(u, v) = ((p(u) — (v))/@'(v) (f()/f(z)). This is equivalent to

eGu,v) | oGlu, v) _ :
i e 0 (wuvel) (1.10)

according to a remark following [12, Theorem 4]. An easy calculation shows that

(1.10) is identical to (1.8).

Sufficiency. Substitute u = x(2) e F (1), v = I (x);, and tel, N[0, 0)
into (1.9) (which is a consequence of (1.10), i.e., (1.8)) and integrate the inequality
obtained. We get

JF(x(2) + 1) p(3(2) + 1) du — p(v + 8) [ f(x(2) + 1) du
T . <0, (1.11)
¢'(e+0fv+1)
which implies (1.7).

If in (1.8), i.e., in (1.10) strict inequality holds for u s+ v then using Taylor’s
formula it can be seen that strict inequality holds also in (1.9) for £ 5£ 0, u = v,
hence also in (1.11) provided that ¢ 5= 0 and x(z) # I (x); a.e. on X.

In case f == e =: 1 we get from (1.8),

[¢'(W) — ¢'(@)] ¢'(2) < [p) — @] 9"(2), wvel
which can be reformulated as
¢(e7(®) — (@ (N < =) [P, tsell),  (L12)
provided that ¢" > 0. Equation (1.12) is exactly the criterion for ¢'(p~1(#)) to be

concave on !I). Taking into consideration the case when ¢’ < 0, we obtain

CoROLLARY 1. Let I be an open interval, let o € D(I) be twice differentiable
on I, and suppose that the condition L is satisfied. In case f = e = 1, inequality (1.7)
is valid if and only if either ¢'(u) > O (uel) and ¢'(p~\(s) is concave on ¢(I) or
@'(u) << 0 (uecl) and ¢'(p71(s)) is convex on @(I).

THEOREM 4. Let the conditions of Theorem 3 be satisfied and denote by I,

the set of all U's satisfying tx(z) € I for x € X. In order that the inequality

1 (tx(2)); < th((2))s (1.13)

be true for all x e F (1) and t € I, 0 [1, o0) with tx(z) € F, (1) it is necessary and
sufficient that

ugp'(u) — v@'(v) | @(u) — ¢(2) [uf W ') ¢+ (@) ] <o,

) R N O I O B OB P
for all u,vel
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The proof is similar to that of Theorem 3. Putting &,(z) = uy 4,(2) + vxp (2)
into (1.13) and letting # — o0 we get

G(tu, tv) < tG(u, v) (u,v, tu, tvel t = 1)

where G is the same function as in the proof of the former theorem. This is
equivalent to

oG oG .
(see the remark following [12, Theorem 4]). A simple calculation shows that
(1.14) is identical to (1.15). The sufficiency of (1.14) can be proved by integrating
the inequality obtained from (1.14) upon the substitutions u = x(z), v = I (x); .
In case f = e = 1 (1.14) goes over into convexity conditions and we have

CorROLLARY 2. Let the conditions of Theorem 4 be satisfied (except for condi-
tions concerning f). For f = e = | the inequality (1.13) holds if and only if either
Q1) >0 (uel) and ¢71(s) @'(¢7X(s)) (s p(I)) is concave or ¢'(u) < 0(ucl)
and ¢7(s) ¢'(97(s)), (s € @(I)) is convex.

Remark. 'Theorems 1-4 remain valid if we replace > by <C in (1.1)~(1.3),
(1.7), (1.8), (1.13), and (1.14).

2. Homogeneous I (x); MEaN VALUES

The mean value I (x), is called homogeneous if

Iw(tx)f = tlw(x)f (21)

holds for all x e F ;(R,), t€ R, = (0, c0), with tx e F_ ((R.). Let t > 0 be fixed
and introduce the notation Ji(u) = ¢(tu), g(u) = f(tu); then (2.1) can be written
as

1y(x)y = Lo(x)y, %€ Fo(R) NFy(Ry). 2:2)
According to Theorem 1 a necessary and sufficient condition for (2.2) is

W) — 9 g0) e —e) f&)
Fe e em o (@seR) (2.3)

Similar reasoning shows that a criterion for the homogeneity of the discrete mean

Y (%) elx)

Z" f(x) )’ X = (xl yeeey xn) c Rm‘n

A



INTEGRAL MEAN VALUES 593

is again (2.3) (we have to apply [9, Theorem 1]. Thus (2.1) is equivalent to the
functional equation

M (tx); = tM (%), (xeR™teR, ,n=12..) 2.4)

Assuming that f is continuous, the solutions of (2.4) or (2.1) are ({10, Theorem 4]
or [1, Theorem 3])

o) =alnu 4B,  f(u) = pu® (2.5)
and
p) = (yut + /(e +1—¢),  f(u) = pu"(cw® +1—¢), (2:6)
where the constants a, p, o, B, ¥, 8, €, p satisfy the conditions
ao # 0; p, € > 0; Yl —e) —ed £ 0.

