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A B S T R A C T

In this paper, the Multi-objective Genetic Algorithm (MOGA) is used to obtain the Pareto frontiers of con-
flicting objective functions for the fuzzy-Proportional-Integral-Derivative (fuzzy-PID) controllers. The ball–
beam and inverted pendulum fourth order nonlinear systems are regarded as nonlinear benchmarks. The
considered objective functions for the ball–beam system are the distance error of the ball, the angle error
of the beam, and the control effort. For the inverted pendulum system, the objective functions are the
distance error of the cart, the angle error of the pendulum, and the control effort, which must be mini-
mized simultaneously. The Pareto fronts are compared with those obtained by Multi-objective Particle
SwarmOptimization (MOPSO). Four points are chosen from nondominated solutions of the obtained Pareto
fronts based on the three conflicting objective functions and used for illustration of the state variables
of the controlled systems. Obtained results elucidate the efficiency of the proposed controller in order
to control nonlinear systems.

© 2016, Karabuk University. Publishing services by Elsevier B.V.

1. Introduction

Zadeh originally proposed the fuzzy logic and the fuzzy set theory
[1,2]. Fuzzy systems are knowledge-based or rule-based systems
formed via human knowledge and heuristics. They have been applied
for a wide range of researching fields, such as control, communi-
cation, medicine, management, business, psychology, etc. The most
significant applications and studies about fuzzy systems have con-
centrated on the control area [3–10]. The development of fuzzy-
PID controllers for various engineering problems has been a major
research activity in recent years. Duan et al. proposed an inherent
saturation of the fuzzy-PID controller revealed due to the finite fuzzy
rules [11]. Karasakal et al. applied fuzzy PID controllers based on
an online tuningmethod and rule weighing in [12]. Boubertakh et al.
proposed new auto-tuning fuzzy PD and PI controllers using
reinforcement-learning algorithm for single-input single-output and
two-input two-output systems [13]. In this way, the heuristic pa-
rameters of fuzzy-PID controllers have to be determined via an
appropriate approach. A very effective way to choose these param-
eters is the use of evolutionary algorithms [14], such as the Genetic
Algorithm (GA) [15] and particle swarm optimization (PSO) [16],

etc. In [17], a constrained optimization of a simple fuzzy-PID system
was designed for the online improvement of PID control perfor-
mance during productive control runs. Oh et al. developed a design
methodology for a fuzzy PD cascade controller for a ball–beam
system using particle swarm optimization (PSO) [18]. Mahmoodabadi
et al. designed fuzzy controllers for nonlinear systems using MOPSO
based on the Lorenz dominance method [19]. Sahib proposed a type
of controller consisting of proportional, integral, derivative, and
second order derivative terms optimized using the PSO algorithm
for an automatic voltage regulator system [20].

In this paper, a novel optimal fuzzy-PID control strategy is pro-
posed and implemented on two nonlinear benchmark systems.
Governing equations for ball–beam and inverted pendulum systems
transformed to the state-space forms. Two fuzzy inference engines are
utilized. Due to having some different objective functions, MOGA and
MOPSO are applied and three and two dimensional Pareto front figures
are shown. The conflicting objective functions for ball–beam system
are the distance error of the ball, the angle error of the beam, and the
control effort. For inverted pendulum system, those are the distance
error of the cart, the angle error of the pendulum, and the control effort.
The simulation results corresponding to the optimum points demon-
strate that the designed controller has the superior performance in
comparison with reported results in published literature.

The rest of this paper is organized as follows. Section 2 gives a
brief description on the fuzzy-PID controller. Section 3 presents the
multi-objective optimization genetic algorithm. In Section 4, the
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dynamic models of the ball–beam and inverted pendulum systems
are recalled. Furthermore, their optimal fuzzy-PID controllers,
simulation results and comparison studies to verify the capability
of the proposed controller are shown in this section. Finally, Section
5 concludes the paper.

2. Fuzzy-PID controller

The PID controller has a long history in the control engineering
and is accepted in a lot of real applications due to the simple struc-
ture. Hence, this controller is widely used still in so many industrial
applications despite offering several new techniques. Consider a
fourth order nonlinear system with Equation (1).

��x f b F= +1 1

��θ = +f b F2 2 (1)

where f1, f2, b1, and b2 are nonlinear functions and F is the control
input. The state-space formulation of the system can be written as
Equation (2).

