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Abstract

The eigenvalue problem for an irreducible nonnegative matrix A � �aij� in the max

algebra system is A
 x � kx, where �A
 x�i � maxj�aijxj� and k turns out to be the

maximum circuit geometric mean, l�A�. A power method algorithm is given to compute

l�A� and eigenvector x. The algorithm is developed by using results on the convergence

of max powers of A, which are proved using nonnegative matrix theory. In contrast to

an algorithm developed in [4], this new method works for any irreducible nonnegative A,

and calculates eigenvectors in a simpler and more e�cient way. Some asymptotic for-

mulas relating l�A�, the spectral radius and norms are also given. Ó 1999 Elsevier

Science Inc. All rights reserved.

1. Introduction

For an n� n matrix A, the conventional eigenequation for eigenvalue k and
corresponding eigenvector x is Ax � kx. In the max algebra system, for A � �aij�
nonnegative, the eigenequation is maxj�aijxj� � kxi, for i � 1; 2; . . . ; n. Our aim
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is to give a power method algorithm to compute the eigenvalue and corre-
sponding eigenvectors in the max algebra.

To motivate this aim and to place it in context, we need some de®nitions and
notation. As in [2], [14, IV3], the max algebra system consists of the set of
nonnegative numbers with sum a� b � maxfa; bg and the standard product ab
for a; b P 0. Thus, for compatible nonnegative matrices A;B, their product is
denoted by A
 B, where �A
 B�ik � maxj�aijbjk�. In particular, for a vector
x P 0, the product �A
 x�i � maxj�aijxj�. The usual associative and distribu-
tive laws hold in this algebra.

The max-plus algebra system consists of the set R [ f-1g with operations of
maximization and addition; see e.g. [1,3,6,9], and, in particular, [4] for a power
algorithm. (Note that the term ``max-algebra'' is sometimes used in the liter-
ature (e.g. [3,4]) for what is here called the max-plus algebra.) The max-plus
algebra is isomorphic by the exponential map to the max algebra. As illustrated
in [2], the max algebra enables us to use powerful tools of nonnegative ma-
trices, monotonicity and analysis. The isomorphism can then be used to give
results in the max-plus algebra where the eigenequation arises in the study of
discrete event dynamical systems [1].

Throughout Sections 1±3 we assume that A � �aij� is an n� n nonnegative
matrix. The weighted directed graph G�A� associated with A has vertex set
f1; 2; . . . ; ng and an edge �i; j� from i to j with weight aij if and only if aij > 0. A
circuit of length k is a sequence of k edges �i1; i2�; �i2; i3�; . . . ; �ikÿ1; ik�; �ik; i1�,
where i1; i2; . . . ; ik are distinct. This has circuit product ai1;i2 ai2;i3 . . . aik ;i1 with the
positive kth root as the circuit geometric mean. The maximum circuit geometric
mean in G�A� is denoted by l�A� and plays an important role. A circuit with
circuit geometric mean equal to l�A� is called a critical circuit, and vertices on
critical circuits are called critical vertices. Assuming that simultaneous row and
column permutations have been performed on A so that the critical vertices are
in the leading rows and columns, the critical matrix of A, denoted by AC � �aC

ij �,
is formed from the principal submatrix of A on the rows and columns corre-
sponding to critical vertices by setting aC

ij � aij if �i; j� is in a critical circuit, and
aC

ij � 0 otherwise. Thus the critical graph G�AC� has vertex set V C � fcritical
verticesg.

The following basic spectral results are well known in the max-plus algebra
(see e.g. [1,3,6,9,14]), and are proved in [2] for the max algebra.

Theorem 1.1. Let A be an n� n nonnegative irreducible matrix. Then there exists
a unique eigenvalue l�A� that is positive, and a positive eigenvector x, such that
A
 x � l�A�x. This eigenvector is unique (up to scalar multiples) if and only if
G�AC� is strongly connected.

