
Linear Algebra and its Applications 437 (2012) 2773–2780

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

Terwilliger algebras of wreath products by quasi-thin

schemes<

Kijung Kim

Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea

A R T I C L E I N F O A B S T R A C T

Article history:

Received 14 September 2011

Accepted 1 July 2012

Available online 28 July 2012

Submitted by H. Schneider

AMS classification:

05E15

05E30

Keywords:

Terwilliger algebra

Wreath product

Quasi-thin scheme

The structure of Terwilliger algebras of wreath products by thin

schemes or one-class schemes was studied in [A. Hanaki, K. Kim, Y.

Maekawa, Terwilliger algebras of direct and wreath products of as-

sociation schemes, J. Algebra 343 (2011) 195–200]. In this paper, we

will consider the structure of Terwilliger algebras of wreath prod-

ucts byquasi-thin schemes. This gives ageneralizationof their result.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The Terwilliger algebra is a new algebraic tool for the study of association schemes introduced by

Terwilliger in [10–12]. In general, this algebra is a non-commutative, finite dimensional, and semisim-

ple C-algebra. In the theory of association schemes, the wreath product is a method to construct new

association schemes. Recently, Bhattacharyya, Song and Tanaka began to study Terwilliger algebras of

wreath products of one-class association schemes in [1]. In particular, Song and Xu gave a complete

structural description of Terwilliger algebras for wreath products of one-class association schemes in

[9]. Terwilliger algebras of wreath products by thin schemes or one-class schemes were studied in

[4]. In this paper, we give a generalization of their result by replacing thin schemes with quasi-thin

schemes.

The remainder of this paper is organized as follows. In Section 2, we review notations and basic

results on coherent configurations and Terwilliger algebras as well as important results on quasi-thin
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schemes. In Section 3, based on the fact that one point extensions of quasi-thin schemes coincide with

their Terwilliger algebras, we determine all central primitive idempotents of Terwilliger algebras of

wreath products by quasi-thin schemes. In Section 4, we state our main theorem.

2. Preliminaries

In this section, tounifynotationsand terminologiesgiven in [2,4,7,8],wecombine them.Weassume

that the reader is familiar with the basic notions of association schemes in [13].

2.1. Coherent configurations and coherent algebras

Let X be a finite set and S a partition of X × X . Put by S∪ the set of all unions of the elements of S. A

pair C = (X, S) is called a coherent configuration on X . if the following conditions hold:

(1) 1X := {(x, x) | x ∈ X} ∈ S∪.
(2) For s ∈ S, s∗ := {(y, x) | (x, y) ∈ s} ∈ S.

(3) For all s, t, u ∈ S and all x, y ∈ X ,

pust := |{z ∈ X | (x, z) ∈ s, (z, y) ∈ t}|
is constant whenever (x, y) ∈ u.

The elements of X , S and S∪ are called the points, the basic relations and the relations, respectively. The

numbers |X| and |S| are called the degree and rank. Any set � ⊆ X for which 1� ∈ S is called the

fiber. The set of all fibers is denoted by Fib(C). The coherent configuration C is called homogeneous or

a scheme if 1X ∈ S. If Y is a union of fibers, then the restriction of C to Y is defined to be a coherent

configuration

CY = (Y, SY ),

where SY is the set of all non-empty relations s∩ (Y ×Y)with s ∈ S. For s ∈ S, let σs denote thematrix

in MatX(C) that has entries

(σs)xy =
⎧⎨
⎩

1 if (x, y) ∈ s;

0 otherwise.

We call σs the adjacency matrix of s ∈ S. Then
⊕

s∈S Cσs becomes a subalgebra of MatX(C). We call⊕
s∈S Cσs the adjacency algebra of S, and denote it by A(S). A linear subspace A of MatX(C) is called

a coherent algebra if the following conditions hold:

(1) A contains the identity matrix IX and the all-one matrix JX .

(2) A is closed with respect to the ordinary and Hadamard multiplications.

(3) A is closed with respect to transposition.

Let B be the set of primitive idempotents of Awith respect to the Hadamard multiplication. Then B is

a linear basis of A consisting of {0, 1}-matrices such that
∑
s∈B

σs = JX and σs ∈ B ⇔ σ t
s ∈ B.

