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1. Introduction

The Terwilliger algebra is a new algebraic tool for the study of association schemes introduced by
Terwilliger in [10-12]. In general, this algebra is a non-commutative, finite dimensional, and semisim-
ple C-algebra. In the theory of association schemes, the wreath product is a method to construct new
association schemes. Recently, Bhattacharyya, Song and Tanaka began to study Terwilliger algebras of
wreath products of one-class association schemes in [1]. In particular, Song and Xu gave a complete
structural description of Terwilliger algebras for wreath products of one-class association schemes in
[9]. Terwilliger algebras of wreath products by thin schemes or one-class schemes were studied in
[4]. In this paper, we give a generalization of their result by replacing thin schemes with quasi-thin
schemes.

The remainder of this paper is organized as follows. In Section 2, we review notations and basic
results on coherent configurations and Terwilliger algebras as well as important results on quasi-thin
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schemes. In Section 3, based on the fact that one point extensions of quasi-thin schemes coincide with
their Terwilliger algebras, we determine all central primitive idempotents of Terwilliger algebras of
wreath products by quasi-thin schemes. In Section 4, we state our main theorem.

2. Preliminaries

In this section, to unify notations and terminologies givenin[2,4,7,8], we combine them. We assume
that the reader is familiar with the basic notions of association schemes in [13].

2.1. Coherent configurations and coherent algebras

Let X be a finite set and S a partition of X x X. Put by S¥ the set of all unions of the elements of S. A
pair C = (X, S) is called a coherent configuration on X. if the following conditions hold:

(1) 1x == {(x,x) | x € X} € V.
(2) Fors € S,s* :={(y,x) | (x,y) € s} €S.
(3) Foralls, t,u € Sandallx,y € X,
Py i=NHzeX|(x2) €s, (zy) et}

is constant whenever (x, y) € u.

The elements of X, S and S¥ are called the points, the basic relations and the relations, respectively. The
numbers |X| and |S| are called the degree and rank. Any set A C X for which 15 € S is called the
fiber. The set of all fibers is denoted by Fib(C). The coherent configuration C is called homogeneous or
a scheme if 1x € S.If Y is a union of fibers, then the restriction of C to Y is defined to be a coherent
configuration

Cy = (Y, Sy),
where Sy is the set of all non-empty relations s N (Y x Y) withs € S.Fors € S, let o5 denote the matrix
in Maty (C) that has entries

1if(x,y) €s;

0. =
(@5) 0 otherwise.

We call o the adjacency matrix of s € S. Then @5 Cos becomes a subalgebra of Maty (C). We call
;s Coy the adjacency algebra of S, and denote it by .A(S). A linear subspace A of Maty (C) is called
a coherent algebra if the following conditions hold:

(1) A contains the identity matrix Iy and the all-one matrix Jx.
(2) Ais closed with respect to the ordinary and Hadamard multiplications.
(3) Ais closed with respect to transposition.

Let B be the set of primitive idempotents of A with respect to the Hadamard multiplication. Then B is
a linear basis of A consisting of {0, 1}-matrices such that

> os=Jx and o5 € B< o] €B.
seB

Remark 2.1. There are bijections between the sets of coherent configurations and coherent algebras
as follows:

S+ A(S) and A C(A),
where C(A) = (X, S)withS = {s € X x X | o5 € B}.
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Let ¢ = (X, S) be a coherent configuration. For each x € X, we definexs := {y € X | (x,y) € s}.A
point x € X is called regular if

[xs|] <1, seS.

In particular, if the set of all regular points is non-empty, then C is called 1-regular.

Let ¢ = (X, S) be a scheme and T a closed subset containing the thin residue of S. Put by St the
set of all basic relations s, :=sMN (A x I'), wheres € Sand A, " € X/T := {xT | x € X}. Then by
[3] or [7], the pair C(ry = (X, S(r)) is a coherent configuration called the thin residue extension of C.

2.2. Terwilliger algebras and one point extensions

Let (X, S) be a scheme. For U C X, we denote by gy the diagonal matrix in Maty (C) with entries
(eu)xx = 1ifx € U and (ey)x = 0 otherwise. Note that Jy v := eyjxéey and Jy := Jy,y forU,V C X.