The notation A2

 means A
 A, Ak


 means the 
 kth power of A, and
P
� is

used for � summation. We denote the identity matrix by I , and the matrix with
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every entry 1 by J , the order is usually clear from the context. Vector e has
every entry 1, thus J � eeT. Inequalities are in the component-wise sense, for
example, A6 J means that aij6 1 for all 16 i; j6 n. For x; y nonnegative
vectors, x
 yT � xyT, and x6 y implies that A
 x6A
 y. The following
properties are useful in the sequel. For any permutation matrix P ; P

A
 P T � PAP T, and for any positive diagonal matrix D, D
 A
 Dÿ1

� DADÿ1.
The index of imprimitivity h of a nonnegative irreducible matrix A is the

number of eigenvalues of modulus q�A�, where q�A� is the spectral radius of A,
and if h � 1 then A is primitive; see e.g. [5, Section 3.4]. The value h is also
equal to the g.c.d. of all circuit lengths of the graph G�A�. In particular, it is
known that Ah is the direct sum of h primitive matrices (e.g. [13, p. 82, Cor-
ollary 2] or [5, p. 74, Theorem 3.4.5]).

Section 2 is devoted to results on the convergence of the max powers, Ak

.

We ®nd conditions under which At�d

 � At


 for su�ciently large t and ®xed d,
and study in detail the case d � 1, i.e., when the max powers of A converge in
®nitely many steps. Here d is the cyclicity of A, that is the l.c.m of the indices of
imprimitivity of the irreducible blocks of AC; see Eq. (2.14). These results are
needed for our power method algorithm. We note that equivalent results in the
max-plus algebra are known; nevertheless we choose to give proofs, as our
approach using basic tools of nonnegative matrices is quite di�erent. Our re-
sults are also more general as we do not need to assume that Ad


 is irreducible
(cf. [1, Theorem 3.112]). Our power method, given in Section 3 is more e�cient
than the algorithm given for the max-plus algebra in [4, Algorithm 3.1], and
mentioned for the ®rst time in [1, pp. 457±458]. Except for irreducibility we
need no further assumptions on A, and our method for the calculation of the
eigenvectors, being essentially di�erent from [4], is simpler and works in all
cases. Finally in Section 4, we give some asymptotic formulas that stress
analogies between the standard product, the Hadamard product and the max
product, and also between q�A�; l�A�, and norms.

2. Results on Ak



The following result is needed for the proofs of the main theorems of this
section.

Lemma 2.1. Let

A � A11 A12

A21 A22

� �
be a nonnegative n� n matrix where A6 J , A11 is p � p with p P 1 and each
diagonal entry equal to 1, and A22 < J . Then limk!1 Ak


, denoted by A1, exists.
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If, in addition, either A is irreducible or p � n, then there exists k0 such that
Ak

 � A1 for all k P k0.

Proof. Let

Ak

 �

A�k�11 A�k�12

A�k�21 A�k�22

" #
:

The assumption that A11 P I , and the identities Ak�1

 � A
 Ak


 � Ak

 
 A,

give the following inequalities:

A�k�1�
11 � A11 
 A�k�11 � A12 
 A�k�21 P A�k�11 ; �2:1�

A�k�1�
12 � A11 
 A�k�12 � A12 
 A�k�22 P A�k�12 ; �2:2�

A�k�1�
21 � A�k�21 
 A11 � A�k�22 
 A21 P A�k�21 : �2:3�

Hence the sequences fA�k�11 g; fA�k�12 g, and fA�k�21 g are each monotonic increasing
and bounded above by J . Thus they converge to matrices ~A11, ~A12, and ~A21,
respectively.

De®ne

~Ak

 �

A�k�11 A�k�12

A�k�21 A�k�21 
 A�k�12

" #
and A1 �

~A11
~A12

~A21
~A21 
 ~A12

" #
:

We show that there is an � > 0 such that

~Ak

 6� A1 ) jj ~Ak


 ÿ A1jjF P �; �2:4�
where jj:jjF is the Frobenius norm. To show this, consider an entry of A1 that
di�ers from the corresponding entry of ~Ak


. As 06 ~Ak

6A1, this entry is pos-

itive. Since all entries of ~Ak

 are ®nite products of entries of A, they have no

accumulation point except zero, so for each positive entry of A1 there is a
punctured neighbourhood of it containing no other product of entries of A.
Take � to be the smallest radius of these neighbourhoods, and Eq. (2.4) fol-
lows. The contrapositive of Eq. (2.4) implies that, as ~Ak


