JOURNAL OF ALGEBRA 138, 313-326 (1991)

Etale Galois Coverings of Degree *p* of the Affine Plane

YOSHIFUMI TAKEDA

Department of Mathematics, Nara Women's University, Kita-Uova Nishimachi, Nara 630, Japan

Communicated by Joseph Harris

Received March 10, 1989

INTRODUCTION

Let k be an algebraically closed field of characteristic p > 0 and let $\varphi: \mathfrak{X} \to \mathbb{A}^2$ be an étale Galois covering of degree p, i.e., an étale finite morphism from a normal surface \mathfrak{X} onto the affine plane \mathbb{A}^2 such that the function field extension $k(\mathfrak{X})$ over $k(\mathbb{A}^2)$ is a Galois extension of degree p. Then \mathfrak{X} is a $\mathbb{Z}/p\mathbb{Z}$ -torsor over \mathbb{A}^2 in the sense of étale topology. Moreover, it is known that this covering is of Artin–Schreier type (see Kambayashi and Srinivas [1], Miyanishi [2]). In other words, we can write $\mathfrak{X} = \operatorname{Spec} k[s, t, \mathfrak{Z}]/(\mathfrak{Z}^p - \mathfrak{Z} - f(s, t))$, where (s, t) is a coordinate system on \mathbb{A}^2 and $f(s, t) \in k[s, t]$. In the present article, we consider a smooth completion of \mathfrak{X} to study this covering and compute some birational invariants of the completion of \mathfrak{X} .

1. PRELIMINARIES

Let V be a nonsingular projective surface over k and let W be a normal surface. We call a finite morphism $\sigma: W \to V$ an Artin-Schreier covering if the function field extension k(W) over k(V) is a Galois extension of degree p. We have the following lemmas on Artin-Schreier coverings. For the proofs, we refer to Takeda [4].

LEMMA 1.1. $\sigma_* \mathcal{O}_W$ has a canonical filtration of \mathcal{O}_V -submodules,

$$\mathcal{O}_V = \mathscr{F}_0 \subset \mathscr{F}_1 \subset \cdots \subset \mathscr{F}_{p-1} = \sigma_* \mathcal{O}_W$$

such that

(1) \mathcal{F}_i is a locally free sheaf of rank i + 1;

(2) $\mathscr{F}_1/\mathscr{F}_0$ is an invertible sheaf and $\mathscr{F}_i/\mathscr{F}_{i-1}$ is a torsion-free ℓ_1 -module of rank 1 for $1 \leq i \leq p-1$.

Let g be a generator of the Galois group $\operatorname{Gal}(k(W)/k(V))$. Then g acts biregularly on W and V is the quotient variety $W/\langle g \rangle$. The locally free sheaf \mathscr{F}_i is defined over an affine open set U of V as

$$\Gamma(U, \mathscr{F}_i) = \{h \in \Gamma(U, \mathscr{O}_W); g(h) - h \in \Gamma(U, \mathscr{F}_{i-1})\},\$$

where $0 \le i < p$ and $\mathscr{F}_{-1} = (0)$. We say that an Artin-Schreier covering $\sigma: W \to V$ is of simple type if $\mathscr{F}_i / \mathscr{F}_{i-1} \cong (\mathscr{F}_1 / \mathscr{F}_0)^{\otimes_i}$ for $1 \le i \le p-1$.

LEMMA 1.2. Suppose that $\sigma: W \to V$ is an Artin–Schreier covering of simple type. Then there exist an affine open covering $\mathfrak{U} = \{U_{\lambda}\}$ of V and $s_{\lambda}, t_{\lambda} \in \mathcal{C}_{V}(U_{\lambda})$ such that

$$\sigma^{-1}(U_{\lambda}) = \operatorname{Spec} \, \mathcal{C}_{V}(U_{\lambda})[\xi_{\lambda}]/(\xi_{\lambda}^{p} - s_{\lambda}^{p-1}\xi_{\lambda} - t_{\lambda}).$$

Moreover, $\{s_{\lambda}\} \in H^{0}(V, \mathcal{L})$, where $\mathcal{L} \cong (\widetilde{\mathscr{F}}_{1}/\widetilde{\mathscr{F}}_{0})^{-1}$.

Conversely, if an Artin–Schreier covering $\sigma: W \to V$ is given by the equations as in Lemma 1.2 with respect to an affine open covering $\mathfrak{U} = \{U_{\lambda}\}$, then the locally free sheaf \mathscr{F}_i in Lemma 1.1 is generated over U_{λ} by 1, $\xi_{\lambda}, ..., \xi_{\lambda}^i$ as an $\mathscr{C}_{U_{\lambda}}$ -module. Hence $\mathscr{F}_i/\mathscr{F}_{i-1}$ is generated by the class ξ_{λ}^i (modulo \mathscr{F}_{i-1}) as an $\mathscr{C}_{U_{\lambda}}$ -module. This implies that $\sigma: W \to V$ is an Artin–Schreier covering of simple type.

By Lemma 1.2, every Artin–Schreier covering of simple type is locally a hypersurface. So, the dualizing sheaf ω_W is an invertible sheaf. We can compute some invariants of the covering as follows:

LEMMA 1.3. With the same notations and assumptions as in the previous lemma, we have

(1) $\omega_{\mathrm{H}} = \sigma^*(\omega_{\mathrm{T}} \otimes \mathscr{L}^{p-1}).$

(2) $\chi(\mathcal{C}_W) = p(\chi(\mathcal{C}_V) + (1/4)(p-1)(\mathcal{L}, \omega_V) + (1/12)(p-1)(2p-1)(\mathcal{L}^2)).$

LEMMA 1.4. In addition to the assumptions in Lemma 1.3, suppose, furthermore, that \mathscr{L} is ample. Then $H^1(W, \mathscr{C}_W) = H^1(V, \mathscr{C}_V)$.