�x x1 2=

�x x2 3=

�x f b F3 1 1= + (2)

�x x4 5=

�x x5 6=

�x f b F6 2 2= +

where x x x x x x x x x x= [ ] = ⎡⎣ ⎤⎦∫ ∫1 2 3 4 5 6, , , , , , , , , ,� �θ θ θ is the state vector
with desired value x x x x x x x x x xd d d d d d d d d d d d d= [ ] = ⎡⎣ ⎤⎦∫ ∫1 2 3 4 5 6, , , , , , , , , ,� �θ θ θ .
The PID controller with inputs e t x xx

d( ) = − and e t d
θ θ θ( ) = − and

output F tpid ( ) is commonly defined as Equation (3).

F K e t K e d K
de t

dt

K e t K e d

pid px x ix x

t

dx
x

p i

= ( )+ ( ) + ( )

+ + ( )( )

∫ τ τ

τθ θ θ θ

0

ττ θ
θ

0

t

dK
de t

dt∫ + ( )
(3)

where Kp, Ki, and Kd are the proportional, integral, and derivative
gains, respectively. The adjustment and determination of these design
parameters are key issues to design PID controllers. Hence, the fuzzy
logic approach is applied to calculate the gains adaptively.

F K f K f K f K f K f K fFuzzy pid ix px dx i p d= + + + + +ˆ ˆ ˆ ˆ ˆ ˆ
1 2 3 4 5 6θ θ θ (4)

where FFuzzy pid is the fuzzy-PID control action. f ii, , , ,=1 2 6… are the
fuzzy variables with inputs ∫ ∫xdt x dtdx

dt
d
dt, , , ,θ θ θand , respectively, and

should be obtained by Single Input Fuzzy Inference Motor (SIFIM).
Furthermore, in Equation (4), the variables ˆ ˆ ˆ ˆ ˆ ˆK K K K K Kix px dx i p d, , , , andθ θ θ

are calculated by Equation (5).

K̂ K K Wix ix
b

ix
r= + Δ 1

K̂ K K Wx x
b

x
r= + Δ 2

K̂ K K Wdx dx
b

dx
r= + Δ 3

K̂ K K Wi i
b

i
r

θ θ θ= + Δ 4

K̂ K K Wb r
θ θ θ= + Δ 5

K̂ K K Wd d
b

d
r

θ θ θ= + Δ 6
(5)

where ΔW ii, , , ,=1 2 6… are the fuzzy variables with inputs
∫ ∫xdt x dtdx

dt
d
dt, , , ,θ θ θand , respectively, and should be obtained by

Preferrer Fuzzy InferenceMotor (PFIM). K K K K K Kix
b

x
b

dx
b

i
b b

d
b, , , ,θ θ θand are

the base variables and K K K K K Kix
r

x
r

dx
r

i
r r

d
r, , , ,θ θ θand are the regulation

variables. The base and regulation variables can be obtained by the
try and error process. However, one of the best solutions to find these
to have an optimal controller is the use of optimization approaches
such as evolutionary methods, such as the genetic algorithm.

3. Optimization

The genetic algorithm is an approach for solving optimization
problems based on biological evolution via modification of a pop-
ulation of individual solutions, repeatedly. At each level, individuals
are chosen randomly from the current population (as parents) then
employed to produce the children for the next generation. In this
paper, toolbox optimization of MATLAB (R2012a) with the follow-
ing operators is implemented for optimal design of the fuzzy-PID
controllers.

3.1. Population size

Increasing the population size enables the genetic algorithm to
search more points and thereby obtain a better result. However, the
larger the population size, the longer it takes for genetic algo-
rithm to compute each generation.

3.2. Crossover options

Crossover options specify how the genetic algorithm combines
two individuals, or parents, to form a crossover child for the next
generation.

3.3. Crossover fraction

The crossover fraction specifies the fraction of each popula-
tion, other than elite children, that is made up of crossover children.

3.4. Selection function

Selection options specify how the genetic algorithm chooses
parents for the next generation.

3.5. Migration options

Migration options specify how individuals move between sub-
populations. Migration occurs if you set population size to be a vector
of length greater than 1. When migration occurs, the best individu-
als from one subpopulation replace the worst individuals in another
subpopulation. Individuals that migrate from one subpopulation to
another are copied. They are not removed from the source
subpopulation.

