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INTRODUCTION

Let k be an algebraically closed field of characteristic p >0 and let
¢:X - A? be an étale Galois covering of degree p, ie., an étale finite
morphism from a normal surface X onto the affine plane AZ such that the
function field extension k(X) over k(A?) is a Galois extension of degree p.
Then X is a Z/pZ-torsor over A’ in the sense of étale topology. Moreover,
it is known that this covering is of Artin—Schreier type (see Kambayashi
and Srinivas [1], Miyanishi [2]). In other words, we can write X =
Spec k[ s, t, E1(E" — &~ f(s, 1)), where (s, 1) is a coordinate system on A’
and f(s, t)ek[s, t]. In the present article, we consider a smooth comple-
tion of X to study this covering and compute some birational invariants of
the completion of X.

1. PRELIMINARIES

Let ¥ be a nonsingular projective surface over & and let W be a normal
surface. We call a finite morphism o: W — } an Artin—Schreier covering if
the function field extension k(W) over k(V) is a Galois extension of degree
p. We have the following lemmas on Artin-Schreier coverings. For the
proofs, we refer to Takeda [4].

LemMa 1.1, o, Oy has a canonical filtration of €, -submodules,

O =FcFc- - cF

- f
o1 =00y

such that

(1Y & is alocally free sheaf of rank i+ 1;
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(2} F /A i an invertible sheaf and F/F | is a lorsion-free
C-module of rank 1 for 1 <i<p—1.
Let g be a generator of the Galois group Gal(k(W)/k(V')). Then g acts
biregularly on W and V is the quotient variety W/<{g>. The locally free
sheal .# is defined over an affine open set U of V as

(U, Fy=he (U, ) gth)—he [(U. % )}

where O0</<p and # =(0

a: W— Vs of simple type if %,

——

We sav that an Artin-Schreier coverine
We say at an Artn-dScnreicr covering
L

157

7 (

F ) F) P for 1<i<p—1.

LEMMA 1.2 Suppose thar a: W >V is an Artin-Schreier covering of
simple type. Then there exist an affine open covering W= U} of V and
s;, 1, €C(U)) such that

g '(U,)=Spec (\ (U1 -7 & =1,
Moreover, {5, € H'(V, &), where & = (F /%)

Conversely, if an Artin—Schreier covering g: W — I is given by the equa-
tions as in Lemma 1.2 with respect to an affine open covering U= {U,},
then the locally free sheaf # in Lemma 1.1 is generated over U, by
1, &, .. & as an € -module. Hence #,/%, | is generated by the class ¢’
{modulo # ) as an (; -module. This implies that o: W —FV is an
Artin-Schreier covering of simple type.

By Lemma 1.2, every Artin—Schreier covering of simple type 1s locally a
hypersurface. So, the dualizing sheaf w, is an invertible sheal. We can
compute some invariants of the covering as follows:

Lemma 1.3, With the same notations and assumptions as in the previous
lemma, we have

(1) Wy = O—*(U)l ®.\(!)/7 I).
(2) 2(Cy) = ptC,) + (1A p—1NL. o)+ (1/12)(p— 1)(2p— 1)

(L),
LEMMA 1.4, In addition to the assumptions in Lemma 1.3, suppose,
furthermore, that ¥ is ample. Then H'(W, €)= H'(V, ().

We now consider an étale Galois covering ¢: X — A of degree p. Let
(s, 7) be a coordinate system on AZ Then there exists a polynomial f(s, 1)
such that X =Speck[s, t,E]/(E"—E—f(s, 1)) I gls,t)=f(s. )+
(h(s, 1)) — h(s, 1) for some h(s, t)ek[s, t], then Spec ks, 1, EJ/(E"—=E—f)
and Spec k[s, t, E1/(EP — & — g} are isomorphic to each other as finite
coverings over A% So, we choose f(s, 7) in such a way that the degree of
f(s.1) is the smallest under the above operation and we say that X is
defined by a polynomial f{(s, t). We consider A as an open set of P” and
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let B be the line at infinity. Take the normalization =: ¥ — P? in the func-
tion field k(X). This is an Artin-Schreier covering of P* which is not
necessarily of simple type. Let (X, Y, Z} be a homogeneous coordinate
system on P? and let U, = [X#0}, U,={Y#0},and U, = {Z#0] con-
stitute the standard open covering of P-. We define a Gorenstein scheme
X and a finite morphism : X — P* by giving local data as

