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This paper formulates a simple classical radial basis functions (RBFs) collocation (Kansa)
method for the numerical solution of the nonlinear dispersive and dissipative KdV–Bur-
gers’ (KdVB) equation. The computed results show implementation of the method to non-
linear partial differential equations. This method has an edge over traditional methods
such as finite-difference and finite element methods because it does not require a mesh
to discretize the problem domain, and a set of scattered nodes in the domain of influence
provided by initial data is required for the realization of the method. Accuracy of the
method is assessed in terms of error norms L2; L1, number of nodes in the domain of influ-
ence, parameter dependent RBFs and time step length. Numerical experiments demon-
strate accuracy and robustness of the method for solving nonlinear dispersive and
dissipative problems.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Kortewege–de Vries–Burgers’ equation is a nonlinear partial differential equation, which is given by
ut þ euux � muxx þ luxxx ¼ 0; ð1Þ
where e; m and l are positive parameters. This equation was initially formulated by Gardner [1]. This model arises in many
physical applications such as propagation of undular bores in shallow water waves [2], propagation of waves in elastic tube
filled with a viscous fluid [3] and weakly nonlinear plasma waves with certain dissipative effects [4]. It represents long
wavelength approximations where effects of the nonlinear advection term uux is counterbalanced by the dispersion uxxx.
A number of theoretical issues related the KdVB equation have received considerable attention. The traveling wave solution
in particular has been studied extensively. Demiray [5], Antar and Demiray [6] derived KdVB equation as the governing evo-
lution equation for wave propagation in fluid-filled elastic or viscoelastic tubes in which the effects of dispersion, dissipation
and nonlinearity were present. Eq. (1) is combination of the Burgers’ equation (l ¼ 0) and the KdV equation (m ¼ 0). Burgers’
equation [7] was first used by Burger for the study of turbulence in 1939, whereas KdV equation [8] was first suggested by
Kortewege and de Vries who used this as a nonlinear model to study the change in shape of long waves moving in a rect-
angular channel. KdVB equation has been solved by many authors exactly and numerically. Zaki [9] has used quintic B-
spline finite elements method whereas Talaat and El-Danaf [10] has used septic B-spline to obtain numerical methods
for solution of KdVB equation. In [11,12], ADM and variational iteration methods were used to obtain exact solution of KdVB
equation.
. All rights reserved.
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In the last decade, mesh-free methods using radial basis functions have been extensively used, because in classical
numerical methods, such as finite-difference method, finite element method, finite volume method, generating the mesh
for the application of these methods, especially in two or three dimensional problems is nontrivial task. In 1990, Kansa
[13] introduced a technique for solving partial differential equations by collocation method using radial basis functions.
In this approach, the solution is approximated by radial basis functions, and the collocation method is used to compute
the unknown coefficients. Hardy’s multiquadric (MQ), Duchon’s thin plate splines (TPS), Gaussians (GA), inverse multiqua-
dric (IMQ) and inverse quadric (IQ) are the globally supported RBFs which are commonly used in the literature for solving
partial differential equations. The existence, uniqueness and convergence of the method were discussed by Micchelli [14],
Madych and Nelson [15], Franke and Schaback [16]. Since the original idea for applying the RBFs method to solve PDEs
was proposed by Kansa, latter on, this approach was solidified by Golberg et al. [17]. Hon and Mao [18] extended the use
of RBFs for the numerical solutions of various ordinary and partial differential equations including nonlinear Burgers’ equa-
tion with shock waves. These RBFs contain shape parameter and by varying the value of the shape parameter one can pro-
duce most accurate results.

In this paper, we have used three RBFs, multiquadric, Gaussian and inverse quadric, to solve the KdV–Burgers’ equation.
The results so obtained are compared with those already exist in the literature. It is shown that the results obtained are bet-
ter and advance than the previous ones.

Rest of the paper is organized as follow. In Section 2, we discuss the mesh-free method. In Section 3, numerical results of
KdVB equation with its special cases are presented. Lastly in Section 4, the results are summarized.

