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Abstract

We study relationships between the colored Jones polynomial and the A-polynomial of a knot. The AJ
conjecture (of Garoufalidis) that relates the colored Jones polynomial and the A-polynomial is established
for a large class of two-bridge knots, including all twist knots. We formulate a weaker conjecture and prove
that it holds for all two-bridge knots. Along the way we also calculate the Kauffman bracket skein module
of the complements of two-bridge knots. Some properties of the colored Jones polynomial are established.
© 2006 Elsevier Inc. All rights reserved.
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0. Introduction

The Jones polynomial was discovered by Jones in 1984 [16] and has made a revolution in knot
theory. Despite many efforts little is known about the relationship between the Jones polynomial
and classical topology invariants like the fundamental group. The A-polynomial of a knot, intro-
duced in [7], describes more or less the representation space of the knot group into SL(2,C), and
has been fundamental in geometric topology.
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In the present paper we study relationships between the Jones polynomial and the A-po-
lynomial. One main goal of the paper is to establish for a large class of two-bridge knots the
AJ conjecture (made by Garoufalidis) that relates the colored Jones polynomial and the A-po-
lynomial. This class of knots contains for example all twist knots, and much more. Another main
result is the calculation of the Kauffman bracket skein module of all two-bridge knots. This
generalizes the work [3,5] where the calculations were carried out for (2p + 1,2)-torus knots
and twists knots, a special class of two-bridge knots. Our method is more geometric and we hope
that it can be generalized to all knots.

In a previous paper [12] Garoufalidis and the author proved that for every knot, the colored
Jones polynomial satisfies a recurrence relation. The AJ conjecture states that when reducing
the quantum parameter to 1, the recurrence polynomial is essentially equal to the A-polynomial
(for details see below). The present paper is independent of [12], since we will prove the exis-
tence of recurrence relations for two-bridge knots in another way. We also formulate a weaker
version of the AJ conjecture (see Conjecture 2) that we believe reflects more accurately the alge-
bra/topology relations between the Jones polynomial and the A-polynomial. We prove that the
weaker conjecture holds true for all two-bridge knots.

Some properties of the colored Jones polynomial are established. We also show that for an
arbitrary alternating knot, the degree of the recurrence polynomial must be at least 2.

0.1. The colored Jones polynomial and its recurrence ideal

0.1.1. The colored Jones polynomial
For a knot K in the 3-space R

3 ⊂ S3 the colored Jones function (see, for example, [22,26])

JK : Z → R := C
[
t±1]

is defined for integers n ∈ Z; its value JK(n) is known as the colored Jones polynomial of the
knot K with color n. We will recall the definition of JK(n) in Section 1.

In our joint work with S. Garoufalidis [12] we showed that the function JK always satisfies a
non-trivial recurrence relation as described in the next subsection. Partial results were obtained
earlier by Frohman, Gelca, and Lofaro through their theory of non-commutative A-ideal [10,13],
which also plays an important role in the present paper.

0.1.2. Recurrence relations and q-holonomicity
Consider a function with domain the set of integers, f : Z → R, and define the linear opera-

tors L and M acting on such functions by:

(Mf )(n) = t2nf (n), (Lf )(n) = f (n + 1).

It is easy to see that LM = t2ML, and that L±1,M±1 generate the quantum torus T , a non-
commutative ring with presentation

T = R
〈
M±1,L±1〉/(

LM = t2ML
)
.

We also use the notation T+ for the subring of T which consists only of polynomials with non-
negative powers of M and L. Traditionally T+ is called the quantum plane.
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The recurrence ideal of the discrete function f is the left ideal A in T that annihilates f :

A = {P ∈ T | Pf = 0}.
We say that f is q-holonomic, or f satisfies a linear recurrence relation, if A �= 0. In [12] we
proved that for every knot K , the function JK is q-holonomic. Denote by AK the recurrence
ideal of JK .

0.1.3. An example
For the right-handed trefoil, one has

JK(n) = (−1)n−1t2−2n

1 − t−4

n−1∑
k=0

t−4nk

k∏
i=0

(
1 − t4i−4n

)
.

The function JK satisfies pJK = 0, where

P = (
t4M10 − M6)L2 − (

t2M10 + t−18 − t−10M6 − t−14M4)L + (
t−16 − t−4M4).

Together with the initial conditions JK(0) = 0, JK(1) = 1, this recurrence relation determines
JK(n) uniquely.