 ! A1, there exists q
such that

A�k�11 � ~A11; A�k�12 � ~A12; A�k�21 � ~A21 for all k P q; �2:5�
In fact it can be proved that q6 n, but this is not needed in the sequel. If p � n,
then A1 � ~A11, and the proof is complete with q � k0. We now claim also in the
case p < n that A1 is the limit of the matrices Ak


. By the above, this is obvi-
ously true for the entries in the ®rst p rows and those in the ®rst p columns, so it
remains to consider the block in the last nÿ p rows and columns. Considering
the �1; 2� block of Aq


 
 A � Aq�1

 , and using Eq. (2.5) gives �Aq�1


 �12 � ~A12

� ~A11 
 A12 � ~A12 
 A22. Hence
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~A12 
 A226 ~A12: �2:6�
The ®rst step with k � 1 of an induction proof of the inequality

A�k�22 6 ~A21 
 ~A12 � �A22�k
; for k P 1; �2:7�

is obvious. To see that Eq. (2.7) holds in general, assume that it is true for k,
and consider the case for k � 1. Thus, by multiplication and using the induction
hypothesis,

A�k�1�
22 � A�k�21 
 A12 � A�k�22 
 A22

6 ~A21 
 ~A12 � � ~A21 
 ~A12 � �A22�k
� 
 A22

� ~A21 
 ~A12 � ~A21 
 ~A12 
 A22 � �A22�k�1



6 ~A21 
 ~A12 � ~A21 
 ~A12 � �A22�k�1

 by �2:6�

� ~A21 
 ~A12 � �A22��k�1�



as required to show Eq. (2.7) is true for all k P 1. On the other hand, for
k P 2q, writing k � t � s with s; t P q,

A�k�22 � A�s�21 
 A�t�12 � A�s�22 
 A�t�22 P A�s�21 
 A�t�12

� ~A21 
 ~A12; from �2:5�:
Thus for k P 2q, from the above and Eq. (2.7),

~A21 
 ~A126A�k�22 6 ~A21 
 ~A12 � �A22�k
:
Since A22 < J , it follows that limk!1�A22�k
 � 0, and thus limk!1A�k�22 �
~A21 
 ~A12; completing the claim that limk!1Ak


 � A1.
If A is irreducible, then due to the fact that the diagonal entries of A11 are

nonzero, the matrix A is primitive, i.e., in the standard product Am > 0 for some
positive integer m, see e.g. [5, Theorem 3.5.2]. From the obvious relation for
n� n nonnegative matrices

AB
n
6A
 B6AB

and by induction

Am

nmÿ1
6Am


6Am

for A P 0 and natural numbers m. So for A primitive it is also true that Am

 > 0.

Thus ~A21 
 ~A12 > 0, and the same argument as for Eq. (2.4) shows that
A�k�22 � ~A21 
 ~A12 for su�ciently large k, i.e., k > k0. Thus the limit A1 is reached
after ®nitely many steps. h
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Note that the last statement of Lemma 2.1 is not in general true for reducible
A if p < n. This can be seen from the reducible example A � diag�1; 2ÿ1�, which
satis®es all the assumptions of the ®rst part of Lemma 2.1 with p � 1, has
A1 � diag�1; 0�, but A�k�22 � 2ÿk 6� 0 for ®nite k.

Theorem 2.2 is for irreducible A an important special case (namely d � 1) of
our Theorem 2.3. It is also the main tool in its proof.

Theorem 2.2. Assume that A is an n� n nonnegative matrix with l�A� � 1, and
that its critical matrix AC is the direct sum of primitive matrices. If either A is
irreducible or V C � f1; 2; . . . ; ng, then limk!1 Ak


, denoted by A1, exists and
Ak

 � A1 for su�ciently large k.

