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1. Introduction

The matrices of walks between vertices are useful to analyse the structure of networks (see, e.g., [1] and

the references therein). These matrices are the powers of the adjacency matrix. In this paper, we consider the

matrices of spanning rooted forests as an alternative tool for analyzing networks (cf. [2]). We show how they can

be used for measuring vertex proximity (Section 4) and for ranking on the base of preference relations / sports

competitions (Section 5). In the first sections of the paper, we introduce the necessary notation (Section 2) and list

some properties of spanning rooted forests and forest matrices (Section 3).

Three features that distinguish the matrices of forests from the matrices of walks are notable. First, all column

sums (or row sums) of the forest matrices are the same, therefore, these matrices can be considered as matrices

of relative accessibility. Second, there are matrices of “out-forests” and matrices of “in-forests”, enabling one to

distinguish “out-accessibility” from “in-accessibility”, which is intuitively justifiable. Third, the total weights of

maximum spanning forests are closely related to the Cesáro limiting probabilities of Markov chains determined

by the network under consideration.

2. Notation and simple facts

2.1. Networks, components, and bases
Suppose that Γ is a weighted digraph (= network) without loops, V(Γ) = {1, . . . , n}, n > 1, is its set of vertices

and E(Γ) the set of arcs. Let W = (wi j) be the matrix of arc weights. Its entry wi j is zero if there is no arc from
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vertex i to vertex j in Γ; otherwise wi j is strictly positive. In what follows, Γ is fixed, unless otherwise specified. If

Γ′ is a subgraph of Γ, then the weight of Γ′, w(Γ′), is the product of the weights of all its arcs; if E(Γ′) = ∅, then

w(Γ′) = 1 by definition. The weight of a nonempty set of digraphs G is

w(G) =
∑

H∈G
w(H); w(∅) = 0. (1)

A spanning subgraph of Γ is a subgraph with vertex set V(Γ). The indegree id(v) and outdegree od(v) of a

vertex v are the number of arcs that come in v and out of v, respectively. A vertex v is called a source if id(v) = 0.

A vertex v is isolated if id(v) = od(v) = 0. A walk (semiwalk) is an alternating sequence of vertices and arcs v0, e1,
v1, . . . , ek, vk with every arc ei being (vi−1, vi) (resp., either (vi−1, vi) or (vi, vi−1)). A path is a walk with distinct

vertices. A circuit is a walk with v0 = vk, the other vertices being distinct and different from v0. Vertex v is
reachable from vertex z in Γ if v = z or Γ contains a path from z to v.

A digraph is strongly connected (or strong) if all of its vertices are mutually reachable and weakly connected
if any two different vertices are connected by a semiwalk. Any maximal strongly connected (weakly connected)

subgraph of Γ is a strong component, or a bicomponent (resp., a weak component) of Γ. Let Γ1, . . . ,Γr be all the

strong components of Γ. The condensation (or factorgraph, or leaf composition, or Hertz graph) Γ◦ of digraph

Γ is the digraph with vertex set {Γ1, . . . ,Γr}, where arc (Γi, Γ j) belongs to E(Γ◦) iff E(Γ) contains at least one arc

from a vertex of Γi to a vertex of Γ j. The condensation of any digraph Γ obviously contains no circuits.

A vertex basis of a digraph Γ is any minimal (by inclusion) collection of vertices such that every vertex of

Γ is reachable from at least one vertex of the collection. If a digraph does not contain circuits, then its vertex

basis is obviously unique and coincides with the set of all sources [3, 4]. That is why the bicomponents of Γ that

correspond to the sources of Γ◦ are called the basic bicomponents [4] or source bicomponents of Γ. In this paper,

the term source knot of Γ will stand for the set of vertices of any source bicomponent of Γ. In [5], source knots are

called W-bases.

The following statement [3, 4] characterizes all the vertex bases of a digraph.

Proposition 1. A set U ⊆ V(Γ) is a vertex basis of Γ if and only if U contains exactly one vertex from each source
knot of Γ and no other vertices.