0.1.4. Generator of the recurrence ideal
The quantum torus T is not a principal ideal domain, and AK might not be generated by a

single element. Garoufalidis [11] noticed that by adding to T all the inverses of polynomials in
M one gets a principal ideal domain T̃ , and hence from the ideal AK one can define a polynomial
invariant. Formally one can proceed as follows. Let R(M) be the fractional field of the polyno-
mial ring R[M]. Let T̃ be the set of all Laurent polynomials in the variable L with coefficients
in R(M):

T̃ =
{∑

k∈Z

ak(M)Lk
∣∣ ak(M) ∈ R(M), ak = 0 almost everywhere

}
,

and define the product in T̃ by a(M)Lk · b(M)Ll = a(M)b(t2kM)Lk+l .

Then it is known that every left ideal in T̃ is principal, and T embeds as a subring of T̃ . The
extension ÃK := T̃ AK of AK in T̃ is then generated by a single polynomial

αK(t;M,L) =
n∑

i=0

αK,i(t;M)Li ∈ T+,

where the degree in L is assumed to be minimal and all the coefficients αK,i(t;M) ∈ Z[t±1,M]
are assumed to be co-prime. That αK can be chosen to have integer coefficients follows from the
fact that JK(n) ∈ Z[t±1]. It is clear that αK(t;M,L) annihilates JK , and hence it is in the recur-
rence ideal AK . Note that αK(t;M,L) is defined up to a factor ±taMb, a, b ∈ Z. We will call
αK the recurrence polynomial of K . For example, the polynomial P in the previous subsection
is the recurrence polynomial of the right-handed trefoil.

Remark 0.1. If P is a polynomial in t and M (no L), and Pf = 0 then P = 0. Hence adding all
the inverses of polynomials in M does not affect the recurrence relations.
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0.2. Main results

Let ε be the map reducing t = −1. Formally, if V is an R-module, then let ε(V ) = C ⊗R V ,
where C is considered as an R-module by setting t = −1. Also if x ∈ V then ε(x) is the image
of 1 ⊗ x in ε(V ). Thus ε(αK) is the polynomial obtained from αK(t;M,L) by putting t = −1.
For example, when K is the right-handed trefoil, ε(αK) = (M4 − 1)(L − 1)(LM6 + 1).

For non-zero f,g ∈ C[M,L], we say that f is M-essentially equal to g, and write

f
M= g,

if the quotient f/g does not depend on L. We say that two algebraic subsets of C
2 with pa-

rameters (M,L) are M-essentially equal if they are the same up to adding some lines parallel
to the L-axis. It is clear that if f is M-essentially equal to g, then {f = 0} and {g = 0} are
M-essentially equal. Here {f = 0} is the algebraic set of zero points of f .

0.2.1. The AJ conjecture
Let AK ∈ Z[L,M] be the A-polynomial of K (see [6,7]); we will review its definition in

Section 3. Garoufalidis [11] made the following conjecture.

Conjecture 1 (The AJ conjecture). The polynomials ε(αK) and (L − 1)AK are M-essentially
equal.

Actually, this is the strong version. The weak version of the conjecture says that {ε(αK) = 0}
and {(L − 1)AK = 0} are M-essentially equal. The algebraic set {(L − 1)AK = 0} is known as
the deformation variety of the knot group, with the component {L − 1 = 0} corresponding to
abelian representations of the knot group into SL2(C), and {AK = 0}—to non-abelian ones.

Garoufalidis [11] verified the conjecture for the trefoil and Fig. 8 knot. Takata [25] gave some
evidence to support the conjecture for twist knots, but did not prove it. Both works are based
heavily on the computer programs of Wilf and Zeilberger. Hikami [15] verifies the conjecture for
torus knots. In all these works direct calculations with explicit formulas are used.

In the present paper we prove the conjecture for a large class of two-bridge knots, using a
more conceptual approach. Two-bridge knots b(p,m) are parametrized by a pair of odd positive
integers m < p, with b(p,m) = b(p,m′) if mm′ = 1 (mod p) (see [2] and Section 5).

Theorem 1. Suppose K = b(p,m) is a two-bridge knot.