Making use of solution (2.5) we get the mean value

exp (f x(2)? In x(z) dp./f x(z)” d,u.), (2.7)

while with (2.6) we obtain

1l/a

( J *(2y dps | f x(z) d,L) (a + 0). (2.8)
These means are clearly homogeneous; thus we have proved

THEOREM 5. Suppose that f € P(R,) is a continuous functionon R, , € D(R,),
and the condition L holds. Then the mean value 1 (x); is homogeneous if and only if
1t has one of the forms (2.7), (2.8).

For simplicity the means (2.7), (2.8) are denoted by I(x},, , I(x), , respectively,
while in cases p = In t, f = t? and ¢ = 19, f = t” we use the notations Fy,(I) and
F, () for F (I) (ICR.)).

It is clear that

I (%), = I(%)-arp (29)

and
([ ste)e du) " = wxye 1,62 (2.10)

The latter identity shows the connection between our homogeneous means
and the norms in the spaces L (X, S, p).
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The notation Iy(x),, is justified by the relation
Li_%l I (%), = Iy(x), (x € Fypy(R,) for [ a| < 9). (2.11)

To prove (2.11) let us observe that the function @ — (x%+? -— x%)/a is increasing,
hence by Levi’s theorem,

[fa [ sy = tim [ e an
= f (x(z)l' Lif{)l x(i)‘;:*l) du

— f (2)? In x(2) dy;

thus

. d
limp Z,(x), = exp [ In [ a(@)rm dp| = 1), -

In the following sections of the paper we deal exclusively with the means

I,(x), . The function

Goo(u, v) = ((u® — v¥)/av*—)(u?fo?), if a=£0
= ((Inu — Ino)/v Y)w?/v?), if a=0 (2.12)

plays a significant role. From the homogeneity,

G, ©) = Yap(u[2),
where
Jan(3) = (3%7% — 3%)fa  (a # 0)
=2%Inz (a = 0). (2.13)

The mean values ,(x), are investigated for functions of the class F,,((m, M))
where 0 <m < M < +o. To simplify the notation we omit one pair of
parentheses and write simply F,,(m, M). Thus F, (m, M) is the set of all
functions x: X — (m, M) measurable on X such that x? and x%+? (¥?In ¥ in
case a = Q) are integrable over X. The fact that the interval (m, M) is open
substantially simplifies the cases of equality in our inequalities.

Let us agree that

0/+o0 =0, +0/0 = +w and g/0 = 400, g/+o00 =0,

for 0 < g << 0. If G, is defined for u, v € (m, M), thenj,, is defined on (4, 1/4)
where 4 = m/M. We see later that our conditions concerning the parameters
involve only the number 4.
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If g is a function on (0, o) then g(0), g(--0c0) means lim,_,, g(2), lim, . g(=),
respectively, provided that these exist.
Let the function g, be defined by

gu(z) = —a(l — 279, it a#0, ze(0, 1)U (1, o)
—1/(In 2), if a=290, z€e(0, 1)V (l, ) (2.14)
= —af2, if z =1, a arbitrary.

1

It can be seen that g, is continuous on (0, 1) U (1, o) and

2.(0) = (la| —a)2. (2.15)
By the identity g,(1/2) + g_,(2) = 0 we get
2u+0) = —( a| +a)j2. (2.16)

The following result plays a key role in our investigations.