3.6. Stopping criteria options

Stopping criteria determine what causes the algorithm to
terminate.

In this paper, the configuration of the genetic algorithm is set
as the values given in Table 1.

Furthermore, the multi-objective optimization of the proposed
fuzzy-PID controller would be done with respect to twelve design
variables and three objective functions. The base values [ Kix

b , K px
b , Kdx

b ,
Ki

b
θ , K p

b
θ , Kd

b
θ ] and regulation values [ Kix

r , K px
r , Kdx

r , Ki
r
θ , K p

r
θ , Kd

r
θ ] are
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the design variables. For ball–beam system, the distance error of
the ball, the angle error of the beam and the control effort, and for
inverted pendulum system, the distance error of the cart, the angle
error of the pendulum and the control effort, are the objective func-
tions. In other words, for both systems, the objective functions can
be written as Equations (6) to (8).

Objective function 1= ∫ x dt (6)

Objective function 2 = ∫ θ dt (7)

Objective function 3 = ∫ F dt (8)

4. Optimal fuzzy-PID controller design

In this section, the optimal fuzzy-PID controller would be de-
signed for the ball–beam and the inverted pendulum systems.

4.1. Ball–beam system

In the following, we consider the ball–beam system depicted in
Fig. 1. The state vector is the system observable state vector
x x x x x x x x x x= [ ] = ⎡⎣ ⎤⎦∫ ∫1 2 3 4 5 6, , , , , , , , , ,� �θ θ θ , including, respectively, the
integral of the ball position, the ball position, the ball velocity, in-
tegral of the beam angle, the beam angle and the beam angular
velocity. The dynamic equations of this system in the state-space
form are expressed by Equation (9).

�x x1 2=

�x x2 3=

�x B x x gsin x3 2 6
2

5= − ( )[ ]
�x x4 5=

�x x5 6=

�x
Mx x x gMx x

J J Mx
6

2 3 6 2 5

1 2 2
2

2= − − ( )
+ +

τ cos
(9)

whereM is the ball mass, g is the gravity acceleration, J1 is the ball
inertia moment, and J2 is the beam inertia moment. The manipu-
lated variable F is related with the torque τ by Equation (10).

τ = + + + +( )2 2 3 6 2 5 1 2 2
2Mx x x gMx cosx J J Mx F (10)

where F is the control input and F FFuzzy pid= . The system param-
eters used for simulation are M = 0.05 kg, J kgm1

6 22 10= × − ,
J kgm2

20 02= . , g m
s

= 9 81 2. , and B = 0.7143.
The initial and desired values are regarded as

x x x x x x x0 0 0 0 0 0 0 0 0 5 0 0 301 2 3 4 5 6( ) = [ ] = − °( ) ( ) ( ) ( ) ( ) ( ), , , , , , . , , , , 00[ ] and
x x x x x x xd d d d d d d= [ ] = [ ]1 2 3 4 5 6 0 0 0 0 0 0, , , , , , , , , , , respectively.

The block diagram for the stabilization control of the ball–
beam system shown in Fig. 2 illustrates that each of the state
variables ∫ ∫x x v, , , , ,θ θ ω relevant to the ball–beam system is fed back
and compared with its desired value. Since all of the desired values
in the stabilization control are zeros, the variables are reversely in-
putted into the Norm block for normalization of the state variables
by their scaling factors. The scaling factors and the normalized form
of the outputs are given in Table 2.

For ball–beam system, the Single Input Fuzzy Inference Motor
(SIFIM) has only one input, and for each normalized variable (Norm
block output) an SIFIM is defined. Since there are 6 Norm block
output items, 6 SIFIMs would be created. For each input item
X ii; , , ,=1 2 6… , there is an SIFIM-i ( f ii; , , ,=1 2 6… ). The Preferrer
Fuzzy Inference Motor (PFIM) represents the control priority order
of each Norm block output. The PFIM blocks for X ii; , ,=1 2 3 take the
absolute values of the input items X2 and X5 as the antecedent vari-
ables, and the PFIM blocks for X ii; , ,= 4 5 6 take the absolute value
of the input item X5 as their antecedent variable. The membership
functions of SIFIMs are shown in Table 3 and Fig. 3, and their rules
are mentioned in Tables 4 and 5.