Y (U, =Speck[s.r, EJNE"—¢— fls, 1),
Y (Uy)=Speck[x.z,n]/(n" =" Vp—zF(x. 1, 2)),
Y MU =Spec k[u, v, /(=™ D= (1w ),
where #=(Z"/Y")E (=(Z"/X"VE s=X/Z, t=Y/Z x=X]Y. z=Z/Y,

u=Y/X, v=27/X, d=deg (s, t). [(X. Y. Z)=Z(X/Z, Y/Z). and d +¢=
mp (e.meZ, 0<e<p).

Remark 1.5, In general, X is not normal. We have, however, the
following assertions by the same arguments as in the case of an Artin-
Schreier covering of simple type (see [4, Sect. 1]).

1.5.1. There exists a filtration of ¢',.-modules
(=FcFc. -cF =yl
such that Z/# | =(..(—imB)=((—im)for 1 <i<p—1

Let g be a generator of Gal(k(X)/k(P?)). Then we can choose g so that
the action of g on X is given by g(S)=<+ 1, g(n)=n+2", and g({)=
{4+ " If we know that X is normal, the remark after Lemma 1.2 tells us
that the covering : X —» P~ is an Artin-Schreier covering of simple type.

152, wy=y*Cn(—3+(p—1)m).
Moreover, since B is ample, we have
1.53. H'(X,(3)=0.

Clearly ¥ is the normalization of X. Let p: ) — X be the minimal resolu-
tion of the singularities of X. Then we have the diagram

I —Y
|
wl yll
Az__’» pZ

Throughout this article, we keep the notations in this section.
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2. Case ofF deg /=0 (mod p)

We consider the following Hypothesis 1 on f(s, ¢):

deg f(s,1)=0 modulo p and

It ¢ ¢
<8X'7’ “/_7. i?) (P)#(0,0,0)  forevery PeB.
We say that ¢: X > A’ satisfies Hypothesis I if ¥ can be written as
X =Speck[s, t. E]/(E" — ¢ —f) such that fand its homogenization f satisfy
Hypothesis 1. Then we have d=deg f=mp (see the definition of X in
Section 1). Applying the Jacobian criterion, we have:

PROPOSITION 2.1.  Suppose that ¢: X — A? satisfies Hypothesis 1 and
(p.m)# (2. 1). Then X is nonsingular.

In this case, we have X =X =1Y), whence ¥ is normal, and 7 - p :¥) - P~
is, by Remark 1.5, an Artin-Schreier covering of simple type. Hence we can
use the formulas in Section 1 to describe the covering n- p: ) — P~

COROLLARY 2.2. With the same assumptions as in Proposition 2.1, we
have

(1) Ky=(m-p)*((=3+m(p—1)B), (Ky)=99 — 6p(p—1}m+
plp— 1)V m?

(2) #(Cy)=p—(3/4) p(p—1)m+(1/12) plp— 1)}2p — L)m".

(3) Hl(‘l)a CQ)) =0.

(4) e(W)=3p—=73p(p—1)ym+ pi(p—1)m’, where ¢()) is the Euler
number of 9.

Remark 2.3. Suppose chark=p=2 and deg f(s,71)=2, ie, m=1

Then Hypothesis I is not sufficient for X to be nonsingular. We know,
however, that X has at most only one rational double point of type A, [4,

Sect. 27. Hence the same formulas as in the previous corollary hold in this
case, as well.

