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INTRODUCTION 

Let I be a real interval and denote by P(I) the set of all positive functions on I, 
and by D(I) the set of all real valued functions on I having nonvanishing deriva- 
tive. 

Let (X, S, p) be a measure space with 0 < p(X) < CO. We say that (X, S, p) 
satisfies the condition L if for any natural number n there exists a decomposition 
X = A, v B, , A,, B, E S, A, n B, = 4 such that p(An) > 0 and 

~+$4M-W) = a~- 

The number 

is called the integral mean value of x EF&~) corresponding to the mapping 
function 9 E D(I) and the weight function f~ P(1). Here F,,(I) denotes the set 
of those measurable functions x: X -I for which ~(x(z)), ~(z(z)) v(x(z)) are 
integrable on X. 

We remark that IV(x), can be defined under more general circumstances with 
respect to f, v, (X, S, p), but our theorems are proved only under the above- 
mentioned assumptions. 

The aim of this paper is twofold. First, we develop a general theory of these 
means. The results for the corresponding discrete means ([6; 9; 111) can be 
generalized to our case. The second aim is to give a thorough investigation of 
the homogeneous mean values, generalizing results of [3; 5-91. 

The paper consists of five sections. In Section 1 we prove general theorems. 
In the second section we determine the homogeneous &,(x),-mean values. These 
are 
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INTEGRAL MEAN VALUES 587 

where a, p are real constants. For the sake of simplicity we denote these means by 
~Jx), and I,,(x)~ , respectively. 

The next section deals with the comparison of two homogeneous means. 
In Section 4 we study the inequality 1,(x + t)D <Ill(x), + t, where t is a 
positive scalar. Finally in Section 5 we investigate the sub- and superadditivity 
of the homogeneous means. 

We give necessary and sufficient conditions for each inequality studied. The 
inequalities dealt with in Sections 3-5 had been investigated in the discrete 
case [6; 8; 91. There the variables are in (0, co) while in this paper we suppose 
the range of the “variable” function x to be restricted to an interval (m, IV) C 
(0, co). This makes the situation more difficult but the validity of the inequalities 
widens. Because of homogeneity the conditions depend only on the ratio 
A = mjM. 

1. GENERAL THEOREMS 

THEOREM 1. Suppose that I, I, , I* are arbitrary intervals, 1: I1 x I, ---f I is a 
function diferentiable on I, x I, , 9) E D(I), # E D(IJ, x E D(I,); f E P(I), g E P(I,), 
h E P(I,), and the condition L is satisfied. 

The inequality 

WX,Y))f G V&h T UY)i‘) (1.1) 

is true for all x E F&I,), y E Fxil(IJ satisfying Z(x, y) E F,,(I) if and only if 

cpw 4) - rpN4 4) . f(k v>) 
?w~ 4) f Nt, s)) 

*I 1cl(u> - W iA4 a z(t, s) A x(4 - x(s) 44 3 __- 
f(t) g(t) at x’(s) h(s) as I@’ s;1 2) 

is valid for all u, t E I1 , v, s e I, . 
Equality hoZds in (1.1) if and onZy if 

for almost every z E X, where His the set of those quadruplets (u, v, t, s) for which 
the equality sign is valid in (1.2). 

Proof. Necessity. Put x = %(J4 = UXA,@) + tXBp>, Y = M4 = 
z’xa (z) + sxe (a) into (1.1) where u, t E I1 , V, s E I2 , and xE denotes the 
chapacteristic ?unction of a set E. We obtain 
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Subtracting Z(t, s) from both sides, multiplying by A, , and letting n ---f cc we 
get (1.2) (for a similar limit see [9, Theorem 11). 

Suficiency. Substitute u = x(z), ZI = y(z), t = z(x), , s = &(Y)~ into 
(1.2) and integrate over X. The right-hand side disappers and separating the 
cases ‘p’ > 0, 9’ < 0 we obtain (1.1). 

The statement concerning equality can be obtained by observing the proof 
of sufficiency. 

Remark. Iff, g, h are positive constant functions, then condition (1.2) can be 
transformed into a convexity condition using the characterization of differen- 
tiable convex functions. See Beck [2] where this convexity condition was obtained 
in investigating the discrete inequality corresponding to (1.1) with f = g = 
hG 1. 

THEOREM 2. Suppose that the conditions of Theorem 1 are satisfied except that 
now 1 is diflerentiable only at (t, s) where t, s are $xed interior points of II , I, , 
respectively, and in addition f, g, h are continuous on their domains of definition. 

In order that the inequality 

holds for all x E Fb,(I1), y E Fxh(12) satisfying 1(x, y) E F,,(I) and the conditions 

I$(X& = t, 

UY>il = s, 
(1.4) 

it is necessary and su$icient that (1.2) is valid for all u E I, , v E I2 . 
Equality occurs in (1.3) exactly when 

(44 ~(4) E H, 

for almost every z E X where H, is the set of all pairs (u, v) for which the equality 
holds in (1.2). 