Proof. First note that this statement is invariant under diagonal similarities,
and simultaneous permutations on rows and columns. Permute the critical
vertices so that AC is a direct sum, namely AC � AC

11
_�AC

22
_� � � � _�AC

rr, de®ning a
block structure on A. Now by a result of [11], see also [10], A can be scaled by a
diagonal similarity so that aij6 1 for all i; j � 1; 2; . . . ; n, with aij � 1 if edge
(i; j) is on a critical circuit. As all critical circuits are contained in blocks
A11;A22; . . . ;Arr, an additional diagonal scaling achieves aij < 1 outside these
blocks. So A can be assumed to be in block form

A �

A11 � � � A1r A1;r�1

..

. . .
. ..

. ..
.

Ar1 � � � Arr Ar;r�1

Ar�1;1 � � � Ar�1;r Ar�1;r�1

2666664

3777775; �2:8�

where Aij < eieT
j with the exception of i � j � 1; 2; . . . ; r, and AC

ii primitive for
i � 1; 2; . . . ; r. Here ei is the vector with every entry 1 and dimension equal to
the cardinality of the block Aii. Thus there exists a positive integer p such that

Ap

 �

A�p�11 � � � A�p�1r A�p�1;r�1

..

. . .
. ..

. ..
.

A�p�r1 � � � A�p�rr A�p�r;r�1

A�p�r�1;1 � � � A�p�r�1;r A�p�r�1;r�1

26666664

37777775
has A�p�ii � eieT

i for i � 1; 2; . . . ; r, and A�p�ij < eieT
j otherwise. This equality fol-

lows from primitivity and monotonicity, namely 0 < �AC
ii �p
6 �Aii�p
6 eieT

i , and
the fact that �AC

ii �p
 is a (0,1) matrix. From Lemma 2.1, since A is irreducible or
A�p�r�1;r�1 � ;, there exists k0 such that Akp


 is constant for all k P k0. This constant
matrix is denoted by A1, and can be written as
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A1 �

e1eT
1

~A12 � � � ~A1r
~A1;r�1

~A21
. .

.
~A2;r�1

..

. . .
. ..

.

~Ar1 ereT
r

~Ar;r�1

~Ar�1;1
~Ar�1;2 � � � ~Ar�1;r

~Ar�1;r�1

26666666664

37777777775
:

The equality A1 
 A1 � A1 leads to

~Aij � aijeieT
j for i; j6 r with aii � 1; aij < 1 for i 6� j;

~Ar�1;j � gje
T
j ;

~Aj;r�1 � ejn
T
j for j6 r;

~Ar�1;r�1 �
Xr

�
j�1

gjn
T
j ; where gj; nj are nonnegative vectors:

�2:9�

For example, when i; j6 r; i 6� j,

~Aij �
Xr�1

�
k�1

~Aik 
 ~Akj P ~Aii 
 ~Aij � eieT
i 
 ~Aij P ~Aij:

This implies ~Aij � eieT
i 
 ~Aij, so all rows of ~Aij are equal. Similarly

~Aij P ~Aij 
 ~Ajj � ~Aij 
 ejeT
j P ~Aij, and as above it follows that all columns are

equal. So ~Aij � aijeieT
i for a number aij, which is < 1. This gives the ®rst relation

of Eq. (2.9). Also,

~Aj;r�1 �
Xr�1

�
k�1

~Ajk 
 ~Ak;r�1 P ~Ajj 
 ~Aj;r�1 � ejeT
j 
 ~Aj;r�1: �2:10�

As above, equality holds in Eq. (2.10) and thus ~Aj;r�1 � ejn
T
j , where

nT
j � eT

j 
 ~Aj;r�1. Substituting in the ®rst equation of Eq. (2.10) gives:

ejn
T
j �

Xr

�
k�1

ajkejeT
k 
 ekn

T
k g � f ~Aj;r�1 
 ~Ar�1;r�1

8<:
9=;

P
Xr

�
k�1

ajkejn
T
k P ejn

T
j :

So there is equality and

ejn
T
j �

Xr

�
k�1

ajkejn
T
k : �2:11�
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In a similar way, ~Ar�1;j � gje
T
j for j6 r, where gj � ~Ar�1;j 
 ej. Now the

last equation in Eq. (2.9) follows from Lemma 2.1, since ~Ar�1;r�1 �
Pr

�
j�1~Ar�1;j 
 ~Aj;r�1 �

Pr
�

j�1
gjn

T
j .

