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I. Infroducf ion 

Oxygen or ATP pulses cause a reversible pH decrease 
in mitochondriaI suspension 1 I, 21. In submitochon- 
&a\ partides, obttin& by sonjcaljon and consjsling 
of vescicles of the inner mitochondrial membrane tur- 
lnect “inside out” I33 , respiration UC ATP hydrolysis 
causes proton movements in the reverse direction [4-61 
Tnis inversion of poiariry, and of!rservarions on inira- 
mitochondrial pH changes [7-91 indicate that the 

energy-linked pH changes represent, at least in part, 

effective translocation of protons across the inner 
mitochondrial membrane. 

Potassium salts stimulate the respiration-driven pro- 
ton uptake in sonic particles [6]. This effect is poten- 

tiated by valinomycin, indicating that, at least in the 
presence of this antibiotic, the stimulation of proton 
uptake is due to K’ translocation (cf. [ 1 O] ). Since, 
however, the activity of r-salts varies with the anions 
used, these must also be involved. In this paper a study 
of the effect of a series of salts on proton transloca- 
tion in submitochondrial particles, is presented. 

2. Experimental 

Mg-ATP sonic particles from beef heart mitochon- 
dria were prepared according to Low and Vallin [ 1 l] . 
The pH of the suspension was measured with a highly 

sensitive pH meter with a low-resistance “Ingold” 
glass electrode (response time about 50 msec). The 
pH changes were quantitated in terms of proton 
equivalents by double titration with standard solu- 

tions of KOH and HCl both in the anaerobic and 
the aerobic state. Respiration was measured with a 
Clark electrode or a vibrating plantinum electrode. 

1 Control 

2 K2S04 15mM 

3 KN03 10 mM 

Fig. 1. Effect of KNOB and KzSO4 on proton translocation 

and respiration during oxygen pulses in submitochondrial 

particles. The reaction mixture (final vol. 2.1; final pH 7.5) 

contained 250 mM sucrose 15 mM K-succinate, 0.4 mg puri- 

tied catalase and 3.3 mg particle protein. Respiration was 

started by adding 10 ~1 of 0.2% Ha& to anaerobic particles. 

Temperature 25’. Respiration was recorded, simultaneously 

with pH, by a Clark electrode. 
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Table 1 

Effect of salts on proton and electron flow in sonic submitochondrial particles 

Salts 

Stimulation Extent @ Velocity Stimulation Stimulation or 

initial rate uptake constant initial rate inhibition 
Steady-state 

Concn. (mM) H+ uptake (ngion/mg prot) H+ efflux H+ efflux steady-state H+IO 
respiration 

(%) (set-1) (%) (%) 

Control 

KC1 

KNO, 
KI 

KSCN 
Na-TPB 

KS304 

K-Acetate 

5.00 

15 37 6.69 

10 70 18.40 

10 126 28.82 

1 210 23.75 

0.05 155 15.90 

15 66 5.25 

5 93 4.50 

0.590 
0.252 

0.154 

0.134 

0.283 

0.154 

0.866 

0.845 

0.50 

15 +4 0.55 

58 +3 0.77 

70 -22 1.09 

204 -3 1.55 

115 +7 1.00 

50 +27 0.59 

30 +30 0.50 

Temp., 2S”; pH, 7. For other experimental details see Experimental Section and legend to fig. 1. Na-TPB: Na-tetraphenylborate. 

The salts were added at concentrations giving about half-maximal stimulation of the initial rate of proton uptake. 

3. Results 

Oxygen pulses in succinate-supplemented particles 
induced abrupt uptake of protons by the particles, fol- 
lowed by a stationary phase (fig. 1). With anaerobiosis, 
an exponential release of protons occurred which pro- 
ceeded according to a first order equation (see fig. 2). 
It is assumed [ 12, 131 that, in the stationary state, the 
rate of proton influx is equal to that of proton efflux. 
The latter is given by the initial rate of proton efflux 
in anaerobiosis [ 131. 