Proof. Necessity. Substitute x = .%*(Jg = UXA,(Z) + LX&), y = 
y,*(z) = vxa,(z) + s,,y,“(z) into (1.3) where u E I1 , v ~1s) and t, , s, are 
chosen such that (1.4) is satisfied. This is possible for n large enough, since 

means that 

-&> (4(t) - $44 = 4&4 (4(t) - 4%))~ 

Let G, be defined by 

(1.5) 

G,(T) = hz&“) (4(t) - 4(X)) 
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where T is in a closed bounded interval J = [t - a, t + n] C 1, . Obviousl! 

hence for 12 > iv, , 

‘T:; G,(T) < -gWW - ~44) < s;y G&9. 

G,, is a continuous function on J; therefore it takes on the value -g(u) (1,6(t) - 
#(u)) at some T = t, E J. This means that for n 3 N there exists t, E Ii and 
similarly s,( E Z2 such that (1.4) is satisfied by xn*, yn*. Moreover, 

t, --f t and .cn + s 

as n ---f cr,. For {tn} is bounded; thus it has at least one limit point t. Were 
t* f t another limit point, then an appropriate subsequence {tn,} would tend 
to t*. Taking the limit as k + co of (1.5) (with n = nk) we get a contradiction. 

Equation (1.4) and the integrability conditions x,* EF&,~(I~), etc., being 
satisfied, we may substitute s = s,“, y = yFL* into (1.3). We get 

’ f(b4 4) dk 9) + Jw(GL 1 Sn)) de2 T 4) 
6 ( 

fN% 4) + Lfwn 9 4) 
) < qt, s). 

Hence, provided that v’ > 0, we have 

.fV(u, 4) (dZ(u> ~9) - d& 9)) <fV(t, 9 4) (Mt, 4 - Mtn 9 4)) A, . (1.6) 

By the differentiability of Z at (t, S) we may write 

(d& 4) - &(tn > 4)) 4 = (v’(44 s))(W) Z(t, 4 + Ql) b(t - tn) 

f (V’W 4)(W) 46 s) + Q,) L(s - 4 

where Sz, , a, +Oasn+co. 
If u f t, then t, # t; thus 

44Nt) - WLN w - fJ = (z)(t) - t&#(t - t,) 

(4(t) - wh - tn) 
Lg@xw ~ 4(L)) ---f 4(u) - 40) go 

m + &Lg(tn) W) g(t) ’ 
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as n - CO and the same is true if u =: t, f, = t. Similarly 

hn(s - s,) - J(v)x’(3x(s) # . 

Let n --f cc) in (I .6); then after dividing by f(l(t, s)) y’(l(t, s)) we get (1.2). The 
case CJI’ < 0 can be settled similarly. 

SufJiciency. Suppose x EF~,(I~), y EE:,,(IJ satisfy l(x, y) EF,,(I) and (I .4). 
Substitute u = x(z), v = y(z) into (1.2) and integrate over X. The right-hand 
side disappears and after multiplying by #(Z(t, s))f(Z(t, s)) we get (1.3). 

The statement concerning equality can be proved by scrutinizing the proof of 
sufficiency. 

Remark. For discrete mean values a similar theorem can be found in [l 1, 
Theorem 31. 

THEOREM 3. Let I be an open interval, let f E P(I) be differentiable on I, let 
CJJ E D(I) be twice dflerentiable on I, and suppose that condition L is satisfied. Denote 
by I% the set of those t’s for which t + x(z) E I fog all z E X. 

The inequality 

I& + XWf G t + u+4)f (1.7) 

holds for all x E FQf(I) and t E I, n [0, a) with t + x(z) EF,~(I) if and only iffor 

all u, v E I 

d4 - v’(v) + $44 - v(v) f ‘(4 f ‘(4 
d4 v’(v) [ ---f(Z1>-T f(u) 

$y; ] < 0. (1.8) 

If in (1.8) strict inequality is valid for u # v, then in (1.7) too strict inequality 
holds except when t = 0 and x(z) = a constant almost everywhere in X. 

Proof. To prove the necessity let U, v E I, and Z,(z) = “x,,(z) + ZX~,(X). 
t + Z,(Z) E I for all z E X if t + U, t + ZI E I. Therefore substrtuting x = j& , 
t 3 0 such that t + u, t + zI El into (1.7) we get 

y-1 (f (u + t) 94u + t) + &f(u + t) 94v + t) 
f(u + t> + Lf (v + t> ! 

d t + v-l c f(u) P)(u) + &f(v) v(v) 
f (4 + Anf (v) 1 

. 
Substracting v + t, multiplying by AII , and letting n -+ 00 we have 

G(u + t, ZJ + 1) < G(u, 4 (u,v,t+u,tjvEI,t>o) (1.9) 
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where G(u, ZJ) = ((v(u) - ~(v))/cJJ’(v) (f(~)/f(~)). This is equivalent to 

aqu, v) 
au 

+ aqu, zt) ,, o 
aa :* (u, v EZ) (1.10) 

according to a remark following [12, Theorem 41. An easy calculation shows that 
(1.10) is identical to (1.8). 