We shall give some examples.
ExaMPLE 2.4. Assume char k = 3. Suppose that X satisfies Hypothesis |

and m= 1. Then, since Ky = (7 p)* (— B), it follows that —K,, is ample
and (K?!,): 3. Hence 9 is a del Pezzo surface of degree 3.

EXAMPLE 2.5. Suppose char k=2 and deg /=2. If X is nonsingular,
then ), which is equal to X, is isomorphic to P' x P' {4, Theorem 3.27]. If
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X has singular points, then 9) is the Hirzebruch surface of degree 2 [4,
Example 2.137.

EXAMPLE 2.6. Assume char £ = 2. Suppose that X satisfies Hypothesis 1
and m=3. Then we have K, =0 and H'(9, ¢,)=0. Hence 9 is a K3-
surface.

3. Caseordeg f=p—1 (mod p)

In this section, we consider ¢:X-— A’ defined by f(s,7) with
deg f'=p—1 modulo p, ie, e=1. Then we have d=deg f=mp — 1 (see
the definition of X in Section 1). By the Jacobian criterion, we have the
following lemma.

LemMA 3.1. Suppose that ¢: X — A7 is defined by f(s, t) with e = 1. Then
X is normal. Moreover, y~'(P) is a singular point if and only if Pe
(F(X.Y.Z)=0)nNB.

By Remark 1.5, we have X = ¥, whence ¥ is normal, and y: ¥ — P* is an
Artin-Schreier covering of simple type. We consider the following
Hypothesis II on f{s, t) which imposes a restriction on the singularity of X:

deg f(s, 1) #0 modulo p and

{F(X,Y,Z)=0)} is a reduced curve meeting B transversally.

If f(s. 1) with e #0 is sufficiently general, then f(s, 1) satisfies Hypothesis II.
We say that ¢: X — A” satisfies Hypothesis 1T if X can be defined by /s, 1)
satisfying Hypothesis II.

PROPOSITION 3.2.  Suppose that ¢: X - A? satisfies Hypothesis Il and
e=1. Then X has exactly d rational double points of type A

po-le

Proof. By Lemma 3.1, we know that SingX are lying over
{f(X,Y,Z)=0} nB. Let P be a singular point of ¥. Changing the coor-
dinates if necessary, we may assume P=(x=0, z=0)e U,. Since [ satisfies
Hypothesis 11, X is locally defined by

4

n"—z"" Yy=:x+ (terms of higher degree).

It is now clear that y ~'(P) is a rational double point of type A, . QED.

COROLLARY 3.3. Under the same assumptions as in Proposition 3.2, the
same four formulas as in Corollary 2.2 hold.
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Proof. Since X has only rational double points, we have Ky, =p*K,
and H'(Y), (y)=H'(X, (). Hence the assertions follow from Lemmas 1.3
and 1.4. Q.E.D.

We shall give an example.

EXAMPLE 34. Assume char & = 2. Suppose that ¢: ¥ - A~ is defined by
(s, 1) such that deg /=5 and f{(s. t) satisfies Hypothesis II. Then we have
K, =0 and H'(, ¢4)=0. Hence ¥ is a K3-surface.

4. Case or deg f#0, p—1 (mod p)

In this section, we assume that p>2 and that ¢: X — A’ satisfies
Hypothesis IT and deg f#0, p—1 modulo p, ie. 2<e<p—1. By the
Jacobian criterion and the Serre criterion, we know that X is not normal.
Hence n: ¥ - P2 is not of simple type. Under these circumstances, we
consider the following exact sequence on P

0=y lyon, > A 0.