Remark 2.1. There are bijections between the sets of coherent configurations and coherent algebras

as follows:

S �→ A(S) and A �→ C(A),

where C(A) = (X, S′)with S′ = {s ∈ X × X | σs ∈ B}.
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Let C = (X, S) be a coherent configuration. For each x ∈ X , we define xs := {y ∈ X | (x, y) ∈ s}. A
point x ∈ X is called regular if

|xs| � 1, s ∈ S.

In particular, if the set of all regular points is non-empty, then C is called 1-regular.

Let C = (X, S) be a scheme and T a closed subset containing the thin residue of S. Put by S(T) the

set of all basic relations s�,� := s ∩ (�× �), where s ∈ S and�,� ∈ X/T := {xT | x ∈ X}. Then by

[3] or [7], the pair C(T) = (X, S(T)) is a coherent configuration called the thin residue extension of C.

2.2. Terwilliger algebras and one point extensions

Let (X, S) be a scheme. For U ⊆ X , we denote by εU the diagonal matrix in MatX(C) with entries

(εU)xx = 1 if x ∈ U and (εU)xx = 0 otherwise. Note that JU,V := εUJXεV and JU := JU,U for U, V ⊆ X .

The Terwilliger algebra of (X, S)with respect to x0 ∈ X is defined as a subalgebra of MatX(C) gener-
ated by {σs | s ∈ S}∪{εx0s | s ∈ S} (see [10]). The Terwilliger algebrawill be denoted by T (X, S, x0) or
T (S). SinceA(S) and T (S) are closed under transposed conjugate, they are semisimpleC-algebras. The

set of irreducible characters of T (S) andA(S)will be denoted by Irr(T (S)) and Irr(A(S)), respectively.
The trivial character 1A(S) ofA(S) is a map σs �→ ns, where ns := p1Xss∗ is called the valency of s, and the

corresponding central primitive idempotent is |X|−1JX . The trivial character 1T (S) of T (S) corresponds
to the central primitive idempotent

∑
s∈S n

−1
s εx0sJXεx0s of T (S). For χ ∈ Irr(A(S)) or Irr(T (S)), eχ

will be the corresponding central primitive idempotent of A(S) or T (S). For convenience, we denote

Irr(A(S)) \ {1A(S)} and Irr(T (S)) \ {1T (S)} by Irr(A(S))× and Irr(T (S))×, respectively.

Let C = (X, S) be a coherent configuration and x ∈ X . Denote by Sx the set of basic relations of the

smallest coherent configuration on X such that

1x ∈ Sx and S ⊂ S∪
x .

Then the coherent configuration Cx = (X, Sx) is called a one point extension of C. It is easy to see that

given s, t, u ∈ S the set xs and the relation uxs,st are unions of some fibers and some basic relations of

Cx , respectively.

Remark 2.2. A one point extension Cx of a scheme C is related to T (X, S, x). In fact, Cx ⊇ T (X, S, x).

2.3. Direct sums, direct products and wreath products

Let C = (X, S) and C′ = (X′, S′) be coherent configurations. Put by X  X′ the disjoint union of X

and X′, and by S � S′ the union of the set S ∪ S′ and the set of all relations � × �′, �′ × �, where

�,�′ are fibers of C and C′, respectively. Then the pair

C � C′ = (X  X′, S � S′)

is a coherent configuration called the direct sum of C and C′. Set S × S′ = {s × s′ | s ∈ S, s′ ∈ S′},
where s × s′ is the relation on X × X′ consisting of all pairs ((α, α′), (β, β ′)) with (α, β) ∈ s and

(α′, β ′) ∈ s′. Then the pair

C × C′ = (X × X′, S × S′)

is a coherent configuration called the direct product of C and C′. The adjacencymatrix of s× s′ ∈ S× S′
is given by the Kronecker product σs ⊗ σs′ .

Let (X, S) and (Y, T) be schemes. For s ∈ S, set s̃ = {((x, y), (x′, y)) | (x, x′) ∈ s, y ∈ Y}. For t ∈ T ,

set t̄ = {((x, y), (x′, y′)) | x, x′ ∈ X, (y, y′) ∈ t}. Also set S � T = {s̃ | s ∈ S} ∪ {t̄ | t ∈ T \ {1Y }}. Then
(X × Y, S � T) is a scheme called the wreath product of (X, S) by (Y, T). For the adjacency matrices,

we have σs̃ = σs ⊗ IY , σt̄ = JX ⊗ σt . Note that (x0, y0)s̃ = (x0s, y0) = {(x, y0) | x ∈ x0s},
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(x0, y0)t̄ = (X, y0t) = {(x, y) | x ∈ X, y ∈ y0t} and ε(x0,y0)s̃ = εx0s ⊗ εy01Y , ε(x0,y0)t̄ = ∑
s∈S εx0s ⊗

εy0t = IX ⊗ εy0t .