We now consider an étale Galois covering $\varphi: \mathfrak{X} \to \mathbb{A}^2$ of degree *p*. Let (s, t) be a coordinate system on \mathbb{A}^2 . Then there exists a polynomial f(s, t) such that $\mathfrak{X} = \operatorname{Spec} k[s, t, \xi]/(\xi^p - \xi - f(s, t))$. If $g(s, t) = f(s, t) + (h(s, t))^p - h(s, t)$ for some $h(s, t) \in k[s, t]$, then $\operatorname{Spec} k[s, t, \xi]/(\xi^p - \xi - f)$ and $\operatorname{Spec} k[s, t, \xi]/(\xi^p - \xi - g)$ are isomorphic to each other as finite coverings over \mathbb{A}^2 . So, we choose f(s, t) in such a way that the degree of f(s, t) is the smallest under the above operation and we say that \mathfrak{X} is defined by a polynomial f(s, t). We consider \mathbb{A}^2 as an open set of \mathbb{P}^2 and

let *B* be the line at infinity. Take the normalization $\pi: \tilde{\mathfrak{X}} \to \mathbb{P}^2$ in the function field $k(\mathfrak{X})$. This is an Artin-Schreier covering of \mathbb{P}^2 which is not necessarily of simple type. Let (X, Y, Z) be a homogeneous coordinate system on \mathbb{P}^2 and let $U_X = \{X \neq 0\}, U_Y = \{Y \neq 0\}$, and $U_Z = \{Z \neq 0\}$ constitute the standard open covering of \mathbb{P}^2 . We define a Gorenstein scheme \mathfrak{X} and a finite morphism $\psi: \mathfrak{X} \to \mathbb{P}^2$ by giving local data as

$$\psi^{-1}(U_{Z}) = \operatorname{Spec} k[s, t, \xi] / (\xi^{p} - \xi - f(s, t)),$$

$$\psi^{-1}(U_{Y}) = \operatorname{Spec} k[x, z, \eta] / (\eta^{p} - z^{m(p-1)}\eta - z^{e} \tilde{f}(x, 1, z)),$$

$$\psi^{-1}(U_{X}) = \operatorname{Spec} k[u, v, \zeta] / (\xi^{p} - v^{m(p-1)} \xi - v^{e} \tilde{f}(1, u, v)),$$

where $\eta = (Z^m/Y^m)\xi$, $\zeta = (Z^m/X^m)\xi$, s = X/Z, t = Y/Z, x = X/Y, z = Z/Y, u = Y/X, v = Z/X, $d = \deg f(s, t)$, $\tilde{f}(X, Y, Z) = Z^d f(X/Z, Y/Z)$, and d + e = mp (e, $m \in \mathbb{Z}$, $0 \le e < p$).

Remark 1.5. In general, $\bar{\mathfrak{X}}$ is not normal. We have, however, the following assertions by the same arguments as in the case of an Artin-Schreier covering of simple type (see [4, Sect. 1]).

1.5.1. There exists a filtration of C_{m2} -modules

$$\mathcal{C}_{\mathbb{P}^2} = \mathscr{F}_0 \subset \mathscr{F}_1 \subset \cdots \subset \mathscr{F}_{p-1} = \psi_* \mathcal{C}_{\mathfrak{F}}$$

such that $\mathscr{F}_i/\mathscr{F}_{i-1} = \mathscr{O}_{\mathbb{P}^2}(-imB) = \mathscr{O}_{\mathbb{P}^2}(-im)$ for $1 \leq i \leq p-1$.

Let g be a generator of $\operatorname{Gal}(k(\overline{\mathfrak{X}})/k(\mathbb{P}^2))$. Then we can choose g so that the action of g on $\overline{\mathfrak{X}}$ is given by $g(\xi) = \xi + 1$, $g(\eta) = \eta + z^m$, and $g(\xi) = \xi + v^m$. If we know that $\overline{\mathfrak{X}}$ is normal, the remark after Lemma 1.2 tells us that the covering $\psi: \overline{\mathfrak{X}} \to \mathbb{P}^2$ is an Artin-Schreier covering of simple type.

1.5.2.
$$\omega_{\bar{x}} = \psi^* \mathcal{C}_{\mathbb{P}^2}(-3 + (p-1)m).$$

Moreover, since B is ample, we have

1.5.3.
$$H^{1}(\overline{\mathfrak{X}}, \mathcal{C}_{\overline{\mathfrak{X}}}) = 0.$$

Clearly $\tilde{\mathfrak{X}}$ is the normalization of $\tilde{\mathfrak{X}}$. Let $\rho: \mathfrak{Y} \to \tilde{\mathfrak{X}}$ be the minimal resolution of the singularities of $\tilde{\mathfrak{X}}$. Then we have the diagram

Throughout this article, we keep the notations in this section.

YOSHIFUMI TAKEDA

2. CASE OF deg
$$f \equiv 0 \pmod{p}$$

We consider the following Hypothesis I on f(s, t):

deg
$$f(s, t) \equiv 0$$
 modulo p and
 $\left(\frac{\partial}{\partial X}\tilde{f}, \frac{\partial}{\partial Y}\tilde{f}, \frac{\partial}{\partial Z}\tilde{f}\right)(P) \neq (0, 0, 0)$ for every $P \in B$.

We say that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis I if \mathfrak{X} can be written as $\mathfrak{X} = \operatorname{Spec} k[s, t, \xi]/(\xi^p - \xi - f)$ such that f and its homogenization \tilde{f} satisfy Hypothesis I. Then we have $d = \deg f = mp$ (see the definition of $\overline{\mathfrak{X}}$ in Section 1). Applying the Jacobian criterion, we have:

PROPOSITION 2.1. Suppose that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis I and $(p, m) \neq (2, 1)$. Then $\overline{\mathfrak{X}}$ is nonsingular.

In this case, we have $\bar{\mathbf{x}} = \tilde{\mathbf{x}} = \mathfrak{Y}$, whence $\bar{\mathbf{x}}$ is normal, and $\pi \circ \rho : \mathfrak{Y} \to \mathbb{P}^2$ is, by Remark 1.5, an Artin–Schreier covering of simple type. Hence we can use the formulas in Section 1 to describe the covering $\pi \circ \rho : \mathfrak{Y} \to \mathbb{P}^2$.