SufJicz’ency. Substitute u = x(z) E F,,(Z), u = Z,(r), , and t E Zz n [0, a) 
into (1.9) (which is a consequence of (1. IO), i.e., (1.8)) and integrate the inequality 
obtained. \Ve get 

which implies (1.7). 
If in (1.8), i.e., in (1.10) strict inequality holds for u + v then using Taylor’s 

formula it can be seen that strict inequality holds also in (1.9) for t f 0, u # v, 
hence also in (1.11) provided that t f 0 and x(z) f ZQ(x)f a.e. on X. 

In case f == P F 1 we get from (1.8), 

[F’(U) - Y’(V)1 v’(v) G [CPW - F(V)1 6Yz9, u, v E I, 

which can be reformulated as 

P’(FW - v’(~-‘(sN G (t - 4 w(~-lw~ f, s E y(Z), (1.12) 

provided that y’ > 0. Equation (1.12) is exactly the criterion for p)‘(p)-‘(t)) to be 
concave on p(Z). Taking into consideration the case when p”, < 0, we obtain 

COROLLARY 1. Let Z be an open interval, let q~ E D(Z) be twice diferentiable 
on I, and suppose that the condition L is satisfied. In case f = e = 1, inequality (1.7) 
is valid if and only if either q’(u) > 0 (u EZ) and ~‘(q-l(s) is concave on T(Z) or 
v’(u) < 0 (u EZ) and ~‘(v-l(s)) is convex on v(Z). 

THEOREM 4. Let the conditions of Theorem 3 be satisfied and denote by 1, 
the set of all t’s satisfying tx(z) E Z for z E X. Zn order that the inequality 

ZdfX(4)f G Gw)r (1.13) 

be true for a21 x E F,,(Z) and t E I7 CI [l , 03) with tx(z) E F,,(Z) it is necessary and 
suficient that 

up’(u) - e.qJ’(zg ‘(4 uf ‘(4 vf v’(v) + v”(v) 
F’(T) 

+ d4 - d4 
F’(V) [ f(u) f (4 Ye) I < 0, 

(1.14) 

for all 21, v E I. 
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The proof is similar to that of Theorem 3. Putting a(z) = UXJ,(Z) T VX~,(Z) 
into (1.13) and letting e-+ co we get 

G(tu, tv) < tG(u, c) (U,U,tU,tVEE,t>l) 

where G is the same function as in the proof of the former theorem. This is 
equivalent to 

(see the remark following [12, Theorem 43). A simple calculation shows that 
(1.14) is identical to (I. 15). The sufficiency of (1.14) can be proved by integrating 
the inequality obtained from (1.14) u p on the substitutions u = X(Z), z’ = I,(x)~ . 

In casef = e = 1 (1.14) goes over into convexity conditions and we have 

COROLLARY 2. Let the conditions of Theorem 4 be sati$ed (except for condi- 
tions concerning f). For f = e F 1 the inequality (1.13) holds if and only if either 
v’(u) > 0 (u E I) and v-‘(s) ~‘(q-l(s)) (s E v(I)) is concave or y’(u) < 0 (u E I) 
and C+(S) ~‘(~~‘(s)), (s E ~(1)) is conzlex. 

Remark. Theorems 1-4 remain valid if we replace > by < in (1. I)-( 1.3) 
(1.7), (1.8) (1.13), and (1.14). 

2. HOMOGENEOUS I,(x), MEAN VALUES 

The mean value ~,Jx)~ is called homogeneous if 

w+ = tt&~, (2.1) 

holds for all x E FJR,), t E R, = (0, 00) with tx E F&R+). Let t :. 0 be fixed 
and introduce the notation #J(U) = y(tu), g(u) =f(tu); then (2.1) can be written 
as 

ZMJ = u9f 9 x E F&+) n FdR+). (2.2) 

According to Theorem 1 a necessary and sufficient condition for (2.2) is 

1cI(4 - $6) id4 _ d4 - ds) f(u) - - w> g(s) P’(S) f(S>’ (v, SE R-). (2.3) 

Similar reasoning shows that a criterion for the homogeneity of the discrete mean 
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is again (2.3) (we have to apply [9, Theorem 11. Thus (2.1) is equivalent to the 
functional equation 

n4Qtx)r = tLII~(X)t (x E Rin, t E R, , n = 1, 2 ,... ). (2.4) 

Assuming thatfis continuous, the solutions of (2.4) or (2.1) are ([lo, Theorem 41 
or [I, Theorem 31) 

v(u) = a In 24 + B, f(u) = PUP 

and 

v(u) = (W + q/t@ + 1 - E), f(u) = pu”(& + 1 - E), 

where the constants a, p, LY, j3, y, 6, E, p satisfy the conditions 

sol #O; p, E > 0; r(l -E)-CtsfO. 

Making use of solution (2.5) we get the mean value 

exp (j 44” ln 44 S/j 49” 4f), 

while with (2.6) we obtain 

. 

(1 
X(Z)a+P d/l /j x(z)” d/y (a f 0). 

These means are clearly homogeneous; thus we have proved 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

THEOREM 5. Suppose that f E P(R+) is a continuousfunction on R, , CJI E D(R+), 
and the condition L holds. Then the mean value I,(x), is homogeneous if and only if 
it has one of the forms (2.7), (2.8). 