Schwartz [6] referred to the source knots of a digraph as the minimum P-undominated sets. According to his

Generalized Optimal Choice Axiom (GOCHA), if a digraph represents a preference relation on a set of alternatives,

then the choice should be the union of its minimum P-undominated sets.1 This choice is interpreted as the set of

“best” alternatives. A review of choice rules of this kind can be found in [7]; for “fuzzy” extensions, see [8].

2.2. Matrices of forests
A diverging tree is a weakly connected digraph in which one vertex (called the root) has indegree zero and

the remaining vertices have indegree one. A diverging tree is said to diverge from its root. Spanning diverging

trees are sometimes called out-arborescences. A diverging forest (or diverging branching) is a digraph all of

whose weak components are diverging trees. The roots of these trees are called the roots of the diverging forest.

A converging tree (converging forest) is a digraph that can be obtained from a diverging tree (resp., diverging

forest) by the reversal of all arcs. The roots of a converging forest are its vertices that have outdegree zero. In

what follows, spanning diverging forests in Γ will be called out-forests of Γ; spanning converging forests in Γ will

be called in-forests of Γ.

Definition 1. An out-forest F of a digraph Γ is called a maximum out-forest of Γ if Γ has no out-forest with a

greater number of arcs than in F.

It is easily seen that every maximum out-forest of Γ has the minimum possible number of diverging trees; this

number will be called the out-forest dimension of Γ and denoted by d′. It can be easily shown that the number of

arcs in any maximum out-forest is n − d′; in general, the number of weak components in a forest with k arcs is

n − k.

1This union is also called the top cycle and the strong basis of Γ.
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By F ∗→(Γ) = F ∗→ and F ∗→k (Γ) = F ∗→k we denote the set of all out-forests of Γ and the set of all out-forests

of Γ with k arcs, respectively; F i∗→ j
k will designate the set of all out-forests with k arcs where j belongs to a tree

diverging from i; F i∗→ j =
⋃n−d′

k=0 F
i∗→ j

k is the set of such out-forests with all possible numbers of arcs. The notation

like F ∗→(k) will be used for sets of out-forests that consist of k trees, so F ∗→(k) = F
∗→
n−k, k = 1, . . . , n. Thus, the ∗→

sign relates to out-forests; the corresponding notation with→∗ , such as F→∗, relates to in-forests, i.e., ∗ images

the root(s).

Let

σk = w(F ∗→k ), k = 0, 1, . . . ; σ = w(F ∗→) =

n−d′∑

k=0

σk . (2)

By (2) and (1), σk = 0 whenever k > n − d′; σ0 = 1.
We also introduce the parametric value

σ(τ) =

n−d′∑

k=0

w(F ∗→k ) τk =

n−d′∑

k=0

σk τ
k, τ > 0, (3)

which is the total weight of out-forests in Γ provided that all arc weights are multiplied by τ.
Consider the matrices Qk = (qk

i j), k = 0, 1, . . . , of out-forests of Γ with k arcs: the entries of Qk are

qk
i j = w(F i∗→ j

k ). (4)

By (4) and (1), Qk = 0 whenever k > n − d′; Q0 = I.
The matrix of all out-forests is

Q = (qi j) =

n−d′∑

k=0

Qk with entries qi j = w(F i∗→ j). (5)

We will also consider the stochastic matrices of out-forests:

Jk = σ
−1
k Qk, k = 0, . . . , n − d′; J = (Ji j) = σ

−1Q (6)

and the parametric matrices

Q(τ) =

n−d′∑

k=0

Qk τ
k and J(τ) = σ−1(τ) Q(τ), τ > 0, (7)

where σk, σ, and σ(τ) are defined by (2) and (3).

The stochastic matrix of maximum out-forests Jn−d′ will also be denoted by J̃ = (J̃i j):

J̃ = Jn−d′ . (8)

The matrices of forests can be found by means of matrix analysis [9, Section 5].

3. Properties of the forest matrices

A number of results on the forest matrices are presented in [9]. Some of them are collected in the following

theorem.