COROLLARY 2.2. With the same assumptions as in Proposition 2.1, we have

(1) $K_{\mathfrak{Y}} = (\pi \cdot \rho)^* ((-3 + m(p-1))B), (K_{\mathfrak{Y}}^2) = 9p - 6p(p-1)m + p(p-1)^2 m^2.$

- (2) $\chi(\mathcal{C}_{\mathfrak{Y}}) = p (3/4) p(p-1)m + (1/12) p(p-1)(2p-1)m^2$.
- (3) $H^1(\mathfrak{Y}, \mathcal{O}_{\mathfrak{Y}}) = 0.$

(4) $e(\mathfrak{Y}) = 3p - 3p(p-1)m + p^2(p-1)m^2$, where $e(\mathfrak{Y})$ is the Euler number of \mathfrak{Y} .

Remark 2.3. Suppose char k = p = 2 and deg f(s, t) = 2, i.e., m = 1. Then Hypothesis I is not sufficient for $\overline{\mathfrak{X}}$ to be nonsingular. We know, however, that $\overline{\mathfrak{X}}$ has at most only one rational double point of type A₁ [4, Sect. 2]. Hence the same formulas as in the previous corollary hold in this case, as well.

We shall give some examples.

EXAMPLE 2.4. Assume char k = 3. Suppose that \mathfrak{X} satisfies Hypothesis I and m = 1. Then, since $K_{\mathfrak{Y}} = (\pi \circ \rho)^* (-B)$, it follows that $-K_{\mathfrak{Y}}$ is ample and $(K_{\mathfrak{Y}}^2) = 3$. Hence \mathfrak{Y} is a del Pezzo surface of degree 3.

EXAMPLE 2.5. Suppose char k = 2 and deg f = 2. If $\overline{\mathfrak{X}}$ is nonsingular, then \mathfrak{Y} , which is equal to $\overline{\mathfrak{X}}$, is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ [4, Theorem 3.2]. If

 $\bar{\mathfrak{X}}$ has singular points, then \mathfrak{Y} is the Hirzebruch surface of degree 2 [4, Example 2.13].

EXAMPLE 2.6. Assume char k = 2. Suppose that \mathfrak{X} satisfies Hypothesis I and m = 3. Then we have $K_{\mathfrak{Y}} = 0$ and $H^{1}(\mathfrak{Y}, \mathcal{O}_{\mathfrak{Y}}) = 0$. Hence \mathfrak{Y} is a K3-surface.

3. CASE OF deg $f \equiv p - 1 \pmod{p}$

In this section, we consider $\varphi: \mathfrak{X} \to \mathbb{A}^2$ defined by f(s, t) with deg $f \equiv p-1$ modulo p, i.e., e = 1. Then we have $d = \deg f = mp-1$ (see the definition of $\overline{\mathfrak{X}}$ in Section 1). By the Jacobian criterion, we have the following lemma.

LEMMA 3.1. Suppose that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ is defined by f(s, t) with e = 1. Then $\overline{\mathfrak{X}}$ is normal. Moreover, $\psi^{-1}(P)$ is a singular point if and only if $P \in \{\overline{f}(X, Y, Z) = 0\} \cap B$.

By Remark 1.5, we have $\overline{\mathbf{x}} = \mathbf{\tilde{x}}$, whence $\overline{\mathbf{x}}$ is normal, and $\psi: \mathbf{\tilde{x}} \to \mathbb{P}^2$ is an Artin-Schreier covering of simple type. We consider the following Hypothesis II on f(s, t) which imposes a restriction on the singularity of $\mathbf{\tilde{x}}$:

deg $f(s, t) \neq 0$ modulo p and $\{\tilde{f}(X, Y, Z) = 0\}$ is a reduced curve meeting B transversally.

If f(s, t) with $e \neq 0$ is sufficiently general, then f(s, t) satisfies Hypothesis II. We say that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis II if \mathfrak{X} can be defined by f(s, t) satisfying Hypothesis II.

PROPOSITION 3.2. Suppose that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis II and e = 1. Then $\overline{\mathfrak{X}}$ has exactly d rational double points of type A_{p-1} .

Proof. By Lemma 3.1, we know that $\operatorname{Sing} \overline{\mathfrak{X}}$ are lying over $\{\overline{f}(X, Y, Z) = 0\} \cap B$. Let P be a singular point of $\overline{\mathfrak{X}}$. Changing the coordinates if necessary, we may assume $P = (x = 0, z = 0) \in U_Y$. Since f satisfies Hypothesis II, $\overline{\mathfrak{X}}$ is locally defined by

 $\eta^{p} - z^{m(p-1)}\eta = zx + (\text{terms of higher degree}).$

It is now clear that $\psi^{-1}(P)$ is a rational double point of type A_{n-1}. Q.E.D.

COROLLARY 3.3. Under the same assumptions as in Proposition 3.2, the same four formulas as in Corollary 2.2 hold.

YOSHIFUMI TAKEDA

Proof. Since $\overline{\mathfrak{X}}$ has only rational double points, we have $K_{\mathfrak{Y}} = \rho^* K_{\mathfrak{X}}$ and $H^i(\mathfrak{Y}, \mathcal{C}_{\mathfrak{Y}}) = H^i(\overline{\mathfrak{X}}, \mathcal{C}_{\mathfrak{X}})$. Hence the assertions follow from Lemmas 1.3 and 1.4. Q.E.D.

We shall give an example.

EXAMPLE 3.4. Assume char k = 2. Suppose that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ is defined by f(s, t) such that deg f = 5 and f(s, t) satisfies Hypothesis II. Then we have $K_{\mathfrak{Y}} = 0$ and $H^1(\mathfrak{Y}, \mathcal{C}_{\mathfrak{Y}}) = 0$. Hence \mathfrak{Y} is a K3-surface.