It is clear that Supp .# = B. By Remark 1.5.3 we know H'(P*, y, () =0.
Therefore, H(B, #)=0. This asserts that .# is torsion-free. Hence .# is
a locally free sheaf on B. We shall determine .#. To begin with, let Pe B
be a general point and consider the sequence of stalks at P. We may
assume that Pe U, and that X is locally defined by »”—z""" 'y—
“F(x, 1, 2)=0.Let F=J(x, 1,z)+ 277" “y. Then n” = z‘F and F(P)#0.
where P is a unique point of ¥ lying over P. Since p and ¢ arc relatively
prime, there exist «, heZ such that ap+he=1 We may assume —e <
a<0. Set t=n"z“. Then we have tek(X), 1“=#F ¢ and 17 ==:F" Hence
x— x(P) and t generate the maximal ideal of the local ring (7, (s),. This
implies that (m,(s),= (¥, (y)p [7] and X is nonsingular at P. Note that
=zl Fif n= —ap+ e with o, feZ. It is then easy to verify
that #p= @D, 5 Cpps ™ # where « and f range over all integers such that
—ap+ fe>0, 0<a<e, and 0 < f < p.

We now consider .# at the image point of a singular point of X. We may
assume that every singular point lies over U,. Let Qe B such that
O=n '(Q) is a singular point of X. We know that X is defined by {” —
e D pf(1, 1, v) =0 over U,. From the above observations, it follows
that (f(l.u, v)+o™7 2 “U)Q)=0. Since f(s,t) satisfies Hypothesis II,
we know that Q is a zero of order | of f=0. Changing the coordinate u
if necessary, we may assume Q = (1=0.v=0). So. X is locally defined by
{P = v°(u + (terms of higher degree) + 0™’ b<). In order to look into the
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singularity of ¥ at Q, it suffices to consider the normalization of a surface
defined by {* =v‘u.

Let T7=p and S={/T°. Then S”=u. Consider a derivation D=
T(¢/6T)+ hS(¢/8S) on k[[S, T1], where h= p —e and the invariant sub-
ring k[[S, T]11%={gek[[S, T]1]| D(g)=0}. Note that kK[[S, T]]T is a
normal ring. In the case of a polynomial ring, we have the following useful
lemma.

Lemma 4.1. Let A=k[T,S1nk(T", S",S/T") and T =T(¢/°T)+
hS(6/eS). Then

(1Y A=k[T,S]* and Spec A has an isolated singular point which is
defined by S=T=0.

(2) {S*T?|p+ha=0 (mod p)} is a k-basis for A.

(3)  The minimal resolution of singularity of Spec A has the following
dual graph of exceptional curves:

where

<

q

Here a vertex shown by O stands for a nonsingular rational curve. Hence the
singularity is rational. The proper transform of the curve T =0 meets trans-
versally the curve E and does not meet any other curves E;.

For the proof, we refer to Miyanishi and Russell [3, Lemma 3.2].
In our case, it is clear that u,v,{ek[[S,T]]® and k((u,v,{))=
k((S?, T*,S/T")). From Lemma 4.1(2), it follows that [T~ */Shk
a,feZ, >0, —ap+ Pe>0}is a k-basis of k[[S, T]]F. Tt is then easy to
verify that [T *MSkrw g BneZ, n>0, O<a<e, 0<f<p,
—oap+fe>0} is a k-basis of k[[S, T1]%/k[[S”, T, T*S]]. Hence
[T 7Sl o, BeZ, O<a<e, O<B<p, —ap+fe>0} is a k[[S"]]-
basis. Since T *7SP=v *F we know #,= @, C, 5o *(", where
a and f range over all integers such that O<x<e, O0<pf<p, and
—ap+ Pe>0. On the other hand, we have already shown that #'| .=
@, Cpz""n" where a and B are the same as above and B°=
B—{QeB|n Q) is a singular point}. Note that z *y”=v *{%u* ™
The transition functions of # over U, n U, are {u* ") By these obser-
vations we have the following:

481 13X 2.4
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THEOREM 4.2.  Suppose that ¢: X — A" satisfies Hypothesis 11 and ¢ # 1.
Set # =@, ,; C4lo—pm), where o and  range over all integers such that
O<a<e, O<pB<p, and —ap+ Pe>0. Then we have the following exact
sequence on P

0oy ly—-m, (- H -0

COROLLARY 4.3. Suppose e=p—1. Then we can write K in the
following way:
H =0l =2m)D (1 =3m)@ - @1 —(p—1)m)
® (/‘3(2 =3m® - @2 (p—1)m)

@®Cpp—2—(p—1)m).
Proof. Straightforward.