2. Description of the method

Consider the Kortewege–de Vries–Burgers’ equation (1) with boundary conditions
uða; tÞ ¼ g1ðtÞ; uðb; tÞ ¼ g2ðtÞ; t > 0 ð2Þ
and initial condition
uðx;0Þ ¼ f ðxÞ; a 6 x 6 b; ð3Þ
where e; m;l are positive parameters, g1; g2 are given functions of t and f ðxÞ is bounded. We discritize the above equation in
time t using Crank–Nicolson rule given by
unþ1 � un

dt
þ e

2
ðuuxÞnþ1 þ ðuuxÞn
n o

� m
2
ðuxxÞnþ1 þ ðuxxÞn
n o

þ l
2
ðuxxxÞnþ1 þ ðuxxxÞn
n o

¼ 0; ð4Þ
where tnþ1 ¼ tn þ dt;unþ1 ¼ uðx; tnþ1Þ and dt is time step size.
The nonlinear term in the above equation is linearized as follow:
ðuuxÞnþ1 ¼ ununþ1
x þ unþ1un

x � unun
x : ð5Þ
Using Eq. (5) in Eq. (4), we obtain
unþ1 þ dt
2

lðuxxxÞnþ1 � mðuxxÞnþ1 þ e ununþ1
x þ unþ1un

x

� �h i
¼ un þ dt

2
m uxxÞn � lðuxxx
� �n

h i
: ð6Þ
We approximate solution of Eq. (1) by
unðxiÞ ¼
XN

j¼0

kn
j /ðrijÞ; ð7Þ
where xi ¼ idx; i ¼ 0;1;2; . . . ;N; dx is space step, are collocation points in interval ½a; b�; rij ¼ kxi � xjk is distance between the
collocation points xi and xj, kn

j are unknown coefficients to be determined and /ðrjÞ is a radial basis function. In this paper, we
are using the following three types of radial basis functions:

Multiquadric (MQ) /ðrÞ ¼ ðr2 þ c2Þ
1
2.

Inverse quadric (IQ) /ðrÞ ¼ ðr2 þ c2Þ�1.
Gaussian (GA) /ðrÞ ¼ expð�c2r2Þ.

Substituting approximation (7) in Eq. (6) for all interior points xi; i ¼ 1;2;3; . . . ;N � 1, we get the following
approximations
XN

j¼0

knþ1
j /ðrijÞ �

dt
2

m
XN

j¼0

knþ1
j /00ðrijÞ � l

XN

j¼0
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j /000ðrijÞ þ e
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( )" #
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" #
: ð8Þ
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The boundary conditions (2) become as
XN

j¼0

knþ1
j /ðr0jÞ ¼ g1ðtÞ; ð9Þ

XN

j¼0

knþ1
j /ðrNjÞ ¼ g2ðtÞ ð10Þ
for boundary points x0 and xN , respectively. The system of Eqs. (8)–(10) can be solved for unknown coefficients kn
j by Gauss-

ian elimination method. By substituting the values of kn
j in Eq. (7), solution of the problem (1) at time level n can be obtained.

3. Numerical examples

In this section, we solve three examples to check performance of the method. Accuracy of the results are computed using
the L2 and L1 error norms given by
L2 ¼ uexact � uapp
�� ��

2 ¼ Dx
XN

j¼1

uexact � uapp� �2

" #1=2

; ð11Þ

L1 ¼ uexact � uapp
�� ��

1 ¼maxj uexact � uapp
�� ��: ð12Þ
We examine our results by calculating the following three conservative laws corresponding to mass, momentum and energy
[19]:
C1 ¼
Z b

a
udx;

C2 ¼
Z b

a
u2dx;

C3 ¼
Z b

a
u3 � 3l

e
u0ð Þ2

� �
dx:
Example 3.1. Consider KdV–Burgers’ equation (1) with e ¼ 1 and the initial condition
uðx; 0Þ ¼ � 6m2

25l
1þ tanh

mx
10l

� 	
þ 1

2
sech2 mx

10l

� 	� �
: ð13Þ
The exact solution of Eq. (1) having initial condition (13) is given by [20]
uðx; tÞ ¼ � 6m2