4. CASE OF deg $f \not\equiv 0, p-1 \pmod{p}$

In this section, we assume that p > 2 and that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis II and deg $f \not\equiv 0$, p-1 modulo p, i.e., $2 \leq e \leq p-1$. By the Jacobian criterion and the Serre criterion, we know that \mathfrak{X} is not normal. Hence $\pi: \mathfrak{X} \to \mathbb{P}^2$ is not of simple type. Under these circumstances, we consider the following exact sequence on \mathbb{P}^2 :

$$0 \to \psi_* \mathcal{C}_{\mathfrak{X}} \to \pi_* \mathcal{C}_{\mathfrak{X}} \to \mathscr{H} \to 0.$$

It is clear that $\operatorname{Supp} \mathscr{H} = B$. By Remark 1.5.3 we know $H^1(\mathbb{P}^2, \psi_* \mathcal{C}_{\mathfrak{X}}) = 0$. Therefore, $H^0(B, \mathscr{H}) = 0$. This asserts that \mathscr{H} is torsion-free. Hence \mathscr{H} is a locally free sheaf on B. We shall determine \mathscr{H} . To begin with, let $P \in B$ be a general point and consider the sequence of stalks at P. We may assume that $P \in U_Y$ and that \mathfrak{X} is locally defined by $\eta^P - z^{m(P-1)}\eta - z^e \tilde{f}(x, 1, z) = 0$. Let $F = \tilde{f}(x, 1, z) + z^{m(P-1)-e}\eta$. Then $\eta^P = z^e F$ and $F(\tilde{P}) \neq 0$, where \tilde{P} is a unique point of \mathfrak{X} lying over P. Since p and e are relatively prime, there exist $a, b \in \mathbb{Z}$ such that ap + be = 1. We may assume -e < a < 0. Set $\tau = \eta^h z^a$. Then we have $\tau \in k(\mathfrak{X}), \tau^e = \eta F^{-a}$, and $\tau^P = zF^h$. Hence x - x(P) and τ generate the maximal ideal of the local ring $(\pi_* \mathscr{C}_{\mathfrak{X}})_P$. This implies that $(\pi_* \mathscr{C}_{\mathfrak{X}})_P = (\psi_* \mathscr{C}_{\mathfrak{X}})_P [\tau]$ and \mathfrak{X} is nonsingular at \tilde{P} . Note that $\tau^n = z^{-\alpha} \eta^B F^{-\alpha b-\beta a}$ if $n = -\alpha p + \beta e$ with $\alpha, \beta \in \mathbb{Z}$. It is then easy to verify that $\mathscr{H}_P = \bigoplus_{\alpha,\beta} \mathscr{C}_{P,B} z^{-\alpha} \eta^{\beta}$, where α and β range over all integers such that $-\alpha p + \beta e > 0, 0 < \alpha < e$, and $0 < \beta < p$.

We now consider \mathscr{H} at the image point of a singular point of \mathfrak{X} . We may assume that every singular point lies over U_X . Let $Q \in B$ such that $\widetilde{Q} = \pi^{-1}(Q)$ is a singular point of \mathfrak{X} . We know that \mathfrak{X} is defined by $\zeta^p - v^{m(p-1)}\zeta - v^c \widetilde{f}(1, u, v) = 0$ over U_X . From the above observations, it follows that $(\widetilde{f}(1, u, v) + v^{m(p-1)-c}\zeta)(\widetilde{Q}) = 0$. Since f(s, t) satisfies Hypothesis II, we know that Q is a zero of order 1 of $\widetilde{f} = 0$. Changing the coordinate uif necessary, we may assume Q = (u = 0, v = 0). So, \mathfrak{X} is locally defined by $\zeta^p = v^c(u + (\text{terms of higher degree}) + v^{m(p-1)-c}\zeta)$. In order to look into the singularity of $\tilde{\mathfrak{X}}$ at \tilde{Q} , it suffices to consider the normalization of a surface defined by $\zeta^{p} = v^{e}u$.

Let $T^p = v$ and $S = \zeta/T^c$. Then $S^p = u$. Consider a derivation $\mathfrak{D} = T(\partial/\partial T) + hS(\partial/\partial S)$ on k[[S, T]], where h = p - e and the invariant subring $k[[S, T]]^{\mathfrak{D}} = \{g \in k[[S, T]] \mid \mathfrak{D}(g) = 0\}$. Note that $k[[S, T]]^{\mathfrak{D}}$ is a normal ring. In the case of a polynomial ring, we have the following useful lemma.

LEMMA 4.1. Let $A = k[T, S] \cap k(T^p, S^p, S/T^h)$ and $\mathfrak{T} = T(\hat{o}/\partial T) + hS(\partial/\partial S)$. Then

(1) $A = k[T, S]^{T}$ and Spec A has an isolated singular point which is defined by S = T = 0.

(2) $\{S^{\alpha}T^{\beta} \mid \beta + h\alpha \equiv 0 \pmod{p}\}$ is a k-basis for A.

(3) The minimal resolution of singularity of Spec A has the following dual graph of exceptional curves:

where

$$\frac{p}{h} = a_1 - \frac{1}{a_2 - \frac{1}{a_1}}, \qquad a_i \in \mathbb{Z}, a_i \ge 2.$$

Here a vertex shown by \bigcirc stands for a nonsingular rational curve. Hence the singularity is rational. The proper transform of the curve $T^{p} = 0$ meets transversally the curve E_{a} and does not meet any other curves E_{i} .