COROLLARY 4.4. With the same assumptions as in Corollary 4.3, we have

2(Gy)=(1/6)(p+2)(p” =2p+3)— (1/12) p(p— )(4p+ 1)m
+(1/12) plp—1)2p — Lymr".

Proof. From the previous corollary, it follows that y(x)=(1/6)
(p+3)p—10p—2)—(1/3) p(p—1)(p—2)m. Therefore, by Remark 1.5.1,
we have y(C3)=(1/6)(p+2)(p"—2p+3)—(1/12) p(p—1)4p + 1)m+
(1/12) p(p — 1)(2p — 1)m>. Meanwhile, we know that X has only rational
singularities. Hence y((y)=y((%). The assertion follows from these
observation. Q.ED.

Next, we shall determine the canonical divisor of ).
Lemma 4.5. The canonical divisor Ky of X is written as Ky=

*((—=3+m(p—1)BY—(p—1)0e—1) D, where D is the set-theoretic
inverse image of B by m and n*B= pD.

In the proof of this lemma, we use the following:
LEMMA 4.6 (Miyanishi [2]). Let C be an étale Galois covering of A' =

Spec k[ 1] defined by
517752(")["+ "'+()u i1

where ¢y ...¢, €k, cg#0, n>0, and ¢;=0 whenever i=0 (mod p). Then
the genus of C is equal to (p—1)}n—1)/2.

Proof. See [2, Lemma 2.1].
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Proof of Lemma 4.5. First, note that we can write the canonical divisor

of ¥ as
Ki=n*((=34+m(p—1))B)—rD,

where —rD is the contribution coming from the conductor ideal for the
extension Y, Cy < n, . We have only to determine r. Let L be a general
line on P°. We may assume that n*L is an irreducible curve contained in
the nonsingular part of X. We claim that z*L is nonsingular. Indeed, let
Pe L~ B and suppose that L is defined by x =0 near P after a change of
coordinates. Recall that (7, (y)p= (¥, Cy)p[t], where t=py"z¢ with
ap+be=1. In particular, (¢ ;)" =k[[7r,x]] and (Cye, 5)" =k[[7]],
where P=n '(P). This shows that n*L is a nonsingular curve. Now, by
applying Lemma 4.6, we have g(n*L)=(p—1)(d—1)/2. Meanwhile, by
the adjunction formula, we have

(p— 1)d—=1)=2 = (Ky, T*L) + ((T*L)*)
=p(=3+m(p—1))—r(D,n*L)+ p.

Since d+e=mp, we have r(D, n*L)=(p—1){e~1). On the other hand,

the arguments given at the beginning of this section show that n*B= pD.

Hence n, D= B and (D, n*L)=1. This implies that r=(p — 1)(e — 1).
Q.ED.

We need some more notations to write down the canonical divisor of 9.
Suppose that ¢: X — A’ satisfies Hypothesis I1 and ¢#1. Let D be the
proper transform of D by p. Then D is a nonsingular rational curve. Let
0. ... Q,} exhaust all points of P* whose inverse images by n are the
singular points of ¥. By Lemma 4.1, (n-p) (Q,) has the configuration
shown in Fig. 1. where £, ; is a nonsingular rational curve whose self-inter-
section number is —a;, a; being the same as given in Lemma 4.1. Set

a; . —1

J,=det for 0<j<gandd, =1

and set

&/ = det for 1<j<g+1andd =1.
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Ei1 / B2 / ° ° ° Eig D
/
X X
SN
\ \
FIGURE |

Note that d,=06""=p, §, | =a;0,—9,,, for I<j<g—1 and §'*'=
a8’ =& 'for 2<j<q.
We are now ready to write down the canonical divisor of ).