2.4. Quasi-thin schemes

A scheme C = (Y, T) is called quasi-thin if T = T1 ∪ T2, where Ti is the set of basic relations with

valency i (i ∈ {1, 2}).
Lemma 2.1 ([6], Lemma 4.1). For t ∈ T2, there exists a unique t⊥ such that tt∗ = {1Y , t⊥}.

In [8], any element from the set T⊥ = {t⊥ | t ∈ T2} is called an orthogonal of C. If |T⊥| = 1 and

T⊥ ⊆ T1, then H := {1Y } ∪ T⊥ is the thin residue. Considering C(H) = (Y, T(H)), it follows that given

�,� ∈ Fib(C(H)) either the set � × � ∈ T(H) or the set � × � �∈ T(H). Denote the latter case by

� ∼ �. Then ∼ is an equivalence relation on the set Fib(C(H)).
Next, we state two results on quasi-thin schemes.

Theorem 2.2 ([8], Theorem 6.1). Let C = (Y, T) be a quasi-thin scheme and y0 ∈ Y. Then A(Ty0)= T (Y, T, y0).

Theorem 2.3 ([8], Theorem 5.2 and Corollary 6.4). Let C = (Y, T) be a quasi-thin scheme with T⊥ �= ∅.
(1) If |T⊥| = 1 and T⊥ ⊆ T2, then

T = T1{1Y , u},
where y0 ∈ Y and T⊥ = {u}.

(2) If |T⊥| = 1 and T⊥ ⊆ T1, then

C(H) = �i∈ICi,

where I is the set of classes given in the above ∼, Yi is the union of fibers belonging a class i ∈ I, and

Ci = (C(H))Yi .
(3) If |T⊥| � 2, then Cy0 = (Y, Ty0) is 1-regular. In particular, any point of y0T2 is regular.

Example 2.3. Some examples for each case of Theorem 2.3 can be found in [5].

(1) as 12 No. 51

(2) as 12 No. 48

(3) as 28 No. 175, No. 176

3. Wreath products by quasi-thin schemes

Let (X, S) and (Y, T)be schemes. Fix x0 ∈ X and y0 ∈ Y and consider (X×Y, S �T) and T (X×Y, S �T,
(x0, y0)). In the rest of this section, we assume that (Y, T) is a quasi-thin scheme with T⊥ �= ∅.

3.1. The restriction of T (S � T) to X × (Y \ {y0})
T (S � T) is generated by {JX ⊗ σt, IX ⊗ εy0t | t ∈ T \ {1}} ∪ {σs ⊗ IY , εx0s ⊗ ε{y0} | s ∈ S}.
Since

∑
s∈S εx0s⊗ε{y0} = IX⊗ε{y0} and

∑
s∈S σs⊗IY = JX⊗IY ,weconsider a subalgebraU generated

by {JX ⊗σt, IX ⊗εy0t | t ∈ T}. It is easy to see thatU is generated by {|X|−1JX ⊗εy0t1σtεy0t2 | t1, t2 ∈ T}
and isomorphic to T (T). So by Theorem 2.2, a basis B(U) of U can be determined by C(T (T)), i.e.
B(U) = {JX ⊗ σc | c ∈ R}, where R is the set of basic relations of C(T (T)).
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WeconsiderεX⊗εY\{y0}T (S�T)εX⊗εY\{y0}. SinceT (S�T) is generatedbyB(U)∪{σs⊗IY , εx0s⊗ε{y0} |
s ∈ S}, (εX⊗εY\{y0})T (S�T)(εX⊗εY\{y0}) is generatedby {JX⊗σc | c ∈ RY\{y0}}∪{σs⊗IY\{y0} | s ∈ S}.
Thus, we can determine a basis of εX ⊗ εY\{y0}T (S � T)εX ⊗ εY\{y0} with respect to the set of basic

relations of C(T (T))Y\{y0}.

3.2. A basis of A(Ty0) = T (Y, T, y0)

By Theorem 2.2, A(Cy0) = T (Y, T, y0). In order to find a basis of T (Y, T, y0), it is enough to know

all basic relations of Cy0 . In particular, we focus on�× � ∈ Ty0or �∈ Ty0 for�,� ∈ Fib(Cy0) of size 2.