For the proof, we refer to Miyanishi and Russell [3, Lemma 3.2]. In our case, it is clear that $u, v, \zeta \in k[[S, T]]^{\mathfrak{P}}$ and $k((u, v, \zeta)) = k((S^{p}, T^{p}, S/T^{h}))$. From Lemma 4.1(2), it follows that $\{T^{-\alpha p + \beta e}S^{\beta} \mid \alpha, \beta \in \mathbb{Z}, \beta > 0, -\alpha p + \beta e > 0\}$ is a k-basis of $k[[S, T]]^{\mathfrak{P}}$. It is then easy to verify that $\{T^{-\alpha p + \beta e}S^{\beta + np} \mid \alpha, \beta, n \in \mathbb{Z}, n > 0, 0 < \alpha < e, 0 < \beta < p, -\alpha p + \beta e > 0\}$ is a k-basis of $k[[S, T]]^{\mathfrak{P}}$. It is then easy to verify that $\{T^{-\alpha p + \beta e}S^{\beta + np} \mid \alpha, \beta, n \in \mathbb{Z}, n > 0, 0 < \alpha < e, 0 < \beta < p, -\alpha p + \beta e > 0\}$ is a k-basis of $k[[S, T]]^{\mathfrak{P}}/k[[S^{p}, T^{p}, T^{e}S]]$. Hence $\{T^{-\alpha p + \beta e}S^{\beta} \mid \alpha, \beta \in \mathbb{Z}, 0 < \alpha < e, 0 < \beta < p, -\alpha p + \beta e > 0\}$ is a k-basis. Since $T^{-\alpha p + \beta e}S^{\beta} = v^{-\alpha}\zeta^{\beta}$, we know $\mathscr{H}_{Q} = \bigoplus_{\alpha,\beta} \mathcal{C}_{Q,B}v^{-\alpha}\zeta^{\beta}$, where α and β range over all integers such that $0 < \alpha < e, 0 < \beta < p$, and $-\alpha p + \beta e > 0$. On the other hand, we have already shown that $\mathscr{H}|_{B^{0}} = \bigoplus_{\alpha,\beta} \mathcal{C}_{B^{0}}z^{-\alpha}\eta^{\beta}$, where α and β are the same as above and $B^{0} = B - \{Q \in B \mid \pi^{-1}(Q) \text{ is a singular point}\}$. Note that $z^{-\alpha}\eta^{\beta} = v^{-\alpha}\zeta^{\beta}u^{\alpha-\beta m}$. The transition functions of \mathscr{H} over $U_{\mathcal{Y}} \cap U_{\mathcal{X}}$ are $\{u^{\alpha-\beta m}\}$. By these observations we have the following: **THEOREM 4.2.** Suppose that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis II and $e \neq 1$. Set $\mathscr{H} = \bigoplus_{\alpha,\beta} \mathscr{C}_{\mathcal{B}}(\alpha - \beta m)$, where α and β range over all integers such that $0 < \alpha < e, 0 < \beta < p$, and $-\alpha p + \beta e > 0$. Then we have the following exact sequence on \mathbb{P}^2 :

$$0 \to \psi_* \mathcal{C}_{\mathfrak{X}} \to \pi_* \mathcal{C}_{\mathfrak{X}} \to \mathcal{H} \to 0.$$

COROLLARY 4.3. Suppose e = p - 1. Then we can write \mathcal{H} in the following way:

$$\mathcal{H} = \mathcal{C}_{\mathcal{B}}(1-2m) \oplus \mathcal{C}_{\mathcal{B}}(1-3m) \oplus \cdots \oplus \mathcal{C}_{\mathcal{B}}(1-(p-1)m)$$
$$\oplus \mathcal{C}_{\mathcal{B}}(2-3m) \oplus \cdots \oplus \mathcal{C}_{\mathcal{B}}(2-(p-1)m)$$
$$\ddots \vdots$$
$$\oplus \mathcal{C}_{\mathcal{B}}(p-2-(p-1)m).$$

Proof. Straightforward.

COROLLARY 4.4. With the same assumptions as in Corollary 4.3, we have

$$\chi(\mathcal{C}_{\mathfrak{Y}}) = (1/6)(p+2)(p^2 - 2p + 3) - (1/12) p(p-1)(4p+1)m + (1/12) p(p-1)(2p-1)m^2.$$

Proof. From the previous corollary, it follows that $\chi(\mathscr{H}) = (1/6)$ (p+3)(p-1)(p-2) - (1/3) p(p-1)(p-2)m. Therefore, by Remark 1.5.1, we have $\chi(\mathcal{C}_{\mathfrak{F}}) = (1/6)(p+2)(p^2-2p+3) - (1/12) p(p-1)(4p+1)m + (1/12) p(p-1)(2p-1)m^2$. Meanwhile, we know that \mathfrak{F} has only rational singularities. Hence $\chi(\mathcal{C}_{\mathfrak{F}}) = \chi(\mathcal{C}_{\mathfrak{F}})$. The assertion follows from these observation. Q.E.D.

Next, we shall determine the canonical divisor of \mathfrak{Y} .

LEMMA 4.5. The canonical divisor $K_{\tilde{\mathfrak{X}}}$ of $\tilde{\mathfrak{X}}$ is written as $K_{\tilde{\mathfrak{X}}} = \pi^*((-3 + m(p-1))B) - (p-1)(e-1)D$, where D is the set-theoretic inverse image of B by π and $\pi^*B = pD$.

In the proof of this lemma, we use the following:

LEMMA 4.6 (Miyanishi [2]). Let C be an étale Galois covering of $\mathbb{A}^1 =$ Spec k[t] defined by

$$\xi^{p}-\xi=c_{0}t^{n}+\cdots+c_{n-1}t,$$

where $c_0, ..., c_{n-1} \in k$, $c_0 \neq 0$, n > 0, and $c_i = 0$ whenever $i \equiv 0 \pmod{p}$. Then the genus of C is equal to (p-1)(n-1)/2.

Proof. See [2, Lemma 2.1].

Proof of Lemma 4.5. First, note that we can write the canonical divisor of \mathfrak{X} as

$$K_{\mathfrak{X}} = \pi^*((-3 + m(p-1))B) - rD,$$

where -rD is the contribution coming from the conductor ideal for the extension $\psi_* \mathcal{O}_{\mathfrak{X}} \subset \pi_* \mathcal{O}_{\mathfrak{X}}$. We have only to determine *r*. Let *L* be a general line on \mathbb{P}^2 . We may assume that π^*L is an irreducible curve contained in the nonsingular part of \mathfrak{X} . We claim that π^*L is nonsingular. Indeed, let $P \in L \cap B$ and suppose that *L* is defined by x = 0 near *P* after a change of coordinates. Recall that $(\pi_* \mathcal{O}_{\mathfrak{X}})_P = (\psi_* \mathcal{O}_{\mathfrak{X}})_P [\tau]$, where $\tau = \eta^b z^a$ with ap + be = 1. In particular, $(\mathcal{O}_{\mathfrak{X}, \tilde{P}})^{\wedge} = k[[\tau, x]]$ and $(\mathcal{O}_{\pi^*L, \tilde{P}})^{\wedge} = k[[\tau]]$, where $\tilde{P} = \pi^{-1}(P)$. This shows that π^*L is a nonsingular curve. Now, by applying Lemma 4.6, we have $g(\pi^*L) = (p-1)(d-1)/2$. Meanwhile, by the adjunction formula, we have

$$(p-1)(d-1) - 2 = (K_{\tilde{x}}, \pi^*L) + ((\pi^*L)^2)$$
$$= p(-3 + m(p-1)) - r(D, \pi^*L) + p.$$

Since d + e = mp, we have $r(D, \pi^*L) = (p-1)(e-1)$. On the other hand, the arguments given at the beginning of this section show that $\pi^*B = pD$. Hence $\pi_*D = B$ and $(D, \pi^*L) = 1$. This implies that r = (p-1)(e-1). Q.E.D.