THEOREM 6. The function h,, defined by
hop(2) = gu(2) — g4(2) (zeR,.,a,beR = (—w0, o)) (2.17)

is continuous on R, (even at x = 1!) for all a, b € R and is

strictly increasing, if la|>1b!,
constant, if jai=1bi,
strictly decreasing, if la| <1b]

Proof. 'The continuity of A, at ¥ = 1 can be proved by L’Hospital’s rule.
If ab+£0, 251 then

[3°/%(z — 1)/a - 5°/%(=® — 1)/b] Ha(2)

h:tb(z) = [((z“ — 1)/4) (zb - 1)/b]2

where
Hoy() = [(3 — Dfa — 30D 1R(z0 — 1)[b] /271,

The first factor of the numerator is 220 for z 2= 1; in fact both its summands
possess that property. For the second factor of the numerator we have

Hiy(z) = gl@bia-1[gaz _ | — (g — b)/2)((z~> — 1)/—b)]. (2.18)
We show that H';,(2) = 0 for | a/b | = 1. By Taylor’s formula for u > 0
WOE 1 — (¢ 4 1J2) (u— 1) = (& — 1/8) £ — 1) (219)

where ¢ lies between u and 1. Hence for u % 1 the left-hand side of (2.19) is
=0 for | c| = 1. Putting # = 27, ¢ = —(a/b) here we obtain that for z 7 I,
2 >0,

R —1 —((a =B (¢ — D/ -B) Z0  for|afh| Z 1,

409/61/3-3
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which implies our proposition concerning H,,(z). As

Hal?) = L T H o(s) ds,

thus

if lafb| > 1 then Hgy(z)=0, forz =1,

if lajb| =1 then Hg(2)=0, for z € (0, o0),
while

i labl<1 then Hn()=0, forl=x
Hence

h 4(2) 2 0, for ze(0,1)U (1, ©) and lab| =

1,

and % is continuous on (0, 00) which proves our theorem for ab 5= 0.

If ab = O the proof is similar.

3. THE INEQUALITY [ (x), < T (%),

Throughout this section we exclude the cases a = b, p = ¢ and —a = b,

a + p = q when I (x), = I}(x),. Our aim is to prove

THEOREM 7. Supposethat(a — b + (p —g)* > 0,(a + b2 +(a+p —q)*

> 0, and the condition L is satisfied.
The inequality
Ia(x)m < Ib(x)q

is valid for all x e F, (m, M) N Fy(m, M) if and only if
laj=1bl, q—p>(e—0)2
and g —p = —(1/log A) log(g,(A)/g.(A)),
or
lal<|b], q—p>(a—b)2
and  q—p = a—b+(l/log A) log(g,(4)/g.(4)),

where A = (m|M) and g, is the function defined in (2.14).
Equality occurs in (3.1) exactly when

x(2) = constant

almost everywhere in X.

(3.1)

(3.2)

(3.3)

3.4
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Proof. According to Theorem 1, (3.1) is equivalent to

G, 1) < Gyi(u, 1), u, t € (m, M),
or to (3.5)
j(w(z) <jbq(z)? RE (Av l/A)

where G, , J., have been defined in Section 2. Equality occurs in (3.1) if and
only if

(¥(=), 1o(%)q) € {(, 2) | Januft) = Juo(u[t); u, t & (m, M)}

almost everywhere in .X.
Set

f(z) :fabm(z) :].ba(z)/jap(z) if 2E (0’ 1) v (1’ OO)’
=1 if z=1.

A simple calculation shows that f is continuously differentiable on (0, o0) and

F'(2) = (f(2)/2) (g — p — A(2)), (3.6)

where A(z) = h,(2) is the function appearing in Theorem 6. Observing that
Fan(2), Joal®) 2 0 according to z == 1 (hence f(2) > 0 on (0, o)), (3.5) can be
written as

f(x) <1, forze(4,1), and 1 < f(z) forze(l,1/4) 3.7

(at z =1, (3.5) is always true). Equation (3.7) shows that f goes through the
point = 1 nondecreasingly, i.e.,

f/(1) = 0. (3.8)

In what follows we shall distinguish three cases.

Case 1. |a]>|b|. By Theorem 6 £ is strictly increasing, hence its range
on (4, 1/4) is the interval (A(4), A(1/4)).

la. If ¢ —p¢(W(A), h(1/A)) then from (3.6), f'(2) 540 on (4, 1/4).
Therefore (3.7) holds if and only if f'(2) > 0 for z € (4, 1/4), that is, if
k1/A) <q —p- (3.9)

Ib. If g — p e (h(A), h(1/A4)) then f'(z) vanishes at some z; € (4, 1/4) and
J'(z) = Ofor 2, 2 2. By (3.8) inequality (3.7) can be satisfied only if 2, € (1, 1/4),
ie., if

g —p e (A1), A(1/4)).
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1t is easy to see that, if we add to this the condition 1 < f(1/4), we get a necessary
and sufficient condition for (3.7):

k(1) << q —p < h(1/4),
1 < f(1]4).