Lemma3.1. If C = (Y, T) belongs to case (1) or (3) in Theorem2.3, then�×� �∈ Ty0 for�,� ∈ Fib(Cy0)
of size 2.

Proof. In the case of Theorem 2.3(1), each t ∈ T2 is represented by t1u for some t1 ∈ T1. For t, t
′ ∈ T2,

σtσt′∗ = σt1σuσu∗σt′∗1 = σt1(2σ1Y + σu)σt′∗1 = 2σt1t′1 + σt1σuσt′∗1 . So the coefficient of σt1σuσt′∗1
implies that�× � �∈ Ty0 for�,� ∈ Fib(Cy0) of size 2.

In the case of Theorem 2.3(3), clearly�× � �∈ Ty0 for�,� ∈ Fib(Cy0) of size 2. �

Lemma 3.2. Suppose that C = (Y, T) belongs to case (2) in Theorem 2.3. For distinct i1, i2 ∈ I, if fibers

� ⊆ Yi1 and � ⊆ Yi2 , then�× � ∈ Ty0 .

Proof. First, we show that (C(H))Y ′ = (Cy0)Y ′ , where Y ′ = ∪t∈T2y0t. Since A(Cy0) = T (T) =
〈{εy0t1σtεy0t2 | t1, t2, t ∈ T}〉, εY ′A(Cy0)εY ′ = 〈{εy0t1σtεy0t2 | t1, t2 ∈ T2, t ∈ T}〉. By thin residue

extension, A(C(H)) = 〈{ε�σtε�t | � ∈ Y/H, t ∈ T}〉. So we have εY ′A(C(H))εY ′ = 〈{ε�σtε�t | � ∈
Y/H, t ∈ T, � = y0t

′, �t = y0t
′′ for some t′, t′′ ∈ T2}〉. Thus, (C(H))Y ′ = (Cy0)Y ′ .

Nowwe consider (Cy0)Y ′ . Note that Y ′ = ∪i∈I\{i0}Yi and Yi0 = ∪t∈T1y0t, where i0 is a class of I such

that y0 ∈ Yi0 . Since C(H) = �i∈ICi and (C(H))Y ′ = (Cy0)Y ′ , if fibers � ⊆ Yi1 and � ⊆ Yi2 for distinct

i1, i2 ∈ I \ {i0}, then�× � ∈ Ty0 . Clearly, for i0 and i1 ∈ I \ {i0}, if fibers� ⊆ Yi0 and � ⊆ Yi1 , then

�× �, � ×� ∈ Ty0 . �

3.3. Central primitive idempotents of T (X × Y, S � T, (x0, y0))
Set F(t) = (x0, y0)t̄ = (X, y0t) and U(t) = (S � T)(x0,y0)t̄ for t ∈ T . If t ∈ T1, then (F

(t),U(t)) is

isomorphic to (X, S). If t ∈ T2, then (F
(t),U(t)) is isomorphic to the wreath product of (X, S) by the

trivial scheme of degree 2.

For χ ∈ Irr(T (U(1Y )))×, define

ẽχ = eχ ⊗ ε{y0} ∈ T (S � T).

For t ∈ T1 \ {1Y } and ϕ ∈ Irr(A(U(t)))×, define

ēϕ = eϕ ⊗ εy0t ∈ T (S � T).

For t ∈ T2 andψ ∈ Irr(A(S))×, define

êψ = eψ ⊗ εy0t ∈ T (S � T).

Then they are idempotents of T (S � T).
Lemma 3.3 ([4], Lemma 4.2 and 4.4). For χ ∈ Irr(T (U(1Y )))×, ẽχ is a central primitive idempotent of

T (S � T).
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Lemma 3.4 ([4], Lemma 4.3 and 4.4). For t ∈ T1 \ {1Y } and ϕ ∈ Irr(A(U(t)))×, ēϕ is a central primitive

idempotent of T (S � T).
By mimicking the proof of Lemma 3.4, we get the following lemma.