Table 1 summarizes the effects of salts on: the ini- 
tial rate and the extent of proton uptake; the velocity 

constant of proton efflux in anaerobiosis; the rate of 
electron and proton flow in the steady-state and the 
p/O ratio. Chloride, nitrate, iodide, thiocyanate and 
tetraphenylborate caused to different extents, stimu- 
lation of the initial rate and the extent of respiration- 
driven proton uptake. This was accompanied by stimu- 
lation of the initial rate of the anaerobic efflux of pro- 
tons but by a decrease of the velocity constant of this 
process (see fig. 2). At the concentrations used these 
salts, except Kl which caused inhibition, had practical- 
ly no effect on respiration. This resulted in an increase 
of the steady-state w/O ratio. 

Sulfate and acetate increased the initial rate of pro- 
ton uptake, the initial rate and the velocity constant 
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of proton efflux (see fig. 2). The extent of proton up 
take was not significantly affected by these salts and 
respiration was stimulated. 

Table 2 

Effect of KNOa and NaNOa on proton translocation in sonic 

submitochondrial particles 

Stimulation Extent H+ Stimulation Velocity 

initial rate uptake initial rate constant 

Salts H+ uptake (ngion/mg H+ efflux H+ efflux 

(20mM) (%) pro0 (%) (set-‘) 

KNOa 50 41.32 63 0.087 

NaN03 47 20.04 113 0.154 

For details see Experimental and fig. 1. pH: 7. 

Table 2 shows that NaNOs gave a higher velocity con- 
stant of proton efflux (see fig. 2) but a smaller extent 
of proton uptake than KNOs. 

4. Discussion 

The stimulation of the initial rate of proton uptake 
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by the salts appears to be related to the permeability 
of artificial phospholipid membranes [ 14- 161 and mi- 
tochondrial membrane [ 171 to the anionic species. Ni- 
trate, iodide, thiocyanate and tetraphenylborate ap- 
peared to increase the steady-state turnover of protons, 
without stimulating respiration. This observation can 
be explained in terms of a proton pump [2,9] of elec- 
trogenic nature [9] ; see however [7, 181. In this case 
the thermodynamic potential difference of protons 
across the membrane consists of a chemical (A pH) 
and an electrical (A*) component. Both exert a back- 
pressure on proton uptake and drive proton efflux. A 
salt, which dissipates the A\k through distribution of 
the anion in the electric field, stimulates proton up- 
take and converts the proton efflux driven by the elec- 

tric field (probably not seen by the electrode, due to 
the short time life of the electric field [ 131) into a 
pure diffusion. Thus the increase of the proton turn- 
over would be, for a large part, only apparent. Con- 
sistent with this explanation is also the fact that these 
salts caused a decrease of the velocity constant of pro- 
ton efflux. When the A\k is dissipated the diffusion of 
protons, in anaerobiosis, becomes electrogenic and de- 
pends upon the compensatory movement of other ions. 
NaNO, gave a higher velocity constant of proton ef- 
flux than KN03. This would suggest that the A pH- 
driven proton efflux is, at least in part, coupled to a 
counterflux of cations (see [9]). In favour of an elec- 
trogenic proton pump is also the fact that respiration 
causes accumulation of the anions by the particles 
[ 161. We have found [ 191 that respiration caused 
accumulation of 14C-thiocyanate by the particles which 
was partly depressed by valinomycin and completely 
suppressed by uncouplers or lytic detergents. 

The increase of the velocity constant of proton 
efflux given by sulfate and acetate is possibly due to 
back-diffusion of the acid. Thus these salts give a net 

increase of energy-expending proton turnover across 
the membrane. 

An electrogenic proton pump could be either direct- 
ly coupled to electron flow [9] or driven by high-ener- 
gy intermediates. This problem as well as the possibi- 
lity of additional interaction of the salts with the pump 
are beyond the scope of the present paper. 
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Fig. 2. Effect of salts on velocity constant of anaerobic efflux 
of protons. For experimental conditions see fig. 1 and Experi- 

mental section. pH: 7. 
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