For simplicity the means (2.7), (2.8) are denoted by.&,(x), , I&x)~ , respectively, 
while in cases ‘p = In t, f = tP and v = ta, f = tP we use the notationsF,,(I) and 

F&) for F,,(I) (I C R+!). 
It is clear that 

I-&), = I&-a+, (2.9) 

and 

(j 4.e 4y xx+ p(X)l’= Ia(X)o . (2.10) 

The latter identity shows the connection between our homogeneous means 
and the norms in the spaces L,(X, S, p). 
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The notation Ids is justified by the relation 

‘,z Lh>P = ~06% (x EF,,(R+) for / a j < 8). (2.11) 

To prove (2.11) let us observe that the function a + (,xa+fl -- ~“)/a is increasing, 
hence by Levi’s theorem, 

d [-I 1 = lim 
x(z>” - 1 

da 
.(z$-+p dp 

a=0 a-p0 s a 44” 4 

-f( 
X(X)” li+i 

x(.z)a - 1 
a i dp 

= 
s 

x(x)” In x(z) dp; 

thus 

iii IJx)~ = exp [$ In 1 x(z)~+P dp],=, z &(x), . 

In the following sections of the paper we deal exclusively with the means 
I&x)~ . The function 

Gap&, c) = ((u” - ~~a)/az~u-l)(uP/vP), if af0 

= ((ln u - In z~)/~-~)(u~~~~), if a=0 (2.12) 

plays a significant role. From the homogeneity, 

G&U, ~1 = ~jap(+)~ 

where 

j,,(z) = (z?+~ - x*)/a (a f 0) 

- zp In z - (a = 0). (2.13) 

The mean values la(x),, are investigated for functions of the class F&(m, AZ)) 
where 0 < m < M < fco. To simplify the notation we omit one pair of 
parentheses and write simply F,Jm, 111). Thus F&m, ICI) is the set of all 
functions x: X- (m, M) measurable on X such that xi’ and Y+P (x” In x in 
case a = 0) are integrable over X. The fact that the interval (m, M) is open 
substantially simplifies the cases of equality in our inequalities. 

Let us agree that 

o/+02 = 0, +co/o = +a and q/o = +a, 4/+a = 0, 

for 0 < 9 < co. If G,, is defined for U, v E (m, M), thenj,, is defined on (A, l/A) 
where A = m/&l. We see later that our conditions concerning the parameters 
involve only the number A. 
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If g is a function on (0, co) then g(O), g( +a) means lim,,,, g(z), lim,-, g(a), 
respectively, provided that these exist. 

Let the function g, be defined by 

go(z) = -u/( 1 - x-~), if a # 0, 2 E (0, 1) u (1, co) 
= -l/(ln z), if a = 0, zE(o, l)U(l, a> 
= --a/2, if z = 1, a arbitrary. 

It can be seen that g, is continuous on (0, 1) u (1, co) and 

g,(O) = (I a I - 4P 

By the identity ga( l/x) + g-,(z) = 0 we get 

g,(ta) = -(I a I + 42. 

The following result plays a key role in our investigations. 

THEOREM 6. The function h,, defined by 

ha&) = g&4 - g&> (xER+,a,bER=(-m,co)) 

is continuous on R, (even at x = I!) for ull a, b E R and is 

strictly increasing, if 1 a I > 1 b , 
constant, if ;a; =; b ) > 
strictly decreasing, if iul<jbi. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Proof. The continuity of h,,l, at z = 1 can be proved by L’Hospital’s rule. 
If a b f 0, z # 1 then 

where 

h;b(Z) = [Zb”(@ - 1)/a + Za”(Zb - l)lbl Hab(Z) 

[((zs‘ - 1)‘~) (z” - 1)/b]” 

II&~(X) = [(.~a - 1)/u - z+-~)/~(z~ - 1)/b] zbj2-l. 

The first factor of the numerator is 20 for z 2 1; in fact both its summands 
possess that property. For the second factor of the numerator we have 

IIib(z) = x((~-~)‘~)-~[z(~+~)‘~ - 1 - ((a - b)/2)((rb - 1)/-b)]. (2.18) 

We show that Hbb(z) $$ 0 for [ u/b ] 5 1. By Taylor’s formula for u > 0 

ZL(~+~)~~ - 1 - ((c + 1)/2) (U - 1) = ((3 - 1)/S) [(e-3’/2(~ - 1)” (2.19) 

where E lies between u and 1. Hence for u # 1 the left-hand side of (2.19) is 
SO for 1 c / 5 1. Putting u = z-~, c = -(u/b) here we obtain that for x f 1, 
z > 0, 

$z-b)/2 - 1 - ((a - b)/2) ((z-” - 1)/-b) g 0 for [ a/b 1 g I, 

409/61/3-3 
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which implies our proposition concerning E&,(Z). As 

thus 

while 

if 

if 

Jl 

j a/b ( > 1 then H&Z) $$ 0, 

I a/b 1 = 1 then H&Z) = 0, 

if I a/b / < 1 then Hnb(.z) >( 0, 

Hence 

h’nd4 5 0, for z E (0, 1) U (1, co) 

THEOREM 7. Suppose that (a - b)2 + (p - q)2 > 0, (u + b)2 + (a + p - q)2 
> 0, and the condition L is satisfied. 