For i � 1; 2; . . . ; r, de®ne xi � �a1ieT
1 ; a2ieT

2 ; . . . ; arieT
r ; g

T
i �T, and yi � �0; . . . ; 0;

eT
i ; 0; . . . ; 0; nT

i �T. Recall that aii � 1. Consider the �j; r � 1� block ofPr
�

k�1
xk 
 yT

k . It is given by
Pr

�
k�1

ajkejn
T
k � ejn

T
j from Eq. (2.11). This is also

equal to ~Aj;r�1, which is the �j; r � 1� block of A1. By also comparing blocks in
columns 1; 2; . . . ; r and the �r � 1; r � 1� block, it can be easily seen from
Eq. (2.9) that

A1 �
Xr

�
i�1

xi 
 yT
i : �2:12�

Now we claim that A
 A1P A1. From A
 A1 � A1 
 A, it follows thatXr

�
i�1

�A
 xi� 
 yT
i �

Xr

�
i�1

xi 
 �yT
i 
 A�: �2:13�

De®ne zj � �0; . . . ; 0; eT
j ; 0; . . . ; 0�T for j � 1; 2; . . . ; r, then yT

i 
 zj � dij and
yT

i 
 A
 zj6 1 with equality when i � j. From Eq. (2.13)Xr

�
i�1

�A
 xi� 
 yT
i 
 zj � A
 xj �

Xr

�
i�1

xi 
 �yT
i 
 A
 zj�P xj;

and by Eq. (2.12),

A
 A1 �
Xr

�
i�1

A
 xi 
 yT
i P

Xr

�
i�1

xi 
 yT
i � A1:

Thus our claim is proved, and can be used recursively to give

A16A
 A16A2

 
 A16 � � � 6Ap


 
 A1 � A1:

So A
 A1 � A1 and limk!1Ak

 � A1, and in fact Ak


 � A1 for k P pk0. h

Note that the assumption that AC
ii are primitive cannot be dropped in general

from Theorem 2.2. For example, consider the matrix

A �
2ÿ2 1 2ÿ1

1 2ÿ2 2ÿ1

2ÿ1 2ÿ1 2ÿ2

264
375;

where A11 is 2� 2 irreducible, but AC
11 is not primitive. Then
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A2k

 �

1 2ÿ2 2ÿ1

2ÿ2 1 2ÿ1

2ÿ1 2ÿ1 2ÿ2

264
375

and A2k�1

 � A. Thus limk!1Ak


 does not exist.
In general AC is the direct sum of irreducible matrices, namely

AC � AC
11

_�AC
22

_� � � � _�AC
rr with indices of imprimitivity si for i � 1; 2; . . . ; r. So

de®ning the cyclicity of A by

d � l:c:m:�s1; s2; . . . ; sr�; �2:14�
then by the results in the Introduction on powers of irreducible matrices �AC�d
is the direct sum of

Pr
i�1 si primitive matrices. We can now formulate a general

result concerning the behaviour of the powers of A.

Theorem 2.3. Assume that A P 0 is irreducible, l�A� � 1, and let d be de®ned as
in Eq. (2.14). Then there exists t0 such that for all t P t0

At�d

 � At


: �2:15�

Proof. Firstly, note that, letting B � Ad

,

�Ad

�C � BC � �AC�d
;

since a product of d factors, each of which is less than or equal to 1, is equal to

1 if and only if each factor is 1. As �AC�d=ndÿ16 �AC�d
6 �AC�d and �AC�d is the
direct sum of primitive matrices, then so is �AC�d
 � BC. Also l�B� � 1. If B is
irreducible, then Theorem 2.2 can be applied directly to B. If B is reducible,
then by [13, p. 81,Theorem 9], B is the direct sum of irreducible matrices, and
Theorem 2.2 can be applied to each diagonal block. Hence there is s such that
Bs

 � Bs�1


 and thus for t0 � sd, At0�d

 � At0
. But then Eq. (2.15) holds for all

t P t0. h

We mention again that Theorem 2.2 for A irreducible, is the special case of
Theorem 2.3 with d � 1. Versions of these theorems under the additional as-
sumption that Ad


 is irreducible are well-known in the max-plus algebra, see e.g.
[1, Theorem 3.108, 3.112], [6, Theorem 4], [7, p. 45]. However, our proofs are
di�erent and use standard tools from nonnegative matrix theory. We now use
our results for a power method algorithm.