25l
1þ tanhðnÞ þ 1

2
sech2ðnÞ

� �
; ð14Þ
where n ¼ m
10l ðxþ 6m2

25l tÞ. We take the boundary conditions
uða; tÞ ¼ � 6m2

25l
1þ tanh

m
10l

aþ 6m2

25l
t

� 	� 	
þ 1

2
sech2 m

10l
aþ 6m2

25l
t

� 	� 	� �
; ð15Þ

uðb; tÞ ¼ � 6m2

25l 1þ tanh
m

10l bþ 6m2

25l t
� 	� 	

þ 1
2

sech2 m
10l bþ 6m2

25l t
� 	� 	� �

: ð16Þ
We take e ¼ 1;l ¼ 0:1; dx ¼ 0:5; dt ¼ 0:001 and m ¼ 0:004;0:04;0:1, respectively, to study the effects of viscosity in Eq.
(1). In Fig. 1, we present the solution profiles for different values of m whereas Fig. 2 represents the error graphs of the solu-
tions with MQ, GA and IQ, respectively, at time t ¼ 10. It is clear from these graphs that as viscosity m increases the solution of
KdVB equation tends to behave like the solution of Burgers’ equation. The L1 and L2 error norms, and the conservative laws
are shown in Tables 1–3. From these tables, it is clear that all the three invariants preserves very accurately by the mesh-free
method. It is to be noted that the problem is solved by three types of radial basis functions, i.e., multiquadric (MQ), Gaussian
(GA) and Inverse quadric (IQ). The tabulated results obtained corresponding to the values of shape parameter c ¼ 0:02;0:09
and 4.5 for MQ, GA, IQ, respectively. It is clear from Tables 1–3, that the results of MQ are marginally better than GA and IQ.
Moreover the accuracy of the scheme at advance time levels is relatively lower because of first order finite-difference
approximation for time derivative.

Special cases: as discussed in introduction, when l ¼ 0 and m ¼ 0 then Eq. (1) will reduce to Burgers’ and KdV equations,
respectively. To get more insight of the model (1), we discuss each case separately.

Example 3.2. By putting l ¼ 0; m ¼ 0:01 and e ¼ 1 in Eq. (1), we get Burgers’ equation
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Fig. 1. KdVB type solutions for different values of the viscosity m ¼ 0:001;0:1;1 from left to right, showing that solution vector for KdVB equation tends to
behave like a solution of Burger equation.
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Fig. 2. Errors (exact solution–numerical solution) at t = 10.

Table 1
Invariants and error norms for single soliton m ¼ 0:004.

Time 1 2 3 10

MQ
C1 �2.331E�003 �2.331E�003 �2.331E�003 �2.331E�003�
C2 1.343E�007 1.343E�007 1.343E�007 1.343E�007
C3 �8.619E�012 �8.622E�012 �8.624E�012 �8.630E�012
L1 6.822E�009 1.150E�008 1.485E�008 2.479E�008
L2 8.845E�009 1.652E�008 2.338E�008 6.046E�008

GA
C1 �2.360E�003 �2.360E�003 �2.360E�003 �2.364E�003
C2 1.360E�007 1.360E�007 1.360E�007 1.364E�007
C3 �8.137E�012 �8.195E�012 �8.451E�012 �2.161E�011
L1 7.913E�009 5.128E�008 1.677E�007 3.294E�006
L2 5.378E�009 3.488E�008 1.199E�007 3.706E�006

IQ
C1 �2.331E�003 �2.331E�003 �2.332E�003 �2.332E�003
C2 1.343E�007 1.343E�007 1.344E�007 1.344E�007
C3 -9.202E�012 �1.148E�011 �1.368E�011 �1.705E�011
L1 4.077E�007 7.475E�007 9.830E�007 1.270E�006
L2 2.574E�007 4.982E�007 6.709E�007 8.858E�007
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ut þ uux � muxx ¼ 0 ð17Þ
subject to the initial condition
uðx;0Þ ¼ aþ bþ ðb� aÞecf g
1þ ecð Þ ; ð18Þ
where c ¼ ðamÞðx� gÞ and a; b, g; m are the parameters. The exact solution [20] of the above problem is given by
uðx; tÞ ¼ aþ bþ ðb� aÞexpðfÞ½ �
1þ expðfÞf g ; ð19Þ
where f ¼ ðamÞðx� bt � gÞ.