Case I1. ja|=|b!. If a=15 then A(z) =0, f'(2)= f(2)/z)(g —p),
and since now ¢ — p % 0, (3.7) holds if and only if

(3.10)

K1) =0 < g — p. (3.11)

In case —a = b, h(z) == a; thus f'(z) = (f(2)/2) (¢ —p — a). From (3.8) we
get that (3.7) can only be satisfied if ¢ — p — a > 0, and one sees immediately
that this is sufficient too. Therefore if —a = b then the criterion for (3.7) is

M1) =a <gq—p. (3.12)

Case III. |a|<<|b]. Now k is strictly decreasing and its range on
(4, 1/4) is the interval (h(1/4), k(A)).
IMla. If ¢ — p ¢ (A(1/A), H(A)) then f'(2) has no zero in (4, 1/4) and
(3.7) holds if and only if f'(z) > 0, that is, if

hA4) < g —p. (3.13)

Ilib. 1If ¢ — pe(B(1}A), H(A)) then f'(z) has a zero z,e(4, 1/4) and
f'(z) =0 for 2 = z,. Equation (3.8) implies that 3, should be in (4, 1), i.e.,
g — p e (h(1), i(A4)). Adding the condition f(A4) <1 we get a necessary and
sufficient condition for (3.7):

R(1) < g — p < h(A)
f(4) < 1.

(3.14)

We remark that in all cases equality occurs in (3.7) only at z = 1.
Since all cases have been listed, (3.7) is valid if and only if one of the following
systems of inequalities is satisfied:

tal>1b] and  K(1/A)<q—p, (3.15)
lal>1b] and Bl) <q—p <h(lj4), and 1<f(1/4),
(3.16)
‘al=1b! and h(1) < q — p, (3.17)
lal <|b] and nA) < q—p, (3.18)
‘ai<|b. and W) < q — p < h(A), and  f(4) < 1.

(3.19)
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Since from (3.7) with z-»>1/4—, 2> A+ the inequalities 1 <{f(1/4),
f(4) < 1 can be obtained, we may add any of these to our conditions. We may
therefore unite (3.15) and (3.16) and also (3.18) and (3.19) and may add (3.17)

to any of the resulting inequalities. Thus we get

lal =16, hl)<q—p and 1<f(4)  (3.20)

as a necessary and sufficient condition for the fulfillment of (3.7).
Observing that for z 5= 1,

J(2) = 277704(g4(2)(g(2))s
the condition f(A) <. 1 can be written as
¢ —p = a— b+ (1/log A) log(gy(A)/ga(-1)- . (322
Making use of the identity g,(1/2) = —27%,(2) (2 # 1) we get
F(1/z) = 27"(ga(2)ign(2));
hence the inequality 1 <C f(1/4) can be written in the form
g — p = —(1log A) log(e,(A)z.(4). (3.23)

By (3.22), (3.23), and k(1) = (@ — b)/2 we get from (3.20), (3.21) exactly the
necessary and sufficient conditions (3.2), (3.3) stated in our theorem.

Equality holds in (3.7) only for & = 1; thus equality is valid in (3.1) if and
only if x(2) = I,(x), a.e. in X, that is, if (3.4) is true. This completes the proof
of Theorem 7.

The conditions are significantly simpler in the case of A == 0, i.c., if (m, M) is
(0, 1), (1, o0), or (0, o0). Suppose first that a << 0, & << 0; then

tim 08&A)g(A) _ -y (ogBia)( — A9l — A7)
A0+ log 4 A50+ log A

and the same is true for @ << 0, b < 0. Using the identity

g~z/(z) = ga(z) T (2 7 1)

we obtain
Jim <GV (0 — 1) = () — 15 D12

for all a, b.
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CoROLLARY 3. Suppose that condition L is satisfied. In order that inequality
Io(%), < Iy(x), (3.24)

holds for all x e F,,(I) N\ Fy(I) where I is (0, 1), (1, o0), or (0, o0), it is necessary
and sufficient that

g—p=a—0)2)+(la] —]b))2]. (3.25)

Equality occurs in (3.24) if and only if a = b, g =por —a=b,a +p =gq, or if
x(z) = constant almost everywhere in X.