3. Power method in the max algebra

In this section we study a power method for calculating eigenvectors of an
irreducible matrix A in the max algebra. It also provides a sequence of upper
and lower bounds for the eigenvalue l�A�.

L. Elsner, P. van den Driessche / Linear Algebra and its Applications 302±303 (1999) 17±32 25



It turns out that in this situation the results are di�erent from those in the
conventional case of the ordinary matrix algebra (see e.g. [16, Ch. 2]), which we
nevertheless follow in spirit. In the max algebra, our assumptions are more
general than those in [4], and we obtain an eigenvector directly.

In the sequel we make use of the following result.

Lemma 3.1. Let A P 0 be irreducible, and x P 0; x 6� 0.

If a; b 2 R� and ax6A
 x6 bx; then a6 l�A�6b: �3:1�

Proof. Let y P 0 be a left eigenvector of A. Then yT 
 A � l�A�yT with y > 0 by
Theorem 1.1 applied to AT and using the obvious relation l�A� � l�AT�. From
A
 x6 bx, we have l�A�yT 
 x � yT 
 A
 x6byT 
 x and thus l�A�6 b. The
proof of the second statement is similar. h

For x > 0 we de®ne qi�x� � �A
 x�i=xi and

�q�x� � max
i

qi�x� � max
i

max
j

aij
xj

xi

q�x� � min
i

qi�x� � min
i

max
j

aij
xj

xi
:

Then by Lemma 3.1, as q�x�x6A
 x6 �q�x�x,

q�x�6 l�A�6 �q�x�: �3:2�
This inequality can be found for x � e in [3, Cor. 4.2], in the max-plus al-

gebra version. It is however obvious that applying the result of [3] to Dÿ1AD,
where D � diag�x1; x2; . . . ; xn�, and using l�A� � l�Dÿ1AD�, Eq. (3.2) is also
obtained. The classical analogue of Eq. (3.2) was ®rst given in [8].

We consider now for given x�0� > 0 the sequence x�t�; t � 1; 2; . . . generated
by

x�t � 1� � A
 x�t�; t P 0 �3:3�
and show that the iterates x�t� yield a sequence of increasingly better upper and
lower bounds for l�A�.
Lemma 3.2. Let A P 0 be irreducible. De®ne x�t�; t � 0; 1; . . . as above, and

�qt � �q�x�t��; q
t
� q�x�t��:

Then

q
t
6 q

t�1
6l�A�6 �qt�16 �qt; t � 0; 1; . . . �3:4�

Proof. By the irreducibility of A, all x�t� are strictly positive and hence q
t
; �qt are

well de®ned. To show �qt�16 �qt, multiply the inequality
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A
 x�t�6 �qtx�t�
by A. This leads to

A
 x�t � 1� � A
 A
 x�t�6A
 �qtx�t� � �qtx�t � 1�
and hence by de®nition, �qt�16 �qt. Similarly q

t
6 q

t�1
. The other inequalities of

Eq. (3.4) follow from Eq. (3.2). h

In the conventional case, for x > 0 de®ne q�x� and �q�x� as the minimum and
maximum of the numbers qi�x� � �Ax�i=xi; i � 1; . . . ; n. For ~x�t � 1� � A~x�t�,
with the standard matrix product, de®ning ~q

t
� q�~x�t��; �~qt � �q�~x�t�� also gives:

~q
t
6 ~q

t�1
6 q�A�6 �~qt�16 �~qt:

Here it is known that for A primitive limt!1~q
t
� limt!1�~qt � q�A� and that the

x�t�, suitably normalized, converge to the (suitably normalized) eigenvector of
A corresponding to q�A�.