The output of f ii, , , ,=1 2 6… for the ball and beam could be cal-
culated using Equations (11) and (12).

Table 1
Genetic algorithm configuration parameters.

Parameter Value

Crossover fraction 0.8
Population size 200
Selection function Tournament
Mutation function Constraint-dependent
Crossover function Intermediate
Migration direction Forward
Migration fraction 0.2
Migration interval 20
Stopping criteria Maximum generation 200

Fig. 1. Structure of the ball–beam system.

Table 2
State variables and the associated scaling factors and normalized forms for the ball–
beam system.

Variable Scaling factor Normalized form

xdt∫ 1 X1

x 1 X2
dx
dt 1 X3

θdt∫ 1 X4

θ 45° X5
d
dt
θ

100°/s X6

Table 3
Membership functions of SIFIMs for the ball–beam system.

If Then

Xi ≤ −1 VBi = 1
POi = 0
ZBi = 0

−1 ≤ Xi ≤ 0 VBi = − Xi
POi = Xi+1
ZBi = 0

0 ≤ Xi ≤ 1 VBi = 0
PO Xi i= − +1
ZBi = Xi

1 ≤ Xi VBi = 0
POi = 0
ZBi = 1
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f
VB f PO f ZB f

VB PO ZB
ii =

× + × + ×
+ +

=i i i

i i i

, ,
ˆ ˆ ˆ
1 2 3 1 2 3 (11)

f
VB f PO f ZB f

VB PO ZB
ii =

× + × + ×
+ +

=i i i

i i i

, ,
ˆ ˆ ˆ

4 5 6 4 5 6 (12)

where variables VB, PO, and ZB are given in Table 3 and Fig. 3. The
membership functions of PFIMs are illustrated in Table 6 and Fig. 4,
and their rules are shown in Tables 7 and 8.

Fig. 2. The block diagram of fuzzy-PID control for the ball–beam system.

Fig. 3. Membership functions of SIFIMs for the ball–beam system.

Table 4
Fuzzy rules of SIFIMs for the ball.

If X ii =( )1 2 3, , Then

VBi f̂1 1= −
POi f̂2 0=
ZBi f̂3 1=

Table 5
Fuzzy rules of SIFIMs for the beam.

If X ii =( )4 5 6, , Then

VBi f̂4 1=
POi f̂5 0=
ZBi f̂6 1= −
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The outputs of PFIMs for ball and beam, Δ Δ ΔW W W1 2 3, , ,
Δ Δ ΔW W W4 5 6, and , can be calculated by Equations (13) and (14).

ΔW
W HS HS W HM HS W HB HS W HS HM W HM HM

i =
× × + × × + × × + × × + × ×1 1 3 2 1 3 3 1 3 4 1 3 1 35 ++ × ×

× + × + × + × + × + ×
W HB HM

HS HS HM HS HB HS HS HM HM HM HB HM
6 1 3

1 3 1 3 1 3 1 3 1 3 1 33 1 3

7 1 3 8 1 3 9 1 3

1 3 1

+ ×
+ × × + × × + × ×

+ × + ×

HS HB
W HS HB W HM HB W HB HB

HM HB HB H
…

BB
i

3

1 2 3; , ,=

ΔW
W HS W HM W HB

HS HM HB
ii =

× + × + ×
+ +

=10 3 11 3 12 3

3 3 3

4 5 6; , , (14)

(13)

After calculation of fi and ΔW ii; , , ,=1 2 6… , it is possible to define
the fuzzy-PID controller via Equation (4).

In the following, the multi-objective optimization of the pro-
posed fuzzy-PID controller would be done by MOGA and MOPSO
[19] (with the same settings) with respect to the base and regula-
tion parameters as design variables, and three objective functions
as the distance error of the ball, the angle error of the beam and
the control effort. The optimum points of the objective functions
are illustrated in Figs. 5–8. Points A, B and C are the best points for
objectives 1, 2 and 3, respectively, and point D is a trade-off point.
The time responses of the ball position, beam angle and control input
for these optimum points are depicted in Figs. 9–11.