The Terwilliger algebra of (X, S) with respect to xg € X is defined as a subalgebra of Maty (C) gener-
ated by {05 | s € S}U{ex,s | s € S} (see[10]). The Terwilliger algebra will be denoted by 7 (X, S, xo) or
7 (S).Since A(S) and 7 (S) are closed under transposed conjugate, they are semisimple C-algebras. The
set of irreducible characters of 7 (S) and .A(S) will be denoted by Irr (7 (S)) and Irr (A(S)), respectively.
The trivial character 1 4(sy of A(S) is a map o5 > ng, where ng := pgs"* is called the valency of s, and the
corresponding central primitive idempotent is |X|~'Jx. The trivial character 17(s) of T(S) corresponds
to the central primitive idempotent > g ns_18xos]x8xos of 7(S). For x € Irr(A(S)) or Irr(7(S)), ey
will be the corresponding central primitive idempotent of .A(S) or 7 (S). For convenience, we denote
Irr(A(S)) \ {14} and Irr(7°(S)) \ {17¢s)} by Irr (A(S))* and Irr(7(S)) ™, respectively.

Let C = (X, S) be a coherent configuration and x € X. Denote by Sy the set of basic relations of the
smallest coherent configuration on X such that

1x€Sy and SCS,.

Then the coherent configuration Cy = (X, Sy) is called a one point extension of C. It is easy to see that
givens, t, u € S the set xs and the relation uy; g are unions of some fibers and some basic relations of
Cy, respectively.

Remark 2.2. A one point extension Cy of a scheme C is related to 7 (X, S, x). In fact, Cx 2 7 (X, S, x).
2.3. Direct sums, direct products and wreath products

Let ¢ = (X, S) and ¢’ = (X/, S') be coherent configurations. Put by X LI X’ the disjoint union of X
and X/, and by S B S’ the union of the set S U S” and the set of all relations A x A’, A’ x A, where
A, A are fibers of C and C’, respectively. Then the pair

cHd =Xux',SES)

is a coherent configuration called the direct sumof Cand ¢’. SetS x S’ = {s x s | s € S,s’ € §'},
where s x s’ is the relation on X x X’ consisting of all pairs ((«, @), (8, B’)) with («, B) € s and
(a’, B') € s'. Then the pair

cxC =XxX,Sx5)

is a coherent configuration called the direct product of ¢ and ¢’. The adjacency matrix of s x s’ € S x §’
is given by the Kronecker product o5 ® oy.

Let (X, S) and (Y, T) be schemes. Fors € S,sets = {((x,y), X,y)) | (x,x') €s, y € Y}.Fort € T,
sett = {((x,y), X, ¥y)) | x,x €X, (y,y) € t}.AlsosetS:T = {5 |s € S}U{t | t € T\ {1y}}. Then
(X X Y,ST) is a scheme called the wreath product of (X, S) by (Y, T). For the adjacency matrices,
we have 05 = 05 ® Iy, 0 = Jx ® or. Note that (xg,y0)S = (X0s,¥0) = {(x,¥0) | x € Xos},
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(X07 yo)E = (Xv yot) = {(X’ y) | X e X? ye yot} and 8(X0,y0)§ = Exps & Eyolys 8(x0,y0)f = ZSES Exos b2
yor = Ix @ &yt

2.4. Quasi-thin schemes

A scheme C = (Y, T) is called quasi-thin if T = T; U T, where T; is the set of basic relations with
valency i (i € {1, 2}).

Lemma 2.1 ([6], Lemma 4.1). Fort € Ty, there exists a unique t- such that tt* = {1y, tl}.

In [8], any element from the set T = {t- | t € T,} is called an orthogonal of C.If [T*| = 1 and
TL C Ty, thenH := {1y} U T+ is the thin residue. Considering C(yy = (Y, T(w)), it follows that given
A, T € Fib(Cy)) either the set A x I' € Ty or the set A x I' & Ty). Denote the latter case by
A ~ I'. Then ~ is an equivalence relation on the set Fib(Cy)).

Next, we state two results on quasi-thin schemes.

Theorem 2.2 ([8], Theorem 6.1). Let C = (Y, T) be a quasi-thin scheme and yo € Y. Then A(Ty,)
=7, T,Yo).