THEOREM 4.7. We retain the same notations and assumptions as abote.
Then we have

q
K‘l):ND‘F Z (A,+N()//]7)(E1/+ +E</,/)*
J— 1
where N=(=3+m(p—1)p—(p—10e—1) and 4,=(1/p}Jd;+)—1
Jor 1<j<q.

Proof. Note that (np) '(Q,)and (n-p) '(Q,) are disjoint from each
other if i# j. Hence we have only to describe K,, near (n-p) '(Q,) for
every 1 <i<d. Near (n-p) ' Q,, the canonical divisor is written as K, =
ND+n E; + -+ +n,E,, with n,e Z. By applying the adjunction formula
for the curves E; ., we have

A
aj(m +1)—(n+1)=1
—(n+ 1Y+ ay(m+1)—(n;+1)=0

—(n, .+ D +a,n,+1) =N+1.

We can solve these equations in terms of ¢, and d’ to obtain n,4+ 1=
(1/p)(d,+ 6/ (N + 1)), 1 <j<gq. We have thus the stated formula for K,,.
Q.ED.

It is easy to verify that (D?)= —d%m + (1 + d%)/p. Furthermore, we have
the following corollaries which are immediate consequences of the above
theorem.
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COROLLARY 4.8. We have
(K)=(p)N* —(mp—e){d,+3'+2-2p+(a,+ - +a,) p—2pq} ],

where N = {{e + 2)p— (e = 1)}? =2(p— 1) plle + 2)p— (e — 1)} m +
pip—1)yY m’

2

COROLLARY 4.9. [fe= p— 1, then we have
Koy=(mp(p—=1)=p* =)D+ (m(p—1)—p—INE, , + - + E, ),
where (D*)= —m+ 1 and ((E,,)?)= —p. Moreover,

(Ky)=p+p = p+8—(2p—1) p’m+ plp—1)" m’.

We have the following topological datum of :

PrROPOSITION 4.10.  Suppose that ¢: X — A? satisfies Hypothesis 11. If
d=mp—e>0 with e fixed, ie., m>0, then we have b, (V) =0, where b, ()
(=rank H! (9, Q,) with a prime 1+ p) is the first Betti number of ¥).

Proof. Tt 1s sufficient to show that the Albanese variety Alb(%)) has
dimension zero. Consider the Albanese map 7: %) — AIb(¥)) and take the
Stein factorization y=v u:9) > A — Alb(Y), where A is normal.
Note that K|, is connected and effective if m > 0 (cf. Theorem 4.7). Suppose
that dim 2 =2. Then y is a birational morphism. Since every irreducible
component of Ky is a rational curve and v is a finite morphism, Ky, is con-
tracted to a point by u. Hence (K3,) <0. On the other hand, we know that
(K3)>0 for m>0 by Corollary 4.8. Hence, if m> 0, this case cannot
occur. Next, suppose dim 2 = 1. Then y is a fibration such that Ky, is con-
tained in a fibre of u. Hence (K3,) <0 and this case cannot occur, either,
if m> 0. So, dim Alb()=0and »,(V)=0if m > 0. Q.E.D.

We know that H'(9,(y)=0 for e=0 (resp. e=1) if X satisfies
Hypothesis 1 (resp. IT). Hence, in these cases, we have 5,(9))=0 as well.
From this and Proposition 4.10, it follows that the first Betti number of )
is zero provided f(s, 1) 1s general and d=deg f(s, 1)> 0.

We shall give some examples.

ExaMPLE 4.11. Suppose that ¢:X — A’ satisfies Hypothesis II and
d=1 (ie, m=1 and e=p—1). By Theorems 42 and 4.7, we have
HCy)=1,Ky= —(p+2)D—2E (E*)= —p, and (K3)=8. We know that
Y) is the Hirzebruch surface of degree p with the minimal section E.
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ExaMpLE 4.12.  Assume char k = 3. Suppose that X satisfies Hypothesis 11
and d=4 (ie, m=2 and ¢=2). Then we have y((y)=2, K\{,:D, and
(K:z,)z —1. Let 0: ) > 3 be the contraction of D. Then 3 is a K3-surface.