The inequality 

~&%J G 4Jwfl (3.1) 

is valid for all x ~F,,(rn, M) n F&m, M) if and only if 

Ial>, Ibl, 4 - P > (a - w, 

and 4 - P t -U/l% 4 bA%(A)/ga(A)), (3.2) 

OY 

lal G lbl, q - P > (a - WA 
and q - P 2 a - b + (l/log A) log(g&Wg,(~))> (3.3) 

where A = (m/M) and g, is the function defined in (2.14). 
Equality occurs in (3.1) exactly when 

x(z) = constant (3.4) 

almost everywhere in X. 

for22 1, 

for 2 E (0, co), 

for 1 2 z. 

and l+I s 1, 

and hah is continuous on (0, a) which proves our theorem for ab # 0. 
If ub = 0 the proof is similar. 

3. THE INEQUALITY 1(,(x), <lb(x), 

Throughout this section we exclude the cases a = b, p = q and --a = b, 
a I p = q when la(~)s = Ib(~)p . Our aim is to prove 
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Pwof. According to Theorem 1, (3.1) is equivalent to 

G&G t) < Go&, t), 24, t E (m, M), 

or to (3.5) 
i&4 < jb&>> ZE(A, l/A) 

where G,, , jnl, have been defined in Section 2. Equality occurs in (3.1) if and 
only if 

(.~(~),4d+J 6 {(u, t) I javW) =jhqW); u, t E Cm, W> 

almost everywhere in X. 
Set 

A simple calculation shows that f is continuously differentiable on (0, co) and 

f’(4 = w+4 (4 -P - &4)> (3.6) 

where h(z) = hab(z) is the function appearing in Theorem 6. Observing that 

in&%&4 2 0 according to z 2 1 (hence f(z) > 0 on (0, co)), (3.5) can be 
written as 

./I4 < 1, forxE(4 11, and 1 <f(z) for z E (1, l/A) (3.7) 

(at z = 1, (3.5) is always true). Equation (3.7) shows that f goes through the 
point z = 1 nondecreasingly, i.e., 

f’(l) 3 0. (3.8) 

In what follows we shall distinguish three cases. 

Case I. 1 a j > ) b / . By Theorem 6 h is strictly increasing, hence its range 
on (A, l/A) is the interval (h(A), h(l/A)). 

Ia. If q -p @(h(A), h(l/A)) then from (3.6), f’(z) # 0 on (A, l/J). 
Therefore (3.7) holds if and only iff’(z) > 0 for z E (A, l/A), that is, if 

w/4 < 4 - p. (3.9) 

Ib. If q -p E (h(A), h(l/A)) thenf’(z) vanishes at some zr E (A, l/A) and 
f’(z) 2 0 for z, 2 z. By (3.8) inequality (3.7) can be satisfied only if z1 E (I, 1 /A), 
i.e., if 

9 -P E Wh w/4 
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It is easy to see that, if we add to this the condition 1 < f( 1 /A), we get a necessary 
and sufficient condition for (3.7): 

h(1) < 4 -p < h(l/A), 

1 i=-f(l/A). 
(3.10) 

Case II. jaj=Ib(. If a = b then h(x) - 0, f’(z) = f(~)/s) (4 -p), 
and since now q -p # 0, (3.7) holds if and only if 

h(1) =o <q -p. (3.11) 

In case -a = b, h(z) G a; thus f’(z) = (f(z)/~) (q -p - a). From (3.8) we 
get that (3.7) can only be satisfied if q -p - a > 0, and one sees immediately 
that this is sufficient too. Therefore if -a = b then the criterion for (3.7) is 

h(1) = a < q -pp. (3.12) 

Case III. / a / < 1 6 j . Now h is strictly decreasing and its range on 
(A, l/A) is the interval (h(l/A), h(A)). 

IIIa. If q - p I# (Iz(l/A), h(A)) then f’(z) has no zero in (A, l/tl) and 
(3.7) holds if and only if f’(z) > 0, that is, if 

W)<q-P. (3.13) 

IIIb. If q -p E (h(ljA), h(A)) then f’(x) has a zero za E (A, l/A) and 
f’(z) 2 0 for z 2 za . Equation (3.8) implies that za should be in (A, l), i.e., 

q - P E (W), 44). Add ing the condition f(A) -< 1 we get a necessary and 
sufficient condition for (3.7): 

k(l) < 4 - P < 44 
f(A) < 1. 