Table 2
Invariants and error norms for single soliton m ¼ 0:04.

Time 1 2 3 10

MQ
C1 �2.198E�001 �2.198E�001 �2.199E�001 �2.200E�001
C2 1.300E�003 1.300E�003 1.300E�003 1.301E�003
C3 �8.368E�006 �8.369E�006 �8.371E�006 �8.381E�006
L1 2.936E�006 4.204E�006 4.126E�006 5.800E�006
L2 3.727E�007 2.207E�008 1.928E�006 1.297E�005

GA
C1 �2.223E�001 �2.223E�001 �2.223E�001 �2.229E�001
C2 �1.315E�003 1.315E�003 1.316E�003 1.323E�003
C3 �8.477E�006 �8.481E�006 �8.491E�006 �8.654E�006
L1 �1.482E�006 �8.668E�006 2.665E�005 2.987E�004
L2 2.865E�006 9.908E�006 2.575E�005 4.084E�004

IQ
C1 �2.198E�001 �2.200E�001 �2.202E�001 �2.186E�001
C2 1.300E�003 1.302E�003 1.304E�003 1.284E�003
C3 �8.381E�006 �8.592E�006 �8.545E�006 �1.349E�005
L1 3.925E�005 2.465E�004 3.567E�004 1.669E�003
L2 2.842E�005 2.251E�004 4.205E�004 1.878E�003

Table 3
Invariants and error norms for single soliton m ¼ 0:1.

Time 1 2 3 10

MQ
C1 �1.205E�000 �1.206E�000 �1.207E�000 �1.215E�000
C2 4.863E�002 4.868E�002 4.874E�002 4.912E�002
C3 �2.150E�003 �2.152E�003 �2.155E�003 �2.172E�003
L1 1.540E�005 3.076E�005 4.604E�005 1.498E�004
L2 1.004E�005 1.732E�005 2.874E�005 1.342E�004

GA
C1 �1.217E�000 �1.218E�000 �1.220E�000 �1.228E�000
C2 4.921E�002 4.926E�002 4.933E�002 4.979E�002
C3 �2.178E�003 �2.181E�003 �2.184E�003 �2.207E�003
L1 1.540E�005 6.794E�005 1.622E�004 4.886E�004
L2 2.564E�005 8.394E�005 1.864E�004 1.058E�003

IQ
C1 �1.205E�000 �1.206E�000 �1.207E�000 �1.216E�000
C2 4.863E�002 4.870E�002 4.876E�002 4.919E�002
C3 �2.151E�003 �2.154E�003 �2.156E�003 �2.178E�003
L1 1.314E�004 2.330E�004 1.741E�004 4.436E�004
L2 1.169E�004 3.476E�004 3.315E�004 1.218E�003

Table 4
Error norms for single soliton.

Time 0.1 0.3 0.5 0.8 1

MQ
L1 1.064E�005 1.292E�005 1.449E�005 2.082E�004 2.497E�005
L2 1.926E�005 3.979E�005 5.523E�005 7.480E�005 8.654E�005

GA
L1 1.22E�003 3.686E�003 6.166E�003 9.956E�003 1.251E�002
L2 1.338E�005 7.503E�005 2.028E�004 5.464E�004 8.601E�004

IQ
L1 1.22E�003 3.686E�003 6.166E�003 9.956E�003 1.251E�002
L2 2.597E�006 1.254E�005 2.865E�005 6.361E�005 9.321E�005

3446 S. Haq et al. / Applied Mathematical Modelling 33 (2009) 3442–3449
For numerical computations we choose a ¼ 0:4; b ¼ 0:6 and g ¼ 0:125; dx ¼ 0:2; dt ¼ 0:001 in order to compare our
results with those given in [9]. We solve the problem (17) with initial condition (18) using radial basis functions MQ, GA and
IQ. The L1 and L2 error norms are computed and are given in Table 4 which shows clearly that RBF method preserved all the
three invariants. In Fig. 3, we display the exact and numerical solution, whereas Fig. 4 represents the error graphs of the
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Fig. 3. Solution graph of Burgers’ equation.
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Table 5
Invariants and error norms for single soliton.