Theorem 1. [9]. 1. Matrices Jk, k = 0, . . . , n − d′, J, and J(τ) are column stochastic.
2. For any τ > 0, Q(τ) = adj(I + τL) and σ(τ) = det(I + τL) hold, whence, J(τ) = (I + τL)−1.
3. LJ̃ = J̃L = 0.
4. J̃ is idempotent: J̃2 = J̃.
5. J̃ = limτ→∞ J(τ) = limτ→∞(I + τ L)−1.
6. rank J̃ = d′; rank L = n − d′.
7. Qk =

∑k
i=0 σk−i(−L)i, k = 0, 1, . . . .

8. J̃ is the eigenprojection of L.
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Item 2 of Theorem 1 is a parametric version of the matrix-forest theorem [10].

To formulate the topological properties of the matrix J̃, the following notation is needed.

Let K̃ =
⋃

i Ki, where Ki are all the source knots of Γ; let K+i be the set of all vertices reachable from Ki and

unreachable from the other source knots. For any k ∈ K̃, K(k) will designate the source knot that contains k. For

any source knot K of Γ, denote by ΓK the restriction of Γ to K and by Γ−K the subgraph with vertex set V(Γ) and

arc set E(Γ) \ E(ΓK). For a fixed K, T will designate the set of all spanning diverging trees of ΓK , and P the set of

all maximum out-forests of Γ−K . By T k, k ∈ K, we denote the subset of T consisting of all trees that diverge from

k, and by PK∗→ j, j ∈ V(Γ), the set of all maximum out-forests of Γ−K such that j is reachable from some vertex

that belongs to K in these forests. J̃k• is the kth row of J̃.

Theorem 2. [11]. Let K be a source knot in Γ. Then the following statements hold.
1. J̃i j � 0 ⇔ (i ∈ K̃ and j is reachable from i in Γ).
2. Let k ∈ K.For any j ∈ V(Γ), J̃k j = w(T k)w(PK∗→ j)/w(F ∗→(d′) ).Furthermore, if j ∈ K+, then J̃k j = J̃kk = w(T k)/
w(T ).
3.
∑

k∈K
J̃kk = 1. In particular, if k is a source, then J̃kk = 1.

4. For any k
1, k2 ∈ K, J̃k

2
• = (w(T k

2 )/w(T k
1 ))J̃k

1
• holds, i.e., the rows k1 and k2 of J̃ are proportional.

We say that a weighted digraph Γ and a finite homogeneous Markov chain with transition probability matrix

P inversely correspond to each other if

I − P = α LT, (9)

where α is any nonzero real number.

If a Markov chain inversely corresponds to Γ, then the probability of transition from j to i � j is proportional

to the weight of arc (i, j) in Γ and is 0 if E(Γ) does not contain (i, j).We consider such an inverse correspondence

in order to model preference digraphs in Section 5: in this case, the transitions in the Markov chain are performed

from “worse” objects to “better” ones, so the Markov chain stochastically “searches the leaders.”

Theorem 3. For any finite Markov chain, its matrix of Cesáro limiting probabilities coincides with the matrix J̃
of any digraph inversely corresponding to this Markov chain.

Theorem 3 follows from the Markov chain tree theorem first proved by Wentzell and Freidlin [12] and redis-

covered in [13, 14], which, in turn, can be immediately proved using item 8 of Theorem 1 and a result of [15]

(see [9]). Another proof of Theorem 3 can be found in [16]. A review on forest representations of Markov chain

probabilities is given in [17]. For an interpretation of J(τ) in terms of Markov chains we refer to [18].

4. Forest based accessibility measures

Formally, by an accessibility measure for digraph vertices we mean any function that assigns a matrix P =
(pi j)n×n to every weighted digraph Γ,where n = |V(Γ)| . Entry pi j is interpreted as the accessibility (or connectivity,

relatedness, proximity, etc.) of j from i.
Consider the accessibility measures Pout

τ = J(τ), where J(τ) is defined by (7), and Pin
τ = (pin

i j ) with pin
i j =

w(F i→∗j(τ))/w(F→∗(τ)), where F i→∗j(τ) and F→∗(τ) are, respectively, the F i→∗j and F→∗ for the digraph Γ(τ)
obtained from Γ by the multiplication of all arc weights by τ. Parameter τ specifies the relative weight of short and

long ties in Γ.