Although the complete stabilization occurs and all the state vari-
ables converge to zero, by comparison of method proposed by Yi
et al. [21] and this work, the superiority of this work from view-
points of distance and angle error is obvious. In [21], as shown in
Figs. 9 and 10, the ball position and beam angle reached the final
state almost at 6 and 5.5 seconds, respectively, while this work can
achieve almost 3 seconds for the ball position, 3.8 seconds for the
beam angle and the maximum absolute of the control input is about
28.7 (point D). The values of design variables relative to point D and
objective functions relative to points A, B, C, and D are given in
Tables 9 and 10, respectively.

Table 6
Membership functions of PFIM for the ball–beam system.

If Then

X2 0 5≤ . HS X1 22 1= − +
HM X1 22=
HB1 = 0

0 5 2. ≤ X HS1 = 0
HM X1 22 2= − +
HB X1 22 1= −

X5 0 5≤ . HS X3 52 1= − +
HM X3 52= −
HB3 = 0

0 5 5. ≤ X HS3 = 0
HM X3 52 2= − +
HB X3 52 1= −

Fig. 4. Membership functions of PFIM for the ball–beam system.

Table 7
Rules of PFIMs for the ball.

If Then

X2 HS1 W1 = 0
X5 HS3
X2 HM1 W2 = 0.5
X5 HS3
X2 HB1 W3 = 1
X5 HS3
X2 HS1 W4 = 0
X5 HM3

X2 HM1 W5 = 0
X5 HM3

X2 HB1 W6 = 0.5
X5 HM3

X2 HS1 W7 = 0
X5 HB3
X2 HM1 W8 = 0
X5 HB3
X2 HB1 W9 = 0
X5 HB3

Table 8
Fuzzy rules of PFIM for the beam.

If Then

X5 HS3 W10 0=
X5 HM3 W11 0 5= .
X5 HB3 W12 1=

Table 9
Design variables of optimum point D for fuzzy-PID control of the ball–beam system.

Design variable Value

Kix
b 2.45

K x
b 6.98

Kdx
b 7.75

Ki
b
θ 17.40

K b
θ 32.09

Kd
b
θ 18.59

Kix
r 1.24

K x
r 7.07

Kdx
r 4.86

Ki
r
θ 5.79

K r
θ 9.22

Kd
r
θ 8.71

Table 10
Objective functions of points A, B, C, and D for fuzzy-PID control of the ball–beam
system.

Point Value

A Objective function 1 = 1.79
Objective function 2 = 38.13
Objective function 3 = 6.98

B Objective function 1 = 3.97
Objective function 2 = 27.40
Objective function 3 = 6.07

C Objective function 1 = 2.47
Objective function 2 = 32.65
Objective function 3 = 4.41

D Objective function 1 = 1.91
Objective function 2 = 34.75
Objective function 3 = 6.04
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4.2. Inverted pendulum system

In the following, we consider the inverted pendulum system de-
picted in Fig. 12. x x x x x x x x x x= [ ] = ⎡⎣ ⎤⎦∫ ∫1 2 3 4 5 6, , , , , , , , , ,� �θ θ θ , including,
respectively, integral of the cart position, the cart position, the cart
velocity, integral of the pendulum angle, the pendulum angle and
the pendulum angular velocity. The dynamic equations of this system
in the state-space form are expressed by Equation (15).

�x x1 2=

�x x2 3=

�x
F m l x x m gsin x x

m m m cos

p p p

c p p

3

6
2

5 5 5

2

4
3

4
3

=
+ ( )[ ]− ( ) ( )

+( )−

sin cos

xx5( )

�x x4 5=

�x x5 6=

�x
m m gsin x F m l x x x

m m m c

c p p p

c p p

6
5 6

2
5 5

4
3

=
+( ) ( ) − + ( )[ ] ( )