(3.14) 

We remark that in all cases equality occurs in (3.7) only at z = 1. 
Since all cases have been listed, (3.7) . is valid if and only if one of the following 

systems of inequalities is satisfied: 

lal>ibi and h(l/A) < q -P, (3.15) 

la:>\bl and h(l) < q --p <W/A), and 1 <.(1/A), 
(3.16) 

;nl =\b/ and W) < 4 -PP, (3.17) 

!a! <lb1 and k(A)<q-P, (3.18) 

Ia: < lbj and k(l) -=c q -P < k(A), and f(A) (, 1. 
(3.19) 
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Since from (3.7) with .a -+ l/A-, z-t&4+ the inequalities 1 <‘f(l/A), 
f(A) < 1 can be obtained, we may add any of these to our conditions. We may 
therefore unite (3.15) and (3.16) and also (3.18) and (3.19) and may add (3.17) 
to any of the resulting inequalities. Thus we get 

/ a / gs ; b , h(l) < P -PP, and 1 <‘(l/A) (3.20) 

iaj<~b~, h(l) < 4 -P, and f(A) < 1, (3.21) 

as a necessary and sufficient condition for the fulfillment of (3.7). 
Observing that for z f 1, 

the conditionf(A) ~1 1 can be written as 

‘I -P > n - b + (1 /log 4 log(gt@Yg,(~~)). (3.22) 

Making use of the identity ga(l/a) = --z-ng,l(z) (.a # 1) we get 

hence the inequality 1 <f(l/A) can be written in the form 

Q -P ;G -(l/log A) log(g,(A)/g,,(A)). (3.23) 

By (3.22), (3.23), and h(l) = (a - b)/2 we get from (3.20), (3.21) exactly the 
necessary and sufficient conditions (3.2), (3.3) stated in our theorem. 

Equality holds in (3.7) only for .a = 1; thus equality is valid in (3.1) if and 
only if x(a) ==Ib(x)4 a.e. in X, that is, if (3.4) t IS rue. This completes the proof 
of Theorem 7. 

The conditions are significantly simpler in the case of A -= 0, i.e., if (m, IV) is 
(0, I), (I, cc), or (0, a~). Suppose first that a < 0, b < 0; then 

lim ‘“g(gb(A)lg’(A)) 
.4-o+ log A 

and the same is true for a ,( 0, b < 0. Using the identity 

g-<,(z) = g,(z) z-a (z # 1) 

we obtain 

lim log(gb(A)‘gn(A)) 
“i-O& log A = -(((a - b)P) L ((I a 1 - I b I&% 

for all a, b. 



600 LtiSZL6 LOSONCZI 

COROLLARY 3. Suppose that condition L is satisfied. In order that inequality 

4(x>p G A&92 (3.24) 

holds for aZZ x EF&I) n F,,(I) where I is (0, l), (1, co), or (0, CD), it is necessary 
and su$icient that 

4 - p > ((a - b)/2) + I(1 a I - j 6 I)/2 I . (3.25) 

Equality occurs in (3.24) if and only if a = b, q = p or -a = 6, a T p = q, or if 
x(z) = constant almost everywhere in X. 

Proof. Using the above limit, (3.2) and (3.3) can be united into one system 

4 -p > (a -- b)/Z and 4 -p 2 (a - 4/2 + ItI a I - i b I)/2 1 . 
The second inequality implies the first except in the cases a = 6, p = q and 

-a = b, a + p = q which were excluded in Theorem 7. But now they are 
included, so we may omit the first inequality and get (3.25). 

Let us remark that the discrete inequality corresponding to (3.24) has been 
investigated and in [6] the following criterion was given for (3.24) 

sgn a = sgn b, and q - p > max{a - b, 0), 

sgn a f sgn b, and q - p 2 max(a, --b}. 

This is clearly equivalent to (3.25). From Corollary 3 it can be seen that 
I,(X), is an increasing function of both a and p. With a suitable choice of the 
parameters we get 

COROLLARY 4. Assume that our measure space satis$es the condition L. Then 
the inequality 

!i x IIL, G Iid4 fLFWp (P # 0) (3.26) 

is valid for all x E L,(X, S, CL) n F&R+) if and only if 

4 2 ((P - b)/2) + I(1 P I - I b I)/2 i , 

while the inequality opposite to (3.26) holds if and only if 

Q G ((P - 6)/2) - I(! P / - I b l/2 i 

Equality occurs in (3.26) or in the reverse inequality exactly when b = q, q = 0 or 
b = -4, q = p, or if x(z) = constant almost everywhere in X. 

4. THE INEQUALITY 1,(x t- t), < l&~>~ f t 

THEOREM 8. Assume that the condition L holds. In order that the inequality 

I,,(x -+ t){, < I”(X)n i t (4.1) 
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be valid for all x E F,,(m, M) and for all constants t E [0, co) it is necessary and 
su~cient that either 

lal31, and P 3 &(A) - ‘!h;(A) (4.2) 
OT 

lal -Cl, and P 3 &O/4 - g1(1/4 (4.3) 

The reverse inequality 

L(x + $7 t L(X)P + t (x ~Fadm, W, t E P, a>> (4.4) 

is true if and only if either 

lal31, and P d&o/4 -&W) (4.5) 
OY 

l+<l, and P G g,(A) -g,(A). (4.6) 

Apart from the cases a = 1, p = 0, and a = - 1, p = 1 equality holds in (4.1) 
or in (4.4) exactly if t = 0 or if x(z) = constant almost everywhere in X. 

Before proceeding with the proof we prove 

LEMMA 1. F&O, co) is closed under addition provided that the measure space 
(X, S, TV) is finite. 