Proof.  Using the above limit, (3.2) and (3.3) can be united into one system
g—p>(a—"b)2 and g—p=(a—2+|(laf—1bD21.

The second inequality implies the first except in the cases a = b, p = ¢ and
—a =28, a + p = ¢ which were excluded in Theorem 7. But now they are
included, so we may omit the first inequality and get (3.25).

Let us remark that the discrete inequality corresponding to (3.24) has been
investigated and in [6] the following criterion was given for (3.24)

sgn a == sgn b, and q — p = max{a — b, 0},
sgn a # sgn b, and q — p = max{a, —b}.

This is clearly equivalent to (3.25). From Corollary 3 it can be seen that
I (%), is an increasing function of both a and p. With a suitable choice of the
parameters we get

CoROLLARY 4. Assume that our measure space satisfies the condition L. Then
the inequality
i # e, < Ty (X)? (p #0) (3.26)
is valid for all x e L (X, S, p) N Fy(R,) if and only if
gz =02 +1lpl—ibD/21,
while the inequality opposite to (3.26) holds if and only if
g<{(p—b2) —I(lp:—1blj21.
Equality occurs in (3.26) or in the reverse inequality exactly when b = q, ¢ = 0 or

b = —gq, q = p, or if x(2) = constant almost everywhere in X.
4. THE INEQUALITY I,(x + ), << I (x), + ¢t

TueoreM 8. Assume that the condition L holds. In order that the inequality
Iu(x T t)n <In(x)n 4t (41)
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be valid for all x € F,,(m, M) and for all constants t € [0, o0) it is necessary and
sufficient that either

la]>=1,  and  p>g(4) —g(4) (4.2)
or
lal <1, and  p=g(l/4) —g(l/A). (4.3)
The reverse inequality
T+ 1), = 1(x), +t  (xeF,,(m M), <0, 0)) (4.4)
is true if and only if either
la| =1, and  p<g(l/d) —g(1/4) (4.5)
or
lal <1, and  p <gd) — g4 (4.6)

Apart from the cases a =1, p =0, and a = —1, p == 1 equality holds in (4.1)
or in (4.4) exactly if t = 0 or if x(2) = constant almost everywhere in X.

Before proceeding with the proof we prove

LemmMa 1. F,,(0, ) is closed under addition provided that the measure space
(X, S, 1) is finite.

Proof. First we remark that for an arbitrary function ¢ increasing on (2, ©),
p(t +5) < max{p(2t), p(25)} < | @(20)] + [ 9(29)],  t,s€(a, 0).  (4.7)

Suppose that x, y: X — (0, o0) are measurable functions.
If a # 0 we have to show that the integrability of x?, x**?, y?, y2+? imply that
of (x 4 )7, (¥ + ¥)2+7, This is a consequence of the inequality

(F+y) <t for ¢ <0
< 2%7 4+ 2%7 for ¢ =0, (4.8)

where for ¢ = 0 we use (4.7).

If a = 0 we should prove that (¥ 4 ¥)?, (» + ¥)? In(x -+ y) are integrable
provided that x?, x? In x, y?, ¥7 In y are. The integrability of (x 4 y)? follows
from (4.8) while the integrability of (x 4+ ¥)?In(x + y) can be proved by
separating the cases p = 0.

For p > 0 the function ¢(¢) == { #?In | is bounded on (0, 1], positive, and
increasing on (1, co0). Therefore by (4.7)

(x + ) In(x + )|
< max{B,, |(2¢)? In 2x | + |(2y)? In 2y [}
< max{B;,2? |x?lnx | +27°x?In2 + 27 |y?Iny| 4 2797 In 2}
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with a constant B; . Since all functions in the curly brackets are integrable, so is

(x 4 )" In(x + y).
If p = 0 then by (4.7),

Inx <In(x +3) < |In2%| +ln2y|<|lnx|+|lny}+2In2

which implies the integrability of In(x <+ ).
For p < 0 the function ¢(t) == | t? In # | is decreasing on (0, 1] and is bounded
on (1, c0); thus with an appropriate constant B, ,

(% + )7 In(x + )] < max{B,, | a% Inx |},

which shows that (x 4 y)? In(x -+ ¥) is integrable and completes the proof.