+( )−
sin cos

oos x lp
2

5( )⎡
⎣⎢

⎤
⎦⎥

(15)

where mc is the mass of the cart, mp is the mass of the pendulum,
g is the gravity acceleration, and F is the control input and
F FFuzzy pid= ×11 . lp is the length from the center of the pendulum
to the pivot and equals to the half-length of the pendulum.
For simulation, the following specifications are used
m kg m kg l m and gc p p

m
s

= = = =1 0 1 0 5 9 8 2, . , . , . .
The initial and desired conditions are

x x x x x x x0 0 0 0 0 0 0 0 2 0 0 0 01 2 3 4 5 6( ) = [ ] = [ ]( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , and

x x x x x x xd d d d d d d= [ ] = [ ]1 2 3 4 5 6 0 0 0 0 0 0, , , , , , , , , , , respectively. The block
diagram for the stabilization control of the inverted pendulum system
illustrated in Fig. 13 shows that each of the state variables
∫ ∫x x v, , , , ,θ θ ω relevant to inverted pendulum system is fed back
and compared with its desired value. Since all of the desired values
in the stabilization control are zero, the variables are directly in-
putted into the Norm block. The normalization of the state variables
based on their scaling factors and creating input items
X X X X X X1 2 3 4 5 6, , , , , from ∫ ∫x x v, , , , ,θ θ ω , respectively, is done by
the Norm block. The scaling factors and the normalized form of the
Norm block outputs are given in Table 11.

Here, similar to fuzzy-PID control of the ball–beam system, two
fuzzy inference engines SIFIM and PFIM are utilized. Each input item
X ii; , , ,=1 2 6… is guided to the SIFIM-i, and f ii; , , ,=1 2 6… are its
output corresponding to the input item Xi. PFIM represents the
control priority order of each Norm block output. All of the PFIM
blocks take the absolute value of the input item X5 as their ante-
cedent variable. The membership functions of SIFIMs are depicted
in Table 12 and Fig. 14. The rules of the PFIMs are given in Tables 13
and 14.

1
1.5

2
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3
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4
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3
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        MOGA

        MOPSO

C

D

Fig. 5. Three-dimensional Pareto fronts of objective functions 1, 2 and 3 for the ball–beam system.

Table 11
Scaling factors and normalized forms of the state variables for the inverted pendu-
lum system.

Variable Scaling factor Normalized form

xdt∫ 1 X1

x 2.4m X2
dx
dt 1 X3

θdt∫ 1 X4

θ 30° X5
d
dt
θ

100°/s X6
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The output of SIFIM-i (fi) for the cart and pendulum is calcu-
lated by Equations (16) and (17), respectively.

f
VB f PO f ZB f

VB PO ZB
ii =

× + × + ×
+ +

=i i i

i i i

; , ,
ˆ ˆ ˆ
1 2 3 1 2 3 (16)

f
VB f PO f ZB f

VB PO ZB
ii =

× + × + ×
+ +

=i i i

i i i

; , ,
ˆ ˆ ˆ

4 5 6 4 5 6 (17)

The membership functions of PFIMs are shown in Table 15 and
Fig. 15. The rules of the PFIMs are given in Tables 16 and 17.

The outputs of PFIMs for ball and beam, ΔW1, ΔW2, ΔW3, ΔW4,
ΔW5 and ΔW6, can be calculated by Equations (18) and (19).

ΔW
W HS W HM W HB

HS HM HB
ii =

× + × + ×
+ +

=1 1 2 1 3 1

1 1 1

1 2 3; , , (18)

1 1.5 2 2.5 3 3.5 4 4.5
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Fig. 6. Pareto fronts of objective functions 1 and 2 for the ball–beam system.

Table 12
Membership functions of SIFIMs for the inverted pendulum system.

If Then

Xi ≤ −1 VBi = 1
POi = 0
ZBi = 0

−1 ≤ Xi ≤ 0 VBi = − Xi
POi = Xi+1
ZBi = 0

0 ≤ Xi ≤ 1 VBi = 0
PO Xi i= − +1
ZBi = Xi

1 ≤ Xi VBi = 0
POi = 0
ZBi = 1

Table 13
Fuzzy rules of SIFIMs for the cart.

If X ii =( )1 2 3, , Then

VBi f̂1 1= −
POi f̂2 0=
ZBi f̂3 1=

Table 14
Fuzzy rules of SIFIMs for the pendulum.

If X ii =( )1 2 3, , Then

VBi f̂4 1= −
POi f̂5 0=
ZBi f̂6 1=

Table 15
Membership functions of PFIM for inverted pendulum system.