Theorem 2.3 ([8], Theorem 5.2 and Corollary 6.4). LetC = (Y, T) be a quasi-thin scheme with T~ 0.

(1) IfITY] = 1and T+ C Ty, then
T =Ti{ly, u},

where yo € Y and T+ = {u}.
(2) IfITY| = 1and T+ C Ty, then

Cy = HielCi,
where I is the set of classes given in the above ~, Y; is the union of fibers belonging a class i € I, and

Ci = (Ch))y;
(3) IfITY| > 2, then Cyo = (Y, Ty,) is 1-regular. In particular, any point of yoT; is regular.

Example 2.3. Some examples for each case of Theorem 2.3 can be found in [5].

(1) as 12 No. 51
(2) as 12 No. 48
(3) as 28 No. 175, No. 176

3. Wreath products by quasi-thin schemes

Let (X, S) and (Y, T) be schemes. Fixxy € Xandyg € Y and consider (X XY, S:T)and 7 (X x Y, SiT,
(X0, ¥0)). In the rest of this section, we assume that (Y, T) is a quasi-thin scheme with T+ # 0.

3.1. The restriction of T(S:T) to X x (Y \ {yo})

T(S2T) is generated by {Jx ® ¢, Ix ® gyoc | £ € T\ {1}} U {05 ®@ Iy, &xys ® &(yp) | s € S}

Since D ses Exps Ryl = Ix®&(yy) and X scs 0s®Iy = Jx®Iy, we consider a subalgebrai/ generated
by {Jx®o¢, Ix®ey, | t € T}.Itis easy to see thati/ is generated by{|X|’1]x(X)8y0t1 OtEyor, | 11, 12 € T}
and isomorphic to 7 (T). So by Theorem 2.2, a basis B(/) of ¢ can be determined by C(7(T)), i.e.
BU) = {Jx ® o. | ¢ € R}, where R is the set of basic relations of C(7 (T)).
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We consider ex®ey\ (y,} 7 (ST)ex @y fy,)- Since 7 (SeT) is generated by B ) U{o5 Ry, &x,s®E(yp) |
s € S}, (ex®ev\(yo)) T (ST) (ex R ey fy,)) is generated by {[x ®o¢ | ¢ € Ry\ [y} }U{0s®Iy\(y,) | 5 € S}
Thus, we can determine a basis of ex ® ey\(y,}7 (St T)ex ® &v\y,} With respect to the set of basic
relations of C(7(T))y\ {y,}-

3.2. Abasis of A(Ty,) = 7(Y, T, yo)

By Theorem 2.2, A(Cy,) = 7(Y, T, yo). In order to find a basis of 7(Y, T, yp), it is enough to know
all basic relations of Cy,. In particular, we focuson A x I" € Tyjor & Ty, for A, I € Fib(Cy,) of size 2.

Lemma3.1. IfC = (Y, T) belongs to case (1) or (3) in Theorem 2.3, then A xI" & Ty, for A, T" € Fib(Cy,)
of size 2.

Proof. In the case of Theorem 2.3(1), each t € T, is represented by tju for some t; € Ty.Fort, t’ € Ty,
Ot0px = 0 0u0y+Oys = Oy (201, + Uu)Ut;* = ZUtlt{ + 01, 0u0y. So the coefficient of oy, Ouox
implies that A x I" & Ty, for A, I' € Fib(Cy,) of size 2.

In the case of Theorem 2.3(3), clearly A x I & T, for A, I € Fib(Cy,) of size 2. [

Lemma 3.2. Suppose that C = (Y, T) belongs to case (2) in Theorem 2.3. For distinct iy, i € I, if fibers
ACYjandI' CYj, then A x I' € Ty,.