We need some more notations to write down the canonical divisor of \mathfrak{Y} . Suppose that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis II and $e \neq 1$. Let \tilde{D} be the proper transform of D by ρ . Then \tilde{D} is a nonsingular rational curve. Let $\{Q_1, ..., Q_d\}$ exhaust all points of \mathbb{P}^2 whose inverse images by π are the singular points of \mathfrak{X} . By Lemma 4.1, $(\pi \circ \rho)^{-1}(Q_i)$ has the configuration shown in Fig. 1, where $E_{i,j}$ is a nonsingular rational curve whose self-intersection number is $-a_i, a_j$ being the same as given in Lemma 4.1. Set

and set

$$\delta^{j} = \det \begin{pmatrix} a_{1} & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & a_{j-1} \end{pmatrix}$$

for $1 < j \le q+1$ and $\delta^1 = 1$.

FIGURE 1

Note that $\delta_0 = \delta^{q+1} = p$, $\delta_{j-1} = a_j \delta_j - \delta_{j+1}$ for $1 \le j \le q-1$ and $\delta^{j+1} = a_j \delta^j - \delta^{j-1}$ for $2 \le j \le q$.

We are now ready to write down the canonical divisor of \mathfrak{Y} .

THEOREM 4.7. We retain the same notations and assumptions as above. Then we have

$$K_{\mathfrak{Y}} = N\widetilde{D} + \sum_{j=1}^{q} (\Delta_j + N\delta^j/p)(E_{1,j} + \cdots + E_{d,j}),$$

where N = (-3 + m(p-1)) p - (p-1)(e-1) and $\Delta_j = (1/p)(\delta_j + \delta^j) - 1$ for $1 \le j \le q$.

Proof. Note that $(\pi \circ \rho)^{-1}(Q_i)$ and $(\pi \circ \rho)^{-1}(Q_i)$ are disjoint from each other if $i \neq j$. Hence we have only to describe $K_{\mathfrak{Y}}$ near $(\pi \circ \rho)^{-1}(Q_i)$ for every $1 \leq i \leq d$. Near $(\pi \circ \rho)^{-1}Q_i$, the canonical divisor is written as $K_{\mathfrak{Y}} = N\tilde{D} + n_1 E_{i,1} + \cdots + n_q E_{i,q}$ with $n_j \in \mathbb{Z}$. By applying the adjunction formula for the curves $E_{i,j}$, we have

$$a_1(n_1 + 1) - (n_2 + 1) = 1$$

- (n_1 + 1) + a_2(n_2 + 1) - (n_3 + 1) = 0
:
$$\vdots$$

- (n_{n_2-1} + 1) + a_n(n_n + 1) = N + 1

We can solve these equations in terms of δ_j and δ^j to obtain $n_j + 1 = (1/p)(\delta_j + \delta^j(N+1)), \ 1 \le j \le q$. We have thus the stated formula for $K_{\mathfrak{P}}$. Q.E.D.

It is easy to verify that $(\tilde{D}^2) = -\delta^q m + (1 + \delta^q e)/p$. Furthermore, we have the following corollaries which are immediate consequences of the above theorem.

COROLLARY 4.8. We have

$$(K_{\mathfrak{Y}}^2) = (1/p) [N^2 - (mp - e) \{\delta_1 + \delta_q + 2 - 2p + (a_1 + \dots + a_q) p - 2pq\}],$$

where $N^2 = \{(e+2)p - (e-1)\}^2 - 2(p-1)p\{(e+2)p - (e-1)\}m + p^2(p-1)^2m^2$.

COROLLARY 4.9. If e = p - 1, then we have

$$K_{\mathfrak{Y}} = (mp(p-1) - p^2 - 2)\tilde{D} + (m(p-1) - p - 1)(E_{1,1} + \dots + E_{d,1}),$$

where $(\tilde{D}^2) = -m + 1$ and $((E_{i,1})^2) = -p$. Moreover,

$$(K_{\mathfrak{Y}}^2) = p^3 + p^2 - p + 8 - (2p - 1) p^2 m + p(p - 1)^2 m^2.$$

We have the following topological datum of \mathfrak{Y} :

PROPOSITION 4.10. Suppose that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis II. If $d = mp - e \ge 0$ with e fixed, i.e., $m \ge 0$, then we have $b_1(\mathfrak{Y}) = 0$, where $b_1(\mathfrak{Y})$ $(= \operatorname{rank} H^{-1}_{e_1}(\mathfrak{Y}, \mathbb{Q}_l)$ with a prime $l \ne p$) is the first Betti number of \mathfrak{Y} .