Definition 2. Accessibility measures P(1) and P(2) are dual if for every Γ and every i, j ∈ V(Γ), p(1)
i j (Γ) = p(2)

ji (Γ′),
where Γ′ is obtained from Γ by the reversal of all arcs (preserving their weights).

The following proposition results from the fact that the reversal of all arcs in Γ transforms all out-forests into

in-forests and vice versa.

Proposition 2. For every τ > 0, the measures Pout
τ and Pin

τ are dual.
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What is the difference in interpretation between Pout
τ and Pin

τ ? A partial answer is as follows. Pout
τ can be

interpreted as the relative weight of i→ j connections among the out-connections of i, whereas Pin
τ is the relative

weight of i → j connections among the in-connections of j. Naturally, these relative weights need not coincide.

For example, a connection between an average man and a celebrity is usually more important for the average

man. This example demonstrates that self-duality is not an imperative requirement to accessibility measures. The

properties of several self-dual measures have been studied in [19].

The following conditions some of which were proposed in [19] can be considered as desirable properties of

vertex accessibility measures.

Nonnegativity. pi j ≥ 0, i, j ∈ V(Γ).

Reachability condition. For any i, j ∈ V(Γ), (pi j = 0⇔ j is unreachable from i).

Self-accessibility condition.For any distinct i, j ∈ V(Γ), (A) pii > pi j and (B) pii > pji hold.

Triangle inequalities for proximities. For any i, k, t ∈ V(Γ), (A) pki −pti ≤ pkk −ptk and (B) pik −pit ≤ pkk −pkt
hold.

The triangle inequalities for proximities is a counterpart of the ordinary triangle inequality which characterizes

distances (cf. [20]).

Let k, i, t ∈ V(Γ). We say that k mediates between i and t if Γ contains a path from i to t, i � k � t, and every

path from i to t includes k.

Transit property. If k mediates between i and t, then (A) pik > pit and (B) pkt > pit .

Monotonicity. Suppose that the weight wkt of some arc (k, t) is increased or a new (k, t) arc is added to Γ, and

Δpi j, i, j ∈ V(Γ), are the resulting increments of the accessibilities. Then:

(1) Δpkt > 0;

(2) If t mediates between k and i, then Δpki > Δpti; if k mediates between i and t then Δpit > Δpik;

(3) (A) If t mediates between k and i, then Δpkt > Δpki;

(B) If k mediates between i and t, then Δpkt > Δpit.

Convexity. (A) If pki > pti and i � k, then there exists a k to i path such that the difference pk j −pt j strictly

decreases as j advances from k to i along this path. (B) If pik > pit and i � k, then there exists an i to k path such

that the difference pjk −pjt strictly increases as j advances from i to k along this path.

The results of testing Pout
τ and Pin

τ are collected in

Theorem 4. The measures Pout
τ and Pin

τ satisfy all the above conditions not partitioned into (A) and (B). Further-
more, Pout

τ obeys all (A) conditions and Pin
τ all (B) conditions.

Consider now the accessibility measures P̃out = (pi j) = J̃ = limτ→∞ Pout
τ and P̃in = limτ→∞ Pin

τ . Having in

mind Theorem 3, we call J̃i j the limiting out-accessibility of j from i.
Let us say that a condition is satisfied in the nonstrict form if it is not generally satisfied, but it becomes true

after the substitution of ≥ for >, ≤ for < and “nonstrictly” for “strictly” in the conclusion of this condition.

Similarly to Proposition 2 we have

Proposition 3. The accessibility measures P̃out and P̃in are dual.

The results of testing P̃out and P̃in are collected in

Theorem 5. The accessibility measures P̃out and P̃in satisfy nonnegativity and the “⇐” part of reachability
condition, but they violate the “⇒” part of reachability condition. Moreover, P̃out satisfies, in the nonstrict form,
items (A) of self-accessibility condition, transit property, monotonicity, and convexity, whereas P̃in satisfies in
the nonstrict form items (B) of these conditions. P̃out satisfies (A) and P̃in satisfies (B) of triangle inequality for
proximities.