Proof of Theorem 8. Let us first remark that the conditions el (i.e.,
t 4+ x(z)el)and t 4 x e F (I) in Theorem 3 were assumed only to ensure that
I(x - t); is meaningful. Here I = (m, M) and in view of Lemma 1 the condi-
tion ¢ 2> 0 ensures that x + t e F (0, 00), i.e., I(x + 1), is meaningful. Thus
we may apply Theorem 3 and obtain that (4.1) is equivalent to

G op(u, v) Gy, v) \
£ e <0, u, v € (m, M). (4.9)

Gop(u, v) = vj,,(ujv) implies
(1 —2)'an(2) +julz) <0, =z =ufve(d,1/4). (4.10)
A simple calculation shows that this can be written as
P> 8u3) — &1(3) = ha(2),  ze(4, 1/4). (4.11)
By Theorem 6 we get immediately that (4.11) holds if and only if

P> sup hy(e) =ho(d)  if |a|>1
)

2e(A,1/4

f

ha(1/4) i la] <1,

that is, (4.2) or (4.3) is valid.
Similarly, (4.4) is equivalent to

p <Mz, weld, 1)4) (4.12)

which gives (4.5) and (4.6).

If a=1, p=0, or a= —1, p =1, obviously equality holds for all
xeF,(m, M),t > 0in(4.1) and (4.4). Otherwise the inequality is strict in (4.11),
(4.12), and (4.9) and according to Theorem 3 also in (4.1), and (4.4) unless

= 0 or x(2) = constant a.e.
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In the special case 4 = 0 our conditions concerning a, p can essentially be
simplified. Making use of the relations (following from (2.14), (2.15))

ho(0) = (la| —aj2),  My(+o)=1—(a+1]al])2
we get

CoroLLARY 5 (Compare Losonczi [8, Theorem 6]). Supposing that condi-
tion L holds, inequality (4.1) is valid for all x e F ,(R,), t €[0, ) if and only if

p=z (1 —a2)+ (11— 1al)2),
while the necessary and sufficient condition for (4.4) in case (m, M) = (0, o) is
p<(1—=a)2) = (1 ~1]al)2)

We remark that the discrete version of (4.1) was, in case 4 =0, a =1,
investigated by Beckenbach [3].

5. THE INEQUALITY OF DRESHER

The inequality
Ia(x + y)n = Ia(x)p +I¢:(y)p (51)

was studied first by Beckenbach [3] (case @ = 1) who proved by the method of
quasilinearization that the discrete version of (5.1) holdsif a =1, 1 <<p < 1.
Dresher [7] using the method of moments obtained that in case of continuous
x, y: [0, 1] — [0, o) the conditions @ + p = 1 = p > 0 are sufficient for (5.1)
to be valid. The same result was also proved by Danskin [4] and Daréczy [5]
(discrete case) using other known inequalities. Necessary and sufficient conditions
were found by Losonczi [9] when the range of the functions x, y is (0, o0). In the
sequel we investigate (5.1) for the class F, (m, M), i.e., the range of x, y is only
(m, M) C (0, o), giving a criterion for (5.1) and for the inverse inequality.

THEOREM 9. Assume that the condition L is satisfied. Then the inequality (5.1)
holds for all x, y € F, ,(m, M) if and only if

max{a, B — a — 2g,(A)} < p < B, (52)
while the inverse inequality
I(l(x _’_ y)p > I(l(x)p + I’l(y)p ’ x’ y EF(lﬂ(m’ M) (5‘3)

1s valid exactly when

a—a—2g,(4) <p < minfe, B — a — 2g,(4)} (5.4)
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where o, Bla < B) are the zeros of the polynomial of second degree

P(u) = u* — (28,4) + 1) u — (a — 1) g(A)- (5.5)
Equality is attained in (5.1) or in (5.3) if and only if x(2) = Cy(z) a.e. in X
where Cis a constant orif a =1,p =0orifa = —1,p = 1.

{We remark that the polynomial (5.5) always has two different real zeros.)