Proof. First, we show that (Cy))yr = (GCy,)y’, where Y = Uter,Yot. Since A(Cyy) = T(T) =
({eyor OtEyot, | 1, L2, £ € T}), ey A(Cyy)ey = ({Eypt, OtEyor, | t1, t2 € T, t € T}). By thin residue
extension, A(C)) = {{eaorear | A € Y/H, t € T}). So we have ey' A(C))eyr = ({eaorear | A €
Y/H,t € T, A = yot’, At = yot” for some t’, t” € T}). Thus, (Ci))y = (Cy)y'-

Now we consider (Cy, )y’. Note that Y = Uienio) Yi and Yi; = Ueer, Yot, where ig is a class of I such
that yg € Yj,. Since Cyy = Hie/Ci and (Cy)yr = (Cyp)yr, if fibers A C Y, and I' C Y, for distinct
i1, i € I'\ {ip}, then A x I" € Ty,. Clearly, for ig and iy € I'\ {ip}, if fibers A C Y;; and I" C Y;,, then
AXT,T' XA €Ty, O

3.3. Central primitive idempotents of T(X x Y, ST, (xo, yo))

Set FO' = (xg, yo)t = (X, yot) and U® = (S T) (xg.yo)f fOr t € T.If t € Ty, then (FO, u®)yis
isomorphic to (X, S). If t € Ty, then (F®, U®) is isomorphic to the wreath product of (X, S) by the
trivial scheme of degree 2.

For x € Irr(7(UY)))*, define

ey =ey ®eqy,) €T(S2T).

Fort € Ty \ {1y} and ¢ € Irr(A(U®))*, define
ey =€y ® &yr € T(S2T).

Fort € T, and ¢ € Irr(A(S))*, define
ey = ey @ &yr € T(S2T).

Then they are idempotents of 7(S: T).

Lemma 3.3 ([4], Lemma 4.2 and 4.4). For x € Irr(7(U))) %, e, is a central primitive idempotent of
T(S2T).
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Lemma 3.4 ([4], Lemma4.3 and 44). Fort € Ty \ {1y} and ¢ € Irr(A(U®))*, e, is a central primitive
idempotent of T(S: T).

By mimicking the proof of Lemma 3.4, we get the following lemma.
Lemma 3.5. Fort € T, and Y € Irr(A(S))™, 8y, is a central primitive idempotent of 7(S 2 T).

Proof. First, we show that é,/, commutes withos @Iy, Jx ® oy (u € T\ {1y}), &xys ® E(yp}, and Ix ® &yqy
(u €T\ ({ly}).Fors € §, é1// (05 ®1Iy) = Xyer é1// (05 ® 8y0u) = (egb ® 8ygt)(03 ® 8y0t)- Since ey
commutes with o5, we have ey, (05 ® Iy) = (05 ® Iy)éy. Since t # 1y, we have &y (gx,s @ €(yp)) =
(Exps ® E(y})ey = 0.Since e = IX|~Yx and €1, 8y = eyei,s = 0, we have ey (Jx ® oy) =
Jx ® O’u)éw = 0. Also, év, (Ix ® 8ygu) =Ix® 8y0u)é¢ is trivial.

Now we show that &y, is primitive. The map 77 : 7(S: T) — &, 7(S T) is a projection. Actually,
ey 7 (S ¢ T) is naturally isomorphic to ey, A(S). Since ey, is a central primitive idempotent of A(S), &y,
is primitive. O

From now on, we define the other central primitive idempotents of 7 (S : T). Suppose that (Y, T)
belongs to case (1) or (3) in Theorem 2.3. We define the following matrices Gy, y,¢ for t, t' € Ty. Let
1
Gyotyot' = FxPX@ Uty ) ey Hvea W) e v o) Jea) o)) Whereyot = {yea). ye@)}
and yot' = {yr (1), Yr'(2)}. It is easy to see that {Gy,; . | t, t" € T,} is a linearly independent subset
of 7(S:T).

Lemma 3.6. ({Gy,r v | t,t" € T2}) is an ideal. Moreover, ({Gyy; o | £, t" € T2}) = Matr, (C).