Proof. It is sufficient to show that the Albanese variety Alb(\mathfrak{Y}) has dimension zero. Consider the Albanese map $\gamma: \mathfrak{Y} \to Alb(\mathfrak{Y})$ and take the Stein factorization $\gamma = v \circ \mu: \mathfrak{Y} \xrightarrow{\mu} \mathfrak{Y} \xrightarrow{\nu} Alb(\mathfrak{Y})$, where \mathfrak{Y} is normal. Note that $K_{\mathfrak{Y}}$ is connected and effective if $m \ge 0$ (cf. Theorem 4.7). Suppose that dim $\mathfrak{Y} = 2$. Then μ is a birational morphism. Since every irreducible component of $K_{\mathfrak{Y}}$ is a rational curve and v is a finite morphism, $K_{\mathfrak{Y}}$ is contracted to a point by μ . Hence $(K_{\mathfrak{Y}}^2) < 0$. On the other hand, we know that $(K_{\mathfrak{Y}}^2) > 0$ for $m \ge 0$ by Corollary 4.8. Hence, if $m \ge 0$, this case cannot occur. Next, suppose dim $\mathfrak{Y} = 1$. Then μ is a fibration such that $K_{\mathfrak{Y}}$ is contained in a fibre of μ . Hence $(K_{\mathfrak{Y}}^2) \le 0$ and this case cannot occur, either, if $m \ge 0$. So, dim Alb $(\mathfrak{Y}) = 0$ and $b_1(\mathfrak{Y}) = 0$ if $m \ge 0$. Q.E.D.

We know that $H^{1}(\mathfrak{Y}, \mathscr{C}_{\mathfrak{Y}}) = 0$ for e = 0 (resp. e = 1) if \mathfrak{X} satisfies Hypothesis I (resp. II). Hence, in these cases, we have $b_{1}(\mathfrak{Y}) = 0$ as well. From this and Proposition 4.10, it follows that the first Betti number of \mathfrak{Y} is zero provided f(s, t) is general and $d = \deg f(s, t) \ge 0$.

We shall give some examples.

EXAMPLE 4.11. Suppose that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis II and d=1 (i.e., m=1 and e=p-1). By Theorems 4.2 and 4.7, we have $\chi(\mathcal{C}_{\mathfrak{Y}})=1, K_{\mathfrak{Y}}=-(p+2)\tilde{D}-2E, (E^2)=-p$, and $(K_{\mathfrak{Y}}^2)=8$. We know that \mathfrak{Y} is the Hirzebruch surface of degree p with the minimal section E.

EXAMPLE 4.12. Assume char k = 3. Suppose that \mathfrak{X} satisfies Hypothesis II and d=4 (i.e., m=2 and e=2). Then we have $\chi(\mathcal{C}_{\mathfrak{Y}})=2$, $K_{\mathfrak{Y}}=\tilde{D}$, and $(K_{\mathfrak{Y}}^2)=-1$. Let $\theta:\mathfrak{Y} \to \mathfrak{Z}$ be the contraction of \tilde{D} . Then \mathfrak{Z} is a K3-surface.

5. Irregularity of \mathfrak{Y} in the Case of e = p - 1

In this section, we assume that p > 2. We shall prove

THEOREM 5.1. Suppose that $\varphi: \mathfrak{X} \to \mathbb{A}^2$ satisfies Hypothesis II and e = p - 1. Then we have $H^1(\mathfrak{Y}, \mathcal{C}_m) = 0$ for $m \ge p - 1$.

Our proof of this theorem consists of three steps.

STEP I. CLAIM. It is sufficient to show that

$$H^{1}(\mathbb{P}^{2}, \pi_{*}\ell_{\mathfrak{T}} \otimes \ell_{\mathbb{P}^{2}}(m(p-1)-p-1)) = 0 \quad for \quad m \ge p-1.$$

Proof of Claim. Note that $K_{\mathfrak{Y}} - (p-2)\tilde{D} = (\pi - \rho)^* ((m(p-1) - p-1)B)$ by Corollary 4.9. Hence we have the exact sequence

$$0 \to (\pi \cdot \rho)^* \, \mathcal{C}_{\mathbb{P}^2}(m(p-1) - p - 1) \to \omega_{\mathfrak{Y}} \to \mathcal{C}_{(p-2)\tilde{D}} \otimes \omega_{\mathfrak{Y}} \to 0. \tag{(*)}$$

On the other hand, it is easy to verify that $(K_{\mathfrak{Y}}, \tilde{D}) = m - 3$. So, we have the exact sequences

$$\begin{array}{ccc} & \mathcal{C}_{\bar{D}}(m-3) \\ & & \parallel \\ 0 \longrightarrow \mathcal{C}_{\bar{D}}(2m-4) \longrightarrow \mathcal{C}_{2\bar{D}} \otimes \varpi_{\mathfrak{Y}} \longrightarrow \mathcal{C}_{\bar{D}} \otimes \varpi_{\mathfrak{Y}} \longrightarrow 0 \\ & \vdots & \vdots & \vdots \\ 0 \rightarrow \mathcal{C}_{\bar{D}}((p-2)m-p) \rightarrow \mathcal{C}_{(p-2)\bar{D}} \otimes \varpi_{\mathfrak{Y}} \rightarrow \mathcal{C}_{(p-3)\bar{D}} \otimes \varpi_{\mathfrak{Y}} \rightarrow 0. \end{array}$$

By taking the cohomology groups, we have $H^1(\mathfrak{Y})$, $\mathcal{C}_{(p-2)\tilde{D}} \otimes \omega_{\mathfrak{Y}}) = 0$ whenever m > 1. Therefore, for m > 1, the cohomology exact sequence associated with (*) gives exact sequences

$$H^{1}(\mathfrak{Y}, (\pi \circ \rho)^{*} \mathcal{C}_{\mathbb{P}^{2}}(m(p-1)-p-1)) \to H^{1}(\mathfrak{Y}, \omega_{\mathfrak{Y}}) \to 0,$$

$$0 \to H^{2}(\mathfrak{Y}, (\pi \circ \rho)^{*} \mathcal{C}_{\mathbb{P}^{2}}(m(p-1)-p-1)) \to H^{2}(\mathfrak{Y}, \omega_{\mathfrak{Y}}) \to 0.$$

So, if we know that $H^1(\mathfrak{Y}), (\pi \circ \rho)^* \mathscr{C}_{\mathbb{P}^2}(m(p-1)-p-1)) = 0$, then our theorem is verified by virtue of the Serre duality. Meanwhile, since π is a finite morphism and ρ is a resolution of rational singularities, we know that $H^i(\mathfrak{Y}), (\pi \circ \rho)^* \mathscr{C}_{\mathbb{P}^2}(m(p-1)-p-1)) = H^i(\mathbb{P}^2, \pi_* \mathscr{C}_{\mathfrak{X}} \otimes \mathscr{C}_{\mathbb{P}^2}(m(p-1)-p-1))$. Our claim will follow from these observations. Q.E.D.