(a) The recurrence polynomial αK has L-degree less than or equal to (p + 1)/2.
(b) The algebraic set {ε(αK) = 0} is M-essentially equal to an algebraic subset of

{(L − 1)AK = 0}.
(c) The AJ conjecture holds true if

the A-polynomial is Z-irreducible and has L-degree (p − 1)/2. (∗)

Here Z-irreducibility means irreducibility in Z[M,L]. There are many two-bridge knots that
satisfy condition (∗). For example in a recent work [14] Hoste and Shanahan proved that all the
twist knots satisfy the condition (∗). Hence we have the following corollary.
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Corollary 0.2. The AJ conjecture holds true for twist knots.

In a separate paper [19] we will prove that if both p and (p − 1)/2 are prime, then b(p,m)

satisfies the condition (∗). Also knot tables show that many two-bridge knots with small p,m

satisfy the condition (∗).

0.2.2. The Kauffman Bracket Skein Module of knot complements
Our proof of the main theorem is more or less based on the ideology that the Kauffman

Bracket Skein Module (KBSM) is a quantization of the SL2(C)-character variety (see [4,24]
and Section 4 below), which has been exploited in the work of Frohman, Gelca, and Lofaro
[10] where they defined the non-commutative A-ideal. The calculation of the KBSM of a knot
complement is a difficult task. Bullock [3] and recently Bullock and Lofaro [5] calculated the
KBSM for the complements of (2,2p + 1) torus knots and twist knots. Another main result of
this paper is a generalization of these works: We calculate explicitly the KBSM for complements
of all two-bridge knots. We will use another, more geometric approach that allows us to get the
results for all two-bridge knots.

0.2.3. Other results
We also prove that the growth of degree (or breadth) of the colored Jones polynomial of an

arbitrary knot is at most quadratic with respect to the color, and if the knot is alternating, then
the growth is exactly quadratic, given by explicit formula. This is based on the exact estimate
of the crossing number, used in the proof (of Kauffman, Murasugi, and Thistlethwaite) of the
Tait conjecture on the crossing number of alternating knots. As a corollary, we show that the
L-degree of the recurrence polynomial of an alternating knot must be at least 2.

0.3. Plan of the paper

In Section 1 we review the theory of skein modules the colored Jones polynomial. In Section 2
we study the growth of the degree of the colored Jones polynomial and the L-degree of the
recurrence polynomial. In Section 3 we review the A-polynomial and introduce a closely related
polynomial, BK . Section 4 is devoted to the “quantum” version of BK , the peripheral polynomial.
We will formulate another weaker version of the AJ conjecture and prove it holds true for two-
bridge knots (in Section 6). In Section 5 we calculate the skein module of the complement of
two-bridge knots. The last section contains a proof of Theorem 1.

1. The colored Jones polynomial and skein modules

We recall the definition and known facts about the colored Jones polynomial through the
theory of Kauffman Bracket Skein Modules which was introduced by Przytycki and Turaev, see
the survey [23].

1.1. Skein modules

Recall that R = C[t±1]. A framed link in an oriented 3-manifold Y is a disjoint union of
embedded circles, equipped with a non-zero normal vector field. Framed links are considered up
to isotopy. In all figures we will draw framed links, or part of them, by lines as usual, with the
convention that the framing is blackboard. Let L be the set of isotopy classes of framed links in
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the manifold Y , including the empty link. Consider the free R-module with basis L, and factor
it by the smallest submodule containing all expressions of the form

− t − t−1 and + (
t2 + t−2)∅,

where the links in each expression are identical except in a ball in which they look like depicted.
This quotient is denoted by S(Y ) and is called the Kauffman bracket skein module, or just skein
module, of Y .

When Y = Σ × [0,1], the cylinder over the surface Σ , we also use the notation S(Σ) for
S(Y ). In this case S(Σ) has an algebra structure induced by the operation of gluing one cylinder
on top of the other. The operation of gluing the cylinder over ∂Y to Y induces a S(∂Y )-left
module structure on S(M).

1.2. Example: S(R3) and the Jones polynomial

When Y is the 3-space R
3 or the 3-sphere S3, the skein module S(Y ) is free over R of rank

one, and is spanned by the empty link. Thus if � is a framed link in R
3, then its value in the skein

module S(R3) is 〈�〉 times the empty link, where 〈�〉 ∈ R, known as the Kauffman bracket of �

(see [17,21]), and is just the Jones polynomial of framed links in a suitable normalization.