Proof. First, we prove that 0, Gyt yor's Gyot.yor'Ou € {Gyoryor | " € Ta}) foru € S T. Since
(0wyoh,yot # 0 for some h € T, and ypoh X yot & C(7(S2T)) by Lemma 3.1, we have 0,,Gyt yorr =
£Gyoh.yor- Similarly, Gyi¢ yorou € {Gypryor | £t € To}) is proved. Foru € S:Tand t,t' € To,
clearly &(xy,yo)uGyot,yor = S(XO,J/O)U(XXYOt)GyofJOt’ € ({Gyof,yof/ | t,t' € Tp}) and Gyot,yot'€(xo.yo)u €
({Gyoryorr | £t € T2}). S0 ({Gyoryor | £, t" € T2}) is an ideal.
Now we prove that Gy,¢. yor' Gyt yot” = Ot/ Gyot,yor- It is enough to show that Gy, ¢ yor Gyor yot” =
. i
Gyot,yot”- By calculation, we have Gy, v Gyor'yor” = WJX@U{)&(UL{yﬂ(1>}+]{yd2>}> Wt e e —
1
T e 3% @ Uy ey Toe) bee) =Jvva) bve) = Jvee ) bea)) = Grotyot”
Finally, we prove that ({Gy yor' | t,t" € To}) = Matr, (C). Fort, t’ € Ty, let ey be the |Ty| X [T
matrix whose (t, t')-entry is 1 and whose other entries are all zero. Then the linearmap ¢ : ({Gy,,y,¢ |
t,t' € Tb}) — Matr, (C) defined by ¢(Gy,¢ yor') = €y is an isomorphism. O

Define

en=Z

teT,

1

® (&yor — Eypt),
2|X|]X ( Yot yot)

where gy 1= Jyio bt T b v ) Then by Lemma 3.6, ;) is a central primitive idempotent of
T(ST).

Suppose that (Y, T) belongs to case (2) in Theorem 2.3. Put yo € Yj,. For eachi € I\ {ip}, we
consider the set U; := {t € T | yot C Y;}. Define the following matrices Gy, y,¢ for t, t' € U;. Let

1 .
Gyotyot’ = 2% © U} ey T ey — I beey) =) e ))- According to process
in the proof of Lemma 3.6, we can prove that ({Gy; yor' | t, t' € U;}) is an ideal. For eachi € I'\ {ig},
define

1

ey = Z Sodx © (Eyor — Eygr)s
teU; 2|X|
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where €yt = Jiy, o))} Tl ) iy} Then ey, is a central primitive idempotent of 7(S 2 T). We
denote > icp fig) €n; by €.

Lemma 3.7. The sum of e . éx 'S, €4S, é¢ 's and ey, is the identity element.

Proof. It is easy to see that

Clrsm = €1, ,ay), Q Efyo} T Z 8F(r)JX><y8p<r> + Z ——Er0 X xYEF®)

teT\{1y} | | teT, 2|X|

> ex = epmloxverm —er o, ® gy}
el (T(Uy)))x
Z ey = erwlxxyepon — —ErwlxxyEF©®

pelrr(AU®))x |X|

foreacht € Ty \ {1y},
z ey = &rolxxyepon — mgxxydl) +lxxya)
Yelrr(A(S))*
foreacht € Ty,

e =2

teTy

2|X|JX ® (8y0t W)

Thus, we have

Clresim) + Z éX + Z Z EQO

x el (7(U))x teTi\{1v} pelrr(AU®))*

+Z z é‘/f +€n =1x><y. O
tETy relrr(A(S))*

4. Main result

In conclusion, we have determined the set of all central primitive idempotents of Terwilliger alge-
bras of wreath products by quasi-thin schemes. Combining Section 3 and Theorem 4.1 of [4] gives the
following theorem.

Theorem 4.1. Let (X, S) and (Y, T) be association schemes. Suppose that (Y, T) is a quasi-thin scheme or
a one-class scheme. Fix xo € X and yo € Y, and consider the wreath product (X x Y, S T). Then

(1) If (Y, T) is a thin scheme or a one-class scheme, then

{erysn ) U8y | x € (T (U)))*}

U U eyl g elrau®)*}
teT\{1y}

is the set of all central primitive idempotents of 7(X x Y, ST, (X0, Yo0)).
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(2) If (Y, T) has T+ C T, or |T*| > 2, then

{e1yem} U {8y | x € ()%}

U U (&l eelrau®))
teTi\{1y}

U U ey | ¥ € Ir(AS)*} U fey)

teT,

is the set of all central primitive idempotents of T(X x Y, ST, (X, Y0)).
(3) If (Y, T) has |T+| = 1and T+ C Ty, then

{eryem } U {8y | x € Irr(T )<}

U U @ leetmau®))
teTy\{1y}

Uy | ¥ elrr(AGS)*)

teT,
Uley [ 1€\ {io}}

is the set of all central primitive idempotents of T(X x Y, ST, (Xo, yo)).
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