Lemma 3.5. For t ∈ T2 andψ ∈ Irr(A(S))×, êψ is a central primitive idempotent of T (S � T).
Proof. First, we show that êψ commuteswith σs ⊗ IY , JX ⊗σu (u ∈ T \{1Y }), εx0s ⊗ε{y0}, and IX ⊗εy0u
(u ∈ T \ {1Y }). For s ∈ S, êψ(σs ⊗ IY ) = ∑

u∈T êψ(σs ⊗ εy0u) = (eψ ⊗ εy0t)(σs ⊗ εy0t). Since eψ
commutes with σs, we have êψ(σs ⊗ IY ) = (σs ⊗ IY )êψ . Since t �= 1Y , we have êψ(εx0s ⊗ ε{y0}) =
(εx0s ⊗ ε{y0})êψ = 0. Since e1A(S) = |X|−1JX and e1A(S)eψ = eψe1A(S) = 0, we have êψ(JX ⊗ σu) =
(JX ⊗ σu)êψ = 0. Also, êψ(IX ⊗ εy0u) = (IX ⊗ εy0u)êψ is trivial.

Now we show that êψ is primitive. The map π : T (S � T) → êψT (S � T) is a projection. Actually,

êψT (S � T) is naturally isomorphic to eψA(S). Since eψ is a central primitive idempotent of A(S), êψ
is primitive. �

From now on, we define the other central primitive idempotents of T (S � T). Suppose that (Y, T)
belongs to case (1) or (3) in Theorem 2.3. We define the following matrices Gy0t,y0t′ for t, t

′ ∈ T2. Let

Gy0t,y0t′ = 1
2|X| JX⊗(J{yt(1)},{yt′(1)}+J{yt(2)},{yt′(2)}−J{yt(1)},{yt′(2)}−J{yt(2)},{yt′(1)}),wherey0t = {yt(1), yt(2)}

and y0t
′ = {yt′(1), yt′(2)}. It is easy to see that {Gy0t,y0t′ | t, t′ ∈ T2} is a linearly independent subset

of T (S � T).
Lemma 3.6. 〈{Gy0t,y0t′ | t, t′ ∈ T2}〉 is an ideal. Moreover, 〈{Gy0t,y0t′ | t, t′ ∈ T2}〉 ∼= MatT2(C).

Proof. First, we prove that σuGy0t,y0t′ , Gy0t,y0t′σu ∈ 〈{Gy0t,y0t′ | t, t′ ∈ T2}〉 for u ∈ S � T . Since
(σu)y0h,y0t �= 0 for some h ∈ T2 and y0h × y0t �∈ C(T (S � T)) by Lemma 3.1, we have σuGy0t,y0t′ =
±Gy0h,y0t′ . Similarly, Gy0t,y0t′σu ∈ 〈{Gy0t,y0t′ | t, t′ ∈ T2}〉 is proved. For u ∈ S � T and t, t′ ∈ T2,

clearly ε(x0,y0)uGy0t,y0t′ = δ(x0,y0)u(X×y0t)Gy0t,y0t′ ∈ 〈{Gy0t,y0t′ | t, t′ ∈ T2}〉 and Gy0t,y0t′ε(x0,y0)u ∈
〈{Gy0t,y0t′ | t, t′ ∈ T2}〉. So 〈{Gy0t,y0t′ | t, t′ ∈ T2}〉 is an ideal.

Nowwe prove that Gy0t,y0t′Gy0t
′′′,y0t′′ = δt′t′′′Gy0t,y0t′′ . It is enough to show that Gy0t,y0t′Gy0t

′,y0t′′ =
Gy0t,y0t′′ . Bycalculation,wehaveGy0t,y0t′Gy0t

′,y0t′′= 1
2|X| JX⊗(J{yt(1)},{yt′(1)}+J{yt(2)},{yt′(2)}−J{yt(1)},{yt′(2)}−

J{yt(2)},{yt′(1)})
1

2|X| JX ⊗ (J{yt′(1)},{yt′′(1)} + J{yt′(2)},{yt′′(2)} − J{yt′(1)},{yt′′(2)} − J{yt′(2)},{yt′′(1)}) = Gy0t,y0t′′ .
Finally, we prove that 〈{Gy0t,y0t′ | t, t′ ∈ T2}〉 ∼= MatT2(C). For t, t

′ ∈ T2, let ett′ be the |T2| × |T2|
matrixwhose (t, t′)-entry is 1 andwhose other entries are all zero. Then the linearmapϕ : 〈{Gy0t,y0t′ |
t, t′ ∈ T2}〉 → MatT2(C) defined by ϕ(Gy0t,y0t′) = ett′ is an isomorphism. �

Define

eη = ∑
t∈T2

1

2|X| JX ⊗ (εy0t − εy0t),

where εy0t := J{yt(1)},{yt(2)} + J{yt(2)},{yt(1)}. Then by Lemma 3.6, eη is a central primitive idempotent of