In the above proof, we have also proved that

$$\dim_k H^2(\mathbb{P}^2, \pi_*\mathcal{O}_{\mathfrak{X}} \otimes \mathcal{O}_{\mathbb{P}^2}(m(p-1)-p-1)) = 1 \qquad \text{for} \quad m > 1.$$

For the sake of simplicity, we shall denote $C_{\omega^2}(m(p-1)-p-1)$ by \mathcal{M} .

STEP II. CLAIM. We have:

- (1) $\dim_k H^1(\mathbb{P}^2, \psi_*\mathcal{O}_{\mathfrak{X}}\otimes \mathcal{M}) = 0.$
- (2) $\dim_k H^2(\mathbb{P}^2, \psi_* \mathcal{O}_{\mathfrak{X}} \otimes \mathcal{M}) = p(p-1)/2$ if $m \ge p-1$.

Proof of Claim. By Remark 1.5.1, there are the following exact sequences on \mathbb{P}^2 :

$$\begin{array}{c} \mathcal{M} \\ \| \\ 0 \longrightarrow \mathcal{F}_0 \otimes \mathcal{M} \longrightarrow \mathcal{F}_1 \otimes \mathcal{M} \longrightarrow \mathcal{C}_{\mathbb{P}^2}(m(p-2)-p-1) \longrightarrow 0 \\ \vdots & \vdots & \vdots \\ 0 \longrightarrow \mathcal{F}_{p-2} \otimes \mathcal{M} \longrightarrow \mathcal{F}_{p-1} \otimes \mathcal{M} \longrightarrow \mathcal{C}_{\mathbb{P}^2}(-p-1) \longrightarrow 0. \\ \| \\ \psi_* \mathcal{C}_{\mathfrak{X}} \otimes \mathcal{M} \end{array}$$

By taking the cohomology groups, we have $\dim_k H^1(\mathbb{P}^2, \psi_* \mathcal{C}_{\bar{\mathfrak{X}}} \otimes \mathscr{M}) = 0$. Moreover, $\dim_k H^2(\mathbb{P}^2, \psi_* \mathcal{C}_{\bar{\mathfrak{X}}} \otimes \mathscr{M}) = \dim_k H^2(\mathbb{P}^2, \mathcal{C}_{\oplus 2}(-p-1)) = p(p-1)/2$ for $m \ge p-1$. Q.E.D.

STEP III. We consider the exact sequence

$$0 \to \psi_* \mathcal{C}_{\mathfrak{X}} \otimes \mathcal{M} \to \pi_* \mathcal{C}_{\mathfrak{X}} \otimes \mathcal{M} \to \mathcal{H} \otimes \mathcal{M} \to 0. \tag{(**)}$$

Since

$$\mathcal{H} \otimes \mathcal{M} = \mathcal{C}_{B}(m(p-3)-p) \oplus \mathcal{C}_{B}(m(p-4)-p) \qquad \oplus \cdots \oplus \mathcal{C}_{B}(-p)$$
$$\oplus \mathcal{C}_{B}(m(p-4)-p+1) \oplus \cdots \oplus \mathcal{C}_{B}(-p+1)$$
$$\vdots$$
$$\oplus \mathcal{C}_{B}(-3),$$

we have dim $H^1(B, \mathscr{H} \otimes \mathscr{M}) = \dim H^1(B, \mathscr{C}_B(-p)) + \dots + \dim H^1(B, \mathscr{C}_B(-3))$

= p(p-1)/2 - 1 if $m \ge p-1$. By taking the cohomology exact sequence associated with (**), we have an exact sequence

$$H^{1}(\mathbb{P}^{2}, \psi_{*}\mathcal{C}_{\mathfrak{X}} \otimes \mathscr{M}) \to H^{1}(\mathbb{P}^{2}, \pi_{*}\mathcal{C}_{\mathfrak{X}} \otimes \mathscr{M}) \to H^{1}(B, \mathscr{H} \otimes \mathscr{M})$$
$$\to H^{2}(\mathbb{P}^{2}, \psi_{*}\mathcal{C}_{\mathfrak{X}} \otimes \mathscr{M}) \to H^{2}(\mathbb{P}^{2}, \pi_{*}\mathcal{C}_{\mathfrak{X}} \otimes \mathscr{M}) \to 0.$$

We already know that dim $H^2(\mathbb{P}^2, \pi_*\mathcal{C}_{\bar{\mathfrak{X}}}\mathcal{M}) = 1$, $H^1(\mathbb{P}^2, \psi_*\mathcal{C}_{\bar{\mathfrak{X}}}\otimes \mathcal{M}) = 0$, and dim $H^2(\mathbb{P}^2, \psi_*\mathcal{C}_{\bar{\mathfrak{X}}}\otimes \mathcal{M}) = p(p-1)/2$ if $m \ge p-1$. Hence it follows that dim $H^1(\mathbb{P}^2, \pi_*\mathcal{C}_{\bar{\mathfrak{X}}}\otimes \mathcal{M}) = 0$ if $m \ge p-1$. The proof of our theorem is now completed.

Acknowledgments

The author expresses his sincere gratitude to Professors M. Miyanishi, S. Tsunoda, and K. Nishiguchi for their useful advice.

References

- T. KAMBAYASHI AND V. SRINIVAS, On étale coverings of the affine space, *in* "Algebraic Geometry-Proceedings of the Third Midwest Algebraic Geometry Conference," pp. 75–82, Lecture Notes in Mathematics, Vol. 1008, Springer-Verlag, Berlin/Heidelberg/New York/ Tokyo, 1983.
- 2. M. MIYANISHI, p-Cyclic coverings of the affine space, J. Algebra 63 (1980), 279 284.
- M. MIYANISHI AND P. RUSSELL, Purely inseparable coverings of exponent one of the affine plane, J. Pure Appl. Algebra 28 (1983), 279–317.
- 4. Y. TAKEDA, Artin-Schreier coverings of algebraic surfaces, J. Math. Soc. Japan 41 (1989), 415-435.