Time C1 C2 C3 L1 L2

MQ
0.1 �4.000 5.333 �.400 2.024E�003 9.966E�007
1 �4.000 5.333 �6.400 9.855E�004 1.088E�004
2 �4.000 5.333 �6.400 1.096E�003 3.405E�004
3 �4.000 5.333 �6.400 9.016E�004 3.445E�005

GA
0.1 �4.000 5.333 �6.400 2.023E�003 1.152E�005
1 �4.000 5.333 �6.400 9.512E�004 1.688E�004
2 �4.000 5.333 �6.400 1.194E�003 2.842E�004
3 �4.000 5.333 �6.400 8.000E�004 4.844E�004

IQ
0.1 �4.000 5.333 �6.400 2.024E�003 6.275E�005
1 �4.000 5.333 �6.400 9.730E�004 1.077E�003
2 �3.998 5.333 �6.400 1.270E�003 3.607E�003
3 �3.995 5.333 �6.400 2.688E�003 1.026E�002
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solutions with MQ, GA and IQ, respectively, at time t ¼ 1. By the present method the error norms at t ¼ 1 are
L1 ¼ 2:497� 10�5 (MQ) and L1 ¼ 1:251� 10�2 (GA and IQ) whereas L1 ¼ 0:0026 using quintic B-spline finite elements
scheme [9], L1 ¼ 0:005 by collocation with B-spline [9], L1 ¼ 0:096 by standard Galerkin approach [9], L1 ¼ 0:082 by
product approximation Galerkin method [9] and L1 ¼ 0:151 by compact finite-difference method [9]. From the above
analysis it is clear that results obtained by MQ are superior than all the methods reported in [9]. We have used the shape
parameter c ¼ 0:001;0:3 and 6 for MQ, GA and IQ, respectively, in our calculations.
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Example 3.3. If we put the parameters m ¼ 0; e ¼ �6, and l ¼ 1 in Eq. (1), the equation reduces to KdV equation
ut � 6uux þ uxxx ¼ 0 ð20Þ
subject to the initial condition
uðx;0Þ ¼ �2sech2ðxÞ: ð21Þ
Exact solution [20] of the above problem is given by
uðx; tÞ ¼ �2sech2ðx� 4tÞ: ð22Þ
For our numerical solution, we take the boundary conditions
uða; tÞ ¼ �2sech2ða� 4tÞ; ð23Þ
uðb; tÞ ¼ �2sech2ðb� 4tÞ: ð24Þ
The radial basis functions MQ, GA and IQ are used to find solutions of Eq. (20) subject to the initial condition (21). For numer-
ical computation we choose dx ¼ 0:2, dt ¼ 0:001 and values of the shape parameter for the three radial basis functions for
MQ, GA, IQ are, respectively, c ¼ 0:8;3:3 and 1:5. In Table 5, L1; L2 error norms as well as the three invariants C1;C2 and
C3 for time up to t ¼ 3 are given. From this table it is clear that all the three invariants are nearly constant and the L1 error
norm is less than 2:688� 10�3. In Fig. 5, numerical and exact solutions are plotted on the same diagram which shows an
excellent agreement. It is clear from the figure that as the time increases the solution moves towards the right with a con-
stant speed. The difference between the exact and numerical solutions (error) are plotted in Fig. 6 for all the three methods
when t ¼ 3.
4. Conclusions

We have applied the collocation method using three standard RBFs MQ, GA and IQ for the numerical solution of nonlinear
KdV–Burgers’ equation. The results show that this scheme is an efficient approach for the solution of such type of nonlinear
equations. It is noted that time marching process reduces the solution accuracy due to the time truncation errors. As for as its
application is concerned we have found that RBFs method is very much simple and straightforward, irrespective of the
dimension and geometry of the problem.
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