In the max algebra case we have

l1�A� :� lim
t!1

q
t
6 l�A�6l2�A� :� lim

t!1
�qt �3:5�

and the existence of a vector z > 0, an accumulation point of the suitably
normalized sequence fx�t�gt�0;1;... satisfying

l1�A� � q�As

 
 z�; l2�A� � �q�As


 
 z�; s � 0; 1; . . . :

The example

A � 0 2

1 1

� �
with x�0� � 1

1

� �
gives x�1� � 2

1

� �
;

x�2� � 2

2

� �
; x�3� � 2

2

1

� �
and z � 2

1

� �
; l1�A� � 1 <

���
2
p

� l�A� < l2�A� � 2;

and shows that primitivity of A alone does not guarantee convergence of either
qt to l�A� or x�t� to an eigenvector. We prove the following result.

Theorem 3.3. Let A P 0 be irreducible, and consider the sequence
x�t � 1� � A
 x�t�; t � 0; 1; . . . where x�0� > 0 is given. If the critical matrix
AC is the direct sum of primitive matrices, then x(t) is an eigenvector of A for
some ®nite t0 (and hence for all t P t0), and q

t
� l�A� � �qt. Otherwise there exist

integers p, t and a positive number s such that

Ap

 
 x�t� � sx�t�; �3:6�

in which case
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l�A� � s1=p; �3:7�

z � x�t� � 1

l�A�A
 x�t� � � � � � 1

l�A�pÿ1
Apÿ1

 
 x�t� �3:8�

is an eigenvector of A.

Proof. By Theorem 2.2, if AC is the direct sum of primitive matrices, then

1

l�A�t At

 � A1

for all t P t0, where A
 A1 � l�A�A1. For such a t it follows that
x�t� � At


 
 x�0� � l�A�tA1 
 x�0�, showing that x�t� is in the range of A1 and
hence an eigenvector. So q

t
� l�A� � �qt and l1�A� � l�A� � l2�A�. In general,

if A is only irreducible, we have by Theorem 2.3 that there exist t0 and a
minimal integer p6 d, where d is given by Eq. (2.14), such that

1

l�A�t�p At�p

 �

1

l�A�t At

 for all t P t0:

Hence

Ap

 
 x�t� � x�t � p� � l�A�px�t� for all t P t0

and we see that Eq. (3.6) holds with s � l�A�p. It is veri®ed in a straight for-
ward manner that z given by Eq. (3.8) satis®es A
 z � l�A�z. h

Observe that p � 1 gives the case of convergence. So we have shown that the
following algorithm will stop after ®nitely many steps, giving a vector z and
number l�A� satisfying A
 z � l�A�z.

Algorithm 3.4. Let A P 0, irreducible, x�0� > 0.
For t � 0; 1; . . .
1. x�t � 1� � A
 x�t�;
2. For r � 1; 2; . . . ; t � 1

If x�t � 1� � sx�t � 1ÿ r� for some s > 0; then
l�A� � s1=r

z � x�t � 1ÿ r� � 1
l�A� x�t � 2ÿ r� � � � � � 1

l�A�rÿ1 x�t�
p � r
stop:

We remark that the number p calculated by this algorithm and in Theorem
3.3 is in general only a lower bound for d, the cyclicity of A, see Eq. (2.14). If by
chance x�0� is an eigenvector, p will be 1, regardless of the cyclicity of A. If
G�AC� has r strongly connected components, then r linearly independent (in the
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max sense) eigenvectors exist [2, Theorem 5]. These can be found by starting
with di�erent x�0�. If x�0�P 0, x�0� 6� 0, but after some iterations x�k� > 0,
then the previous results apply. Note also that Eq. (3.8) gives an eigenvector
without any further calculation, in contrast to the power algorithm for the
max-plus algebra given in [4, Algorithm 3.1].

Example 3.5. Let

A �
0 e3 0

e2 0 e

e e2 e2

264
375;

cf. [4, Example 5.2]. Then A is irreducible, AC is the leading 2� 2 principal
submatrix of A and is irreducible but not primitive. Take x�0� � �1; 0; 0�T, then
x�1� � �0; e2; e�T; x�2� � �e5; e2; e4�T; x�3� � �e5; e7; e6�T; x�4� � e5x�2�; giving
l1�A� � 1; l2�A� � e5 and A2


 
 x�2� � e5x�2�. Thus l�A� � e
5
2, with eigenvec-

tor z � x�2� � eÿ
5
2A
 x�2� � �e5; e

9
2; e4�T.