By virtue of Theorem 5, the limiting accessibility measures only “marginally” correspond to the conception

of accessibility that underlies the above conditions.
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Proof. The nonstrict satisfaction of the conditions listed in the theorem follows from Theorem 4, Proposition 3 and

item 5 of Theorem 1. To prove that the strict forms of these conditions and the “⇒” part of reachability condition

are violated, it suffices to consider the digraph Γ with n ≥ 3, E(Γ) = {(1, 2), (2, 3)}, and w12 = w23 = 1.

Let us mention one more class of accessibility measures: those of the form (I + α J̃)−1, 0 < α < σ
(d′) /σ(d′+1)

.

These measures are “intermediate” between Pout
τ and P̃out, because they are positive linear combination of J

(d′)
and J

(d′+1)
[18]. That is why we termed them the matrices of dense out-forests. In the terminology of [21, p. 152],

(I + α J̃)−1 with various sufficiently small α > 0 make up a class of nonnegative nonsingular commuting weak
inverses for L. These measures and the dual measures have been studied in [18] (see also [9, p. 270–271]). Other

interesting related topics are the forest distances [22] and the forest based centrality measures [10].

5. Rooted forests and the problem of leaders

Ranking from tournaments or irregular pairwise contests is an old, but still intriguing problem. Its statisti-

cal version is ranking objects on the basis of paired comparisons [23]. Analogous problems of the analysis of

individual and collective preferences arise in the contexts of policy, economics, management science, sociology,

psychology, etc. Hundreds of methods have been proposed for handling these problems (for a review, see, e.g.,

[23, 24, 25, 26, 27, 28, 29, 30, 31]).

In this section, we consider a weighted digraph Γ that represents a competition (which need not be a round

robin tournament, i.e., can be “incomplete”) with weighted pairwise results. The digraph can also represent an

arbitrary weighted preference relation. The result we present below can be easily extended to multidigraphs.

One of the popular exquisite methods for assigning scores to the participants in a tournament was indepen-

dently proposed by Daniels [32], Moon and Pullman [33, 34], and Ushakov [35, 36] and reduces to finding nonzero

and nonnegative solutions to the system of equations

Lx = 0. (10)

Entry xi of a solution vector x = (x1, . . . , xn) is considered as a sophisticated “score” attached to vertex i. This

method was multiply rediscovered with different motivations (some references are given in [28]). As Berman [37]

noticed (although, in other contexts, similar results had been obtained by Maxwell [38] and other writers, see [39]),

if a digraph is strong, then the general solution to (10) is provided by the vectors proportional to t = (t1, . . . , tn)T,
where t j is the weight of the set of spanning trees (out-arborescences) diverging from j. This fact can be easily

proved as follows. By the matrix-tree theorem for digraphs (see, e.g., [3]), t j is the cofactor of any entry in the jth
column of L. Then for every i ∈ V(Γ),

∑n
j=1 �i j t j = det L (the row expansion of det L) and, since det L = 0, t is a

solution to (10). As rank L = n − 1 (since the cofactors of L are nonzero), any solution to (10) is proportional to t.
Berman [37] and Berman and Liu [40] asserted that this result is sufficient to rank the players in an arbitrary

competition, since the strong components of the corresponding digraph supposedly “can be ranked such that

every player in a component of higher rank defeats every player in a component of lower rank. Now by ranking

the players in each component we obtain a ranking of all the players.” While the statement about the existence of

a natural order of the strong components is correct in the case of round-robin tournaments, it need not be true for

arbitrary digraphs that may have, for instance, several source knots. That is why, the solution devised for strong

digraphs does not enable one to rank the vertices of an arbitrary digraph.

Let us consider the problem of interpreting, in terms of forests, the general solution to (10) and the problem of

choosing a particular solution that could serve as a reasonable score vector in the case of arbitrary digraph Γ.