T (S � T).
Suppose that (Y, T) belongs to case (2) in Theorem 2.3. Put y0 ∈ Yi0 . For each i ∈ I \ {i0}, we

consider the set Ui := {t ∈ T2 | y0t ⊆ Yi}. Define the following matrices Gy0t,y0t′ for t, t
′ ∈ Ui. Let

Gy0t,y0t′ = 1
2|X| JX ⊗ (J{yt(1)},{yt′(1)} + J{yt(2)},{yt′(2)} − J{yt(1)},{yt′(2)} − J{yt(2)},{yt′(1)}). According to process

in the proof of Lemma 3.6, we can prove that 〈{Gy0t,y0t′ | t, t′ ∈ Ui}〉 is an ideal. For each i ∈ I \ {i0},
define

eηi = ∑
t∈Ui

1

2|X| JX ⊗ (εy0t − εy0t),
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where εy0t := J{yt(1)},{yt(2)} + J{yt(2)},{yt(1)}. Then eηi is a central primitive idempotent of T (S � T). We

denote
∑

i∈I\{i0} eηi by eη .

Lemma 3.7. The sum of e1T (S�T) , ẽχ ’s, ēϕ ’s, êψ ’s and eη is the identity element.

Proof. It is easy to see that

e1T (S�T) = e1T (U(1Y ))
⊗ ε{y0} + ∑

t∈T1\{1Y }

1

|X|εF(t) JX×YεF(t) + ∑
t∈T2

1

2|X|εF(t) JX×YεF(t) ,

∑

χ∈Irr(T (U(1Y )))×
ẽχ = εF(1) IX×YεF(1) − e1T (U(1Y ))

⊗ ε{y0},

∑

ϕ∈Irr(A(U(t)))×
ēϕ = εF(t) IX×YεF(t) − 1

|X|εF(t) JX×YεF(t)

for each t ∈ T1 \ {1Y },
∑

ψ∈Irr(A(S))×
êψ = εF(t) IX×YεF(t) − 1

|X| (JX×yt(1) + JX×yt(2) )

for each t ∈ T2,

eη = ∑
t∈T2

1

2|X| JX ⊗ (εy0t − εy0t).

Thus, we have

e1T (S�T) + ∑

χ∈Irr(T (U(1Y )))×
ẽχ + ∑

t∈T1\{1Y }

∑

ϕ∈Irr(A(U(t)))×
ēϕ

+ ∑
t∈T2

∑

ψ∈Irr(A(S))×
êψ + eη = IX×Y . �

4. Main result

In conclusion, we have determined the set of all central primitive idempotents of Terwilliger alge-

bras of wreath products by quasi-thin schemes. Combining Section 3 and Theorem 4.1 of [4] gives the

following theorem.

Theorem 4.1. Let (X, S) and (Y, T) be association schemes. Suppose that (Y, T) is a quasi-thin scheme or

a one-class scheme. Fix x0 ∈ X and y0 ∈ Y, and consider the wreath product (X × Y, S � T). Then
(1) If (Y, T) is a thin scheme or a one-class scheme, then

{e1T (S�T)} ∪ {ẽχ | χ ∈ Irr(T (U(1Y )))×}
∪ ⋃

t∈T\{1Y }
{ēϕ | ϕ ∈ Irr(A(U(t)))×}

is the set of all central primitive idempotents of T (X × Y, S � T, (x0, y0)).
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(2) If (Y, T) has T⊥ ⊆ T2 or |T⊥| � 2, then

{e1T (S�T)} ∪ {ẽχ | χ ∈ Irr(T (U(1Y )))×}
∪ ⋃

t∈T1\{1Y }
{ēϕ | ϕ ∈ Irr(A(U(t)))×}

∪ ⋃
t∈T2

{êψ | ψ ∈ Irr(A(S))×} ∪ {eη}

is the set of all central primitive idempotents of T (X × Y, S � T, (x0, y0)).
(3) If (Y, T) has |T⊥| = 1 and T⊥ ⊆ T1, then

{e1T (S�T)} ∪ {ẽχ | χ ∈ Irr(T (U(1Y )))×}
∪ ⋃

t∈T1\{1Y }
{ēϕ | ϕ ∈ Irr(A(U(t)))×}

∪ ⋃
t∈T2

{êψ | ψ ∈ Irr(A(S))×}
∪ {eηi | i ∈ I \ {i0}}

is the set of all central primitive idempotents of T (X × Y, S � T, (x0, y0)).
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