If Then

X2 0 5≤ . HS X1 22 1= − +
HM X1 22=
HB1 = 0

0 5 2. ≤ X HS1 = 0
HM X1 22 2= − +
HB X1 22 1= −
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ΔW
W HS W HM W HB

HS HM HB
ii =

× + × + ×
+ +

=4 1 5 1 6 1

1 1 1

4 5 6; , , (19)

where variables HS1, HM1, and HB1 are given in Table 15 and Fig. 15.
After calculation of fi and ΔWi, it is possible to define the fuzzy-

PID controller based on Equation (4).
The Pareto fronts obtained via the multi-objective genetic algo-

rithm and particle swarm optimization [19] (with the similar
configurations) are given in Figs. 16–19. Points A, B, and C are the
best points of objectives 1, 2, and 3, respectively, and point D is se-
lected as a trade-off optimum point. Trade-off is the best point that
is obtained by substituting base variables and regulation variables
of all the optimal points achieved of optimization via genetic al-
gorithm and acquiring the best condition according to settling time

and overshoot. The time responses of cart position, pendulum
angular and derive force for the optimum points are illustrated in
Figs. 20–22.

It is observable from Figs. 20–22 that all the state variables
converge to zero and complete stabilization occurs. Moreover,
the superiority of this work in comparison with proposed
approach in [22] is obvious. In [22], the cart position and pendu-
lum angle reached the final state almost in 7.2 and 7.5 seconds,
respectively, while this work can achieve almost 3 seconds for the
ball position and 4 seconds for the beam angle and the maximum
absolute of the control input is about 8.02 (Point D). The values of
design variables relative to point D and objective functions rela-
tive to points A, B, C, and D are given in Tables 18 and 19,
respectively.
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Fig. 7. Pareto fronts of objective functions 1 and 3 for the ball–beam system.

Table 16
Fuzzy rules of PFIMs for the cart.

If Then

X5 HS1 W1 = 1
X5 HM1 W2 = 0.5
X5 HB1 W3 = 0

Table 17
Fuzzy rules of PFIM for the beam.

If Then

X5 HS1 W4 = 0
X5 HM1 W5 = 0.5
X5 HB1 W6 = 1

Table 18
Design variables of optimum point D for fuzzy-PID control of the inverted pendu-
lum system.

Design variable Value

Kix
b 0.029

K x
b 0.583

Kdx
b 0.110

Ki
b
θ 2.88

K b
θ 2.61

Kd
b
θ 1.92

Kix
r −0.030

K x
r 0.291

Kdx
r 0.152

Ki
r
θ 3.79

K r
θ −1.50

Kd
r
θ 5.00
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Fig. 8. Pareto fronts of objective functions 2 and 3 for the ball–beam system.
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Fig. 9. Time response of the ball position for the ball–beam system.
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Fig. 10. Time response of the beam angle for the ball–beam system.
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Fig. 11. Time response of the driving force for the ball–beam system.
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Fig. 12. Structure of the inverted pendulum system.

Fig. 13. Block diagram of fuzzy-PID control for the inverted pendulum system.

Fig. 14. Membership functions of SIFIMs for the inverted pendulum system.
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5. Conclusion

In this work, multi-objective optimization algorithms, i.e. MOGA
and MOPSO, were successfully used to optimum design the fuzzy-
PID controllers for the ball–beam and inverted pendulum systems.
An integral term was augmented to the state variables in order to
eliminate the steady state errors and decrease the rising time. The
conflicting objective functions for the ball–beam system wereFig. 15. Membership functions of PFIM for the inverted pendulum system.
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Fig. 16. Three-dimensional Pareto fronts of objective functions 1, 2 and 3 for the inverted pendulum system.
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Fig. 17. Pareto fronts of objective functions 1 and 2 for the inverted pendulum system.
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Fig. 18. Pareto fronts of objective functions 1 and 3 for the inverted pendulum system.
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Fig. 19. Pareto fronts of objective functions 2 and 3 for the inverted pendulum system.
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Fig. 20. Time response of the cart position for the inverted pendulum system.
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Fig. 21. Time response of the pendulum angle for the inverted pendulum system.
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Fig. 22. Time response of the driving force for the inverted pendulum system.
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considered as the distance error of the ball, the angle error of the
beam, and the control effort. The conflicting objective functions for
the inverted pendulum systemwere considered as the distance error
of the cart, the angle error of the pendulum, and the control effort.
The reported results demonstrated that the proposed methodolo-
gy can effectively control the nonlinear systems.
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