Proof. First we remark that for an arbitrary function ‘p increasing on (a, co), 

dt + 4 G maxG@t), dW < I d2t)i + I rpG.Wl , t, s E (a, co). (4.7) 

Suppose that x, y: X-+ (0, cc) are measurable functions. 
If a # 0 we have to show that the integrability of xv, xa+n, y*, ya+p imply that 

of (x + Y)Pl (x + Y) a+p. This is a consequence of the inequality 

(x +Y)” < fi for q<O 

< 2”xP + 2qyq for q 2 0, (4.8) 

where for q > 0 we use (4.7). 
If a = 0 we should prove that (x + y)“, (x + y)p In(x + y) are integrable 

provided that xP, xp In x, yp, yp In y are. The integrability of (x + y)” follows 
from (4.8) while the integrability of (x + y)P In(x + y) can be proved by 
separating the cases p s 0. 

For p > 0 the function v(t) = / tP In t / is bounded on (0, 11, positive, and 
increasing on (1, co). Therefore by (4.7) 

I@ + YIP 14x + r)l 

< m=(&, 1(2+ In 2x I + In In 2y I> 
< max{B, ,2* 1 x2, In x I + 2pxP In 2 + 2p j yp In y / + 2PyP In 2) 
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with a constant B, . Since all functions in the curly brackets are integrable, so is 

tx + Y>” ln(x + Y). 
If p = 0 then by (4.7), 

which implies the integrability of ln(x + y). 
For p < 0 the function p)(t) = 1 tP In t 1 is decreasing on (0, l] and is bounded 

on (1, co); thus with an appropriate constant B, , 

I@ + Y)” ln(x + y)l < max@, , I xp ln x I), 

which shows that (x + y)” ln(x + y) is integrable and completes the proof. 

Proof of Theorem 8. Let us first remark that the conditions t ~1, (i.e., 
t + x(z) E I) and t + x E F,,(I) in Theorem 3 were assumed only to ensure that 
1,(x + t)f is meaningful. Here I = (m, M) and in view of Lemma 1 the condi- 
tion t >, 0 ensures that x + t EF,,(O, co), i.e., la(x + t)P is meaningful. Thus 
we may apply Theorem 3 and obtain that (4.1) is equivalent to 

(4.9) 

G&u, ZJ) = ~J~&u/zI) implies 

(1 - 4jl&) +i&> < 0, z = U/V E (A, l/A). (4.10) 

A simple calculation shows that this can be written as 

P 2 gab> - g&9 = b&4, .a E (A, l/A). 

By Theorem 6 we get immediately that (4.11) holds if and only if 

(4.11) 

= h&/A) if ja]<l, 

that is, (4.2) or (4.3) is valid. 
Similarly, (4.4) is equivalent to 

P < h&4 

which gives (4.5) and (4.6). 

x E (A, 1jA4) (4.12) 

If a = 1, p = 0, or a = -1, p = 1, obviously equality holds for all 
x E F&m, M), t > 0 in (4.1) and (4.4). 0th erwise the inequality is strict in (4.1 l), 
(4.12) and (4.9) and according to Theorem 3 also in (4.1) and (4.4) unless 
t = 0 or x(z) = constant a.e. 
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In the special case A = 0 our conditions concerning a, p can essentially be 
simplified. Making use of the relations (following from (2.14), (2.15)) 

we get 

bd0) = (I fl I - 4% h,,t+~l = 1 - (a + I a i)P 

COROLLARY 5 (Compare Losonczi [8, Theorem 61). Supposing that condi- 
tion L holds, inequality (4.1) is valid for all x E F,,(R+), t E [0, a) if and only if 

p 3 ((1 - 42) + ((I 1 - / a Ii)P), 

while the necessary and sufficient condition for (4.4) in case (m, M) = (0, co) is 

P G ((1 - 42) - ((I 1 - I a !lP>* 

We remark that the discrete version of (4.1) was, in case A = 0, a = 1, 
investigated by Beckenbach [3]. 

5. THE INEQUALITY OF DRESHER 

The inequality 

1,(x i-Y>, < L(4, + 4,(Y), (5.1) 

was studied first by Beckenbach [3] ( case a = 1) who proved by the method of 
quasilinearization that the discrete version of (5.1) holds if a = 1, 1 < p < 1. 
Dresher [7] using the method of moments obtained that in case of continuous 
x, y: [0, l] + [0, co) th e conditions a + p > 1 >, p 2 0 are sufficient for (5.1) 
to be valid. The same result was also proved by Danskin [4] and Daroczy [5] 
(discrete case) using other known inequalities. Necessary and sufficient conditions 
were found by Losonczi [9] when the range of the functions x, y is (0, oo). In the 
sequel we investigate (5.1) for the class F,,(m, M), i.e., the range of x, y is only 
(m, M) C (0, co), giving a criterion for (5.1) and for the inverse inequality. 

THEOREM 9. Assume tlzut the condition L is satisfied. Then the inequality (5.1) 
holds for all x, y E Fnn(m, M) if and only if 

maxh B - a - %,(A)> < P < A (54 

while the inverse inequality 

44x + Y), a 4&4, + L(Y), 3 

is valid exactly when 

01 - a - 2gJA) ,( p < min(ol, /3 - a - 2gJA)) (5.4) 
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where 01, /I(a < p) are the zeros of the polynomial of second degree 

P(u) = up - (2g,(A) + 1) u - (a - I)g,(A). (5.5) 

Equality is attained in (5.1) or in (5.3) if and only if x(z) = Cy(z) a.e. in X 
whereCisaconstantorifa=l,p=Oorifa=-l,p=l. 