If Γ contains more than one source knot, there is no spanning diverging tree in Γ. Recall that K1, . . . ,Kd′ are

the source knots of Γ, where d′ is the out-forest dimension of Γ, and K̃ =
⋃d′

s=1 Ks.

Suppose, without loss of generality, that the vertices of Γ are numbered as follows. The smallest numbers are

attached to the vertices in K1, the following numbers to the vertices in K2, etc., and the largest numbers to the

vertices in V(Γ) \ K̃. Such a numeration we call standard.

Theorem 6. Any column of J̃ is a solution to (10). Suppose that the numeration of vertices is standard and
j1 ∈ K1, . . . , jd′ ∈ Kd′ . Then the columns J̃• j

1
, . . . , J̃• jd′

of Γ make up an orthogonal basis in the space of solutions
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to (10) and J̃• js
= w−1(T s)

(
0, . . . , 0,w(T is +1

s ), . . . , w(T is +ks
s ), 0, . . . , 0

)T
, where {is +1, . . . , is +ks} = Ks and Ts is

the set of out-arborescences of Ks, s = 1, . . . , d′.

By virtue of Theorem 6, the general solution to (10) is the set of all linear combinations of partial solutions

that correspond to each source knot of Γ.

Proof. The first statement follows from LJ̃ = 0 (item 3 of Theorem 1). By item 6 of Theorem 1, rank J̃ = d′ and

rank L = n − d′. Hence, d′ is the dimension of the space of solutions to (10). Let js ∈ Ks, s = 1, . . . , d′. Then, by

items 1 and 2 of Theorem 2,

J̃• js = w−1(T s)
(
0, . . . , 0,w(T is +1

s ), . . . ,w(T is +ks
s ), 0, . . . , 0

)T
.

These d′ solutions to (10) are orthogonal and thus, linearly independent.

As a reasonable ultimate score vector, the arithmetic mean x = 1
n J̃ · (1, . . . , 1)T of the columns of J̃ can be

considered. A nice interpretation of this vector is given by

Corollary 1. (of Theorem 3). For any Markov chain inversely corresponding to Γ, x = 1
n J̃ · (1, . . . , 1)T is the

limiting state distribution, provided that the initial state distribution is uniform.

It can be mentioned, however, that the ranking method based on J̃ takes into account long paths in Γ only.

That is why, in any solutions to (10), the vertices that are not in the source knots are assigned zero scores, which

is questionable. The estimates based on the matrices Q(τ), instead of J̃, are free of this feature. On the other hand,

both methods violate the self-consistent monotonicity axiom [28], and so do the methods that count the walks
between vertices. This axiom is satisfied by the generalized Borda method [41, 42] that produces the score vectors

J′(τ) ·(od(1) − id(1), . . . , od(n) − id(n))T, where J′(τ) is the matrix J(τ) of the undirected graph corresponding to

Γ [43]. In our opinion, the latter method can be recommended as a well-grounded approach to scoring objects on

the base of arbitrary weighted preference relations, incomplete tournaments, irregular pairwise contests, etc.

A concluding remark: a communicatory interpretation of some forest matrices

In closing, let us mention an interpretation of forest matrices in terms of information dissemination. Consider

the following metaphorical model. First, a plan of information transmission along a digraph is chosen. Such a plan

is a diverging forest F ∈ F ∗→: the information is injected into the roots of F; then it ought to come to the other

vertices along the arcs of F. Suppose that wi j ∈]0, 1] is the probability of successful information transmission

along the (i, j) arc, i, j ∈ V(Γ), and that the transmission processes in different arcs are statistically independent.

Then w(F) is the probability that plan F is successfully realized. Suppose now that each plan is selected with the

same probability |F ∗→|−1 . Then Ji j (see (6)) is the probability that the information came to j from root i, provided

that the transmission was successful. As a result, if one knows that the information was corrupted at root i and the

transmission was successful, then Ji j is the probability that this corrupted information came to j.
Similarly, interpretations of this kind can be given to other stochastic forest matrices. This model is compatible

with that of centered partitions [44] and comparable with some models of [45].
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