4. Asymptotic formulas

In this section we give some asymptotic formulas for l�A� that involve
spectral radii and matrix norms. They complement some well known relations
for other matrix products, see the table at the end of this section. These results
are certainly of more theoretical interest than the power algorithm developed in
the previous section.

For A 2 Mn � fn� n complex matricesg, it is well known that for any ma-
trix norm

lim
k!1
jjAkjj1=k � q�A�; �4:1�

see e.g. [15, Corollary 5.6.14]. The Hadamard power of A is de®ned via the
Hadamard (componentwise) product as Ak

� � �ak
ij�, and it is clear from the

de®nition of l for A nonnegative that

l�Ak
�� � �l�A��k; �4:2�

see e.g. [14, p. 140]. For A nonnegative and irreducible, then A
 x � l�A�x with
x > 0 by Theorem 1.1, thus

l�Ak

� � �l�A��k: �4:3�

By continuity this holds also for reducible A P 0. It is also well known (see [10,
(6.11)], [14, p. 138]) that, for an n� n nonnegative matrix A,

l�A�6q�A�6 nl�A�; �4:4�
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which together with Eq. (4.2) implies that

lim
k!1
�q�Ak

���1=k � l�A� �4:5�
as given in [10, (6.1)], [12, Theorem 1], [14, p. 140]. Also from Eq. (4.4) and the
fact that q�Ak� � �q�A��k, we have the result of [2, Theorem 14], namely

lim
k!1
�l�Ak��1=k � q�A�: �4:6�

We now give corresponding asymptotic formulas when the standard and
Hadamard products are replaced by the max product.

Lemma 4.1. If A P 0 then

lim
k!1
jjAk

jj1=k � l�A�: �4:7�

Proof. Since for an operator norm jjAjjP q�A� for any A 2 Mn [15, Theorem
5.6.9],

jjAk

jjP q�Ak


�P l�Ak

� � �l�A��k;

by Eqs. (4.4) and (4.3). So if the required limit exists, it must be at least l�A�.
Assume for the other direction that l�A� � 1, and A is scaled as in Theorem 2.2
so that aij6 1 for all i; j. Then Ak


6 eeT, so the maximum row sum norm of Ak



is at most n. Since the limit does not depend on the choice of norm, its value is
at most 1 � l�A�. Hence the limit exists and has value l�A�. h

By Eqs. (4.3) and (4.4) it is obvious that

lim
k!1
�l�Ak


��1=k � lim
k!1
�q�Ak


��1=k � l�A�: �4:8�

As the ®nal relation, we have that

lim
k!1
jjAk
�jj1=k � max

i;j
jai;jj �4:9�

for A 2 Mn. This follows by taking the norm jjAjj � n maxi;j jaijj; see [15,
p. 292].

We summarize the above results for A P 0 in the following table where
limk!1�a�Ak

b��1=k
is given in row a with a 2 fl; q; jj � jjg, and column b, where

b denotes the matrix product used (standard, Hadamard or max product).

a n b Standard Hadamard � Max 

l q�A� l�A� l�A�
q q�A� l�A� l�A�
jj � jj q�A� maxi;j jaijj l�A�
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Note that the three entries not involving l hold for all A 2 Mn.

5. Concluding remarks

In Section 3 we developed a power method algorithm for the eigenvalue
problem A
 x � l�A�x in the max algebra. By formulating it in this way we
were able to use the well developed machinery of nonnegative matrix theory.
But the algorithm also can be viewed via the exponential map as a method in
the max-plus algebra, and it turns out to be much simpler than the previously
known method.

There are still open problems in this context, we mention just two of them.
We would like to know a bound for t0 in Theorem 3.3, or equivalently for the
number of steps in Algorithm 3.4. In the literature, see e.g. [1, Ch. 3], other
representations for the eigenvector are given. What are the exact relations to
our formula (3.8)?
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