(We remark that the polynomial (5.5) always has two different real zeros.) 

Proof. According to Theorem 1 and Lemma 1, (5.1) is equivalent to 

Gap(~ + v’, t + s) < G,&, t) + G&v, 4, u, v, t, s E (m, M). (5.6) 

Since Gap(u, t) = tjaP(+), with the notations z = u/t, w = v/s, X = t/(t + s) 
we have 

i&~ + (1 - 4 4 < vcw(4 + (1 - 4iOD(W>, (5.7) 

for all z, w E (A, l/A), h E (l/(A + (l/A)), l/(1 + A)), that is ju, is Jensen- 
convex. Thus the necessary and sufficient condition for (5.1) is 

j’,,@> 2 0, z E (A, l/R). 

Calculating the second derivative here we get 

a-l(a +p) (a +p - 1) za - a-‘p(p - 1) > 0, zE(A, l/A), if a # 0, 

(5.9) 
while 

P(P - 1) In z + 2p - 1 3 0, zE(A, l/A), if a =O. (5.10) 

The functions on the left-hand side of (5.9), (5.10) are either constants or 
strictly monotonic; therefore these inequalities are satisfied for z E (A, l/A) 
exactly when they are satisfied at z = A and z = l/A. Uniting the systems of 
inequalities so obtained we get the following ones (equivalent to (5.9) and (5.10) 
respectively) 

p2 - &,(A) + 1) P - (a - 1) g,(A) < 0, (5.11) 

p2 + @g,(A) + 2a - 1) P + (a - 1) (a + g,(A)) 3 0, (5.12) 

where now a is arbitrary. The discriminant of the polynomial on the left side 
of (5.11) (which is exactly the polynomial (5.5)) 

D = 48,(A) [a + g,(A)] + 1 = (4a2A-a/(l - A-Q)2) + 1 (a f 0) 

= (4/1n2 A) + 1 (a = 0) 

is obviously positive thus the polynomial (5.5) always has two distinct real zeros 
~1, ,6 (a < @. The zeros of the polynomial on the left of (5.12) are 

a - a - 28,(A) and P - a - 2g,(4. 
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Equation (5.11) is true if and only if 

while (5.12) is valid exactly when 

P < a - a - 2g,,(A) or p -- a - 2g&4) < p. 

Since Q: < ,B and -(a + 2g,(A)) > 0, the necessary and sufficient condition for 
(5.11) and (5.12) to be satisfied is 

min{a, P - a - 2g,,(4} < p -< P, 

i.e., (5.2). 
The criterion for (5.3) is similarlyj”,,,(x) G-0, ZE (A, A-l) which yields (5.4). 
To find the cases of equality in (5.1) or (5.3) we have to determine the set H 

of (u, V, t, s)‘s for which equality holds in (5.6). This is equivalent to finding 
those triplets (z, 20, X) for which equality holds in (5.7). In (5.8) (or (5.9), (5.10)) 
the inequality is strict except for the cases a $- 0, (a + p) (a + p - 1) = 0, 
p(p - 1) == 0, and a = 0, p(p - 1) = 0, 2p - 1 = 0 (when the left-hand sides 
of (5.9) and (5.10) are identically zero), that is, in cases where a = 1, p = 0, and 
a = - 1, p = 1. Apart from these equality holds in (5.7) only for x = w and 
thus only for u/t = ~11s in (5.6). Hence 

H = ((u, z’, t, s) / u/t = c/s, u, z’, t, s E (m, n/r)] 

and by Theorem 1 equality holds in (5.1) if and only if 

a.e. in X, i.e., if and only if x(z) = Cy(z) a.e. in X with a constant C. 
On the other hand for a = 1, p = 0, and a = - 1, p = 1, equality holds for 

all N, y er;;l,(m, M). Since (5.3) can be treated similarly, our theorem is proved. 
Conditions (5.2), (5.4) can again be simplified if A = 0. Namely in this case 

and 

01 = (I u j - ~)/2, P = 1 + ((i a i - 49, 
max(a, p - a - 2g,(O)) = ((I - a)/2) + ((! 1 - j a i!)/2), 

min{cu, p - a - 2gJO)) = ((I - u)/2) - ((i 1 - 1 a / l)/2). 

Hence (5.2) (5.4) can be written as 

((1 - a)‘2) t ((I 1 - / a l/)/2) <P :-s 1 t ((I a I - u)/2), (5.2)* 

-(a + I a I)/2 <P < ((I - a)/2) - ((I 1 - 1 a /O/2). (5.4)* 

Thus we proved 
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COROLLARY 6 (Compare Losonczi [9, Theorem 31). Assume that the condi- 
tion L holds; t?ren the inequality 

holds for all x, y EF,#) where I is (0, l), (1, 03), OY (0, CO) if and only ;f (5.2)” 
is valid, while the necessary and suficient condition for (5.3) to he satisfied for all 
x, y EF,,(I) (with the same I as above) is (5.3)*. 
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