Proof. According to Theorem 1 and Lemma 1, (5.1) is equivalent to
Go(u + v, +5) < Glu, t) + Goplv, ), u, v, t, 5 €(m, M). (5.6)

Since G, (u, t) = tj,,(u/v), with the notations z = uft, w = v/s, A = t/(t + )
we have

Jan(Az + (1 = A) w) < Nep(2) + (1 — A) Jap(®), (5.7)
for all 2, we (4,1/4), Ae(1/(4 + (1/4)), 1)(1 + A4)), that is j,, is Jensen-
convex. Thus the necessary and sufficient condition for (5.1) is

J'a(?) =0,  ze(d, 1/4). (5-8)
Calculating the second derivative here we get

alla+p)la+p—1)22—alp(p —1) =0, ze(4,1/4), if a##0,
(5.9

while

pp—Dlnz+2p—12=0, ze(4,1/4), if a=0. (5.10)
The functions on the left-hand side of (5.9), (5.10) are either constants or
strictly monotonic; therefore these inequalities are satisfied for z (4, 1/4)
exactly when they are satisfied at # = 4 and z = 1/A4. Uniting the systems of

inequalities so obtained we get the following ones (equivalent to (5.9) and (5.10),
respectively)

p*— (284 + 1 p — (2 —1)gd4) <0, (5.11)
PP+ (28(A) +2a — 1) p + (a — 1) (a +g4(4)) =0, (5.12)

where now a is arbitrary. The discriminant of the polynomial on the left side
of (5.11) (which is exactly the polynomial (5.5))

D =4g,(A)[a +gA)] + 1 =(4a*4A7¢|(1 —AP) +1  (a#0)
= (4/In% A) + 1 (a =0)

is obviously positive thus the polynomial (5.5) always has two distinct real zeros
&, B (¢ << B). The zeros of the polynomial on the left of (5.12) are

a—a— 2g,(4) and B —a—2g,(4).
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Equation (5.11) is true if and only if

while (5.12) is valid exactly when
j) < a—a-— 2g<1(A) or /8 —a— zga(‘4) <P

Since o < 8 and —(a - 2g,(A4)) > 0, the necessary and sufficient condition for
(5.11) and (5.12) to be satisfied is

min{a, B —a — 2¢(4); <p <5,

ie., (5.2).

The criterion for (5.3) is similarly 7", (2) <0, (4, 4~!) which yields (5.4).

To find the cases of equality in (5.1) or (5.3) we have to determine the set H
of (#, v, 1, 5)’s for which equality holds in (5.6). This 1s equivalent to finding
those triplets (z, @, A) for which equality holds in (5.7). In (5.8) (or (5.9), (5.10))
the inequality is strict except for the cases a 520, (a +p)(a+p — 1) =0,
pp—1)=0,anda =0,p(p — 1) =0, 2p — 1 = 0 (when the left-hand sides
of (5.9) and (5.10) are identically zero), that 1s, in cases where ¢ = 1, p = 0, and
a = —], p = 1. Apart from these equality holds in (5.7) only for ¥ = w and
thus only for u/t = v/s in (5.6). Hence

H={umvt, ) ult =v/s,u,vt se(m M)}
and by Theorem 1 equality holds in (5.1) if and only if
(=) (%) = =)L),

a.e. in X, i.e., if and only if x(2) = Cy(2) a.e. in X with a constant C.
On the other hand fora =1, p =0, and a = —1, p = 1, equality holds for
all x, y € F,,(m, M). Since (5.3) can be treated similarly, our theorem is proved.
Conditions (5.2), (5.4) can again be simplified if 4 = 0. Namely in this case

a=(lal—a)f2, B=1+((al—a)2),
max{a, 8 — a — 2g,(0)} = ((1 —a)/2) +((I1 —iai})2),
and

min{w, B — a — 22,(0)} = (1 — @)/2) — (11 — L ai/2).
Hence (5.2), (5.4) can be written as
(1 —a)2) (1 —lal)) <p<1+((al —a)2) (52)*
—atlah<p <1 —a)2) = (11 —[ailf2). (54*

Thus we proved
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CoroLLARY 6 {Compare Losonczi [9, Theorem 3]). Assume that the condi-

tion L holds; then the inequality

ho
is
X,

1t.

12.

](,(x +y):v < I(l(x)ﬁ -t Iﬂ(y)p

lds for all x,y e F,,(I) where I is (0, 1), (1, o), or (0, 0©) if and only if (5.2)*
valid, while the necessary and sufficient condition for (5.3) to be satisfied for all
y eF,,(I) (with the same I as above) is (5.3)*.
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