5. IRREGULARITY OF ) IN THE CASE OF ¢ = p— |
In this section, we assume that p > 2. We shall prove

THEOREM 5.1. Suppose that ¢: X - A° satisfies  Hypothesis 11 and
e=p—1. Then we have H'(), €4))=0 for m=p—1.

Our proof of this theorem consists of three steps.

Step 1. CLAM. 1 is sufficient to show that
HU (P, a, (:Q@Camip—1)—p=1))=0  for m=zp—1

Proof of Cluim. Note that K, —(p~— DD=(n p)y*(mp—1)-
p— 1)B) by Corollary 4.9. Hence we have the exact sequence

O-(n p)*Camip—1)=p—1)>wy—=>C, 158wy 0. (%)

On the other hand, it is easy to verify that (K, Dy=m-—13. So, we have
the exact sequences
Cplm - 3)

|

0—*(’,3(2/7144) — 63,3@(1)‘!, —_— (/,3®(I)\U———> 0

0= Cx((p—2)m—p)— ('}p 5 p Ry = ((1,1 MA@y 0.

By taking the cohomology groups, we have H'(U.(,, .,5®wy)=0
whenever m > 1. Therefore, for m > 1. the cohomology exact sequence
associated with (x) gives exact sequences

H'Y(Y, (n-p)* Com(p—1)—p~—1))— H'(9. wy) =0,
0= H(V, (- p)* Conlm(p—1)= p—1)) > H (D, wy) 0.

So, if we know that H' (D, (x- p)* Coo(m(p—1)— p—1))=0, then our
theorem is verified by virtue of the Serre duality. Meanwhile, since n
is a finite morphism and p is a resolution of rational singularities, we know
that H{(Y, (- p)* Cam(p—1)—p—1))= Hip2, T (@ Co(mlip — 1) —
p—1)). Our claim will follow from these observations. QE.D.
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In the above proof, we have also proved that
dim, H* (P 7, (3@ Calm{p—1)—p—1))=1 for m> 1.
For the sake of simplicity, we shall denote C...(m(p—1)—p—1) by .#.

Step II. CrLam. ‘e have:

(1) dim, H'(P*, (¢ ® .4)=0.
(2) dimg HAP Y ®.4)=pp—1)2 if  m=zp—1

Proof of Claim. By Remark 1.5.1, there are the following exact sequen-
ces on P

L

0—— # QU — FQ.H—( m(p—2)—p—1)—>0

- 0.

0——7 @ ll— F, @l ——Co(—p—1)

W, (e ®. 4

I

By taking the cohomology groups, we have dim, H'(P*, (¢ ®.4#)=0.
Moreover, dim, HY (P, ¢, (3 ® .#) = dim, H}(P ¢ (—p — 1)
plp—1)2form=p—1. Q.E.D.

Step III.  We consider the exact sequence
0=y, (@ U -, (.U > HR.H—0. ()
Since

HQH=Cmp—3)—p)DCymip—4)—p) @ - DCp(—p)
@ Cpmip—4)—p+1)D --- DC(—p+1)

@ Cp(—=3).

we havedim H'(B, # @ . #/)=dim H'(B, ( 4( —p))+---+dim H'(B, C,(—3))
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=p(p—1)2—1 1 m=p—1. By taking the cohomology exact sequence
associated with (##), we have an exact sequence

HU(PL Y, @ .4)>H (P, n, (y@.#)—> H'B, #®.4)
> H P ¢, Q@ .4)> HY (P, 1, (+®.4)—0.

We already know that dim H*(P°, n, (o #)=1, H'(P, ¢, (4 ®.#)=0,
and dim H*(P* ¢,y ®.#)=p(p—1)/2 il m>p—1. Hence it follows
that dim H'(P*, =, (y®.#)=0 if m>= p— 1. The proof of our theorem is
now completed.
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