1.3. Example: The solid torus and the colored Jones polynomial

The solid torus ST is the cylinder over an annulus, and hence its skein module S(ST ) has an
algebra structure. The algebra S(ST ) is the polynomial algebra R[z] in the variable z, which is
a knot representing the core of the solid torus.

Instead of the R-basis {1, z, z2, . . .}, two other bases are often useful. The first basis con-
sists of the Chebyshev polynomials Tn(z), n � 0, defined by T0(x) = 2, T1(x) = x, and
Tn+1(x) = xTn − Tn−1. The second basis consists of polynomials Sn(z), n � 0, satisfying the
same recurrence relation, but with S0(x) = 1 and S1(x) = x. Extend both polynomials by the
recurrence relation to all indices n ∈ Z. Note that T−n = Tn, while S−n = −Sn−2.

For a framed knot K in a 3-manifold Y we define the nth power Kn as the link consisting of n

parallel copies of K . Using these powers of a knot, Sn(K) is defined as an element of S(Y ). In
particular, if Y = R

3 one can calculate the bracket 〈Sn(K)〉 ∈ R, and it is essentially the colored
Jones polynomial. More precisely, we will define the colored Jones polynomial JK(n) by the
equation

JK(n + 1) := (−1)n × 〈
Sn(K)

〉
.

The (−1)n sign is added so that when K is the trivial knot,

JK(n) = [n] := t2n − t−2n

t2 − t−2
.

Then JK(1) = 1, JK(2) = −〈K〉. We extend the definition for all integers n by JK(−n) =
−JK(n) and JK(0) = 0. In the framework of quantum invariants, JK(n) is the sl2-quantum
invariant of K colored by the n-dimensional simple representation of sl2.
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We will always assume K has 0 framing. In this case JK(n) contains only even powers of t ,
i.e., JK(n) ∈ Z[t±2]. Hence the recurrence polynomial αK can be assumed to have only even
powers of t .

1.4. Example: Cylinder over the torus and the non-commutative torus

A pair of oriented meridian and longitude on the torus T2 will define an algebra isomorphism
Φ between S(T2) and the symmetric part of the quantum torus T as follows.

For a pair of integers a, b let (a, b)T = Td((a′, b′)T ), where d is the greatest common divisor
of a and b, with a = da′, b = db′, and (a′, b′)T is the closed curve without self-intersection on
the torus that is homotopic to a′ times the meridian plus b′ times the longitude. Here Td is the
Chebyshev polynomial defined above; and the framing of a curve on T

2 is supposed to be parallel
to the surface T

2. Note that in the definition of skein modules we use non-oriented links, hence
(a, b)T = (−a,−b)T . As an R-module, S(T2) is the quotient of the free R-module spanned by
{(a, b)T , (a, b) ∈ Z

2} modulo the relations (a, b)T = (−a,−b)T .
Recall that the quantum torus T is defined as T = R〈L±1,M±1〉/(LM = t2ML). Let T σ

be the subalgebra of T invariant under the involution σ , where σ(MaLb) = M−aL−b . Frohman
and Gelca in [9] showed that the map

Φ :S
(
T

2) → T σ , Φ
(
(a, b)T

) = (−1)a+btab
(
MaLb + M−aL−b

)
is an isomorphism of algebras.

1.5. Two-punctured disk

Let F be the rectangle (in R
2){

(x1, x2) ∈ R
2
∣∣ 0 � x1 � 6, 0 � x2 � 2

}
,

without 2 interior points U = (1,1) and U ′ = (5,1). Then S(F ) is the polynomial algebra
R[x, x′, y], where x is a small loop around U , x′ a small loop around U ′, and y a loop cir-
cling both U,U ′ (see Fig. 1). Note that in this case S(F ) is a commutative algebra, which is not
true in general when F is replaced by an arbitrary surface, see [23].

We will identify F with the section F × 1/2 in F ×[0,1]. The lines x1 = 2 and x1 = 4 divide
F into 3 parts: the left part Fl (containing U ), the right Fr (containing U ′), and the middle
part Fm. Let β be a braid on 2k strands in Fm × [0,1] with boundary points on the lines x1 = 2
and x1 = 4 (on F ), i.e., β consists of 2k connected paths, each begins at a point on x1 = 2 (on F )
and goes monotonously to the right until ending at a point on x1 = 4, see Fig. 2. Let the closure β̂

Fig. 1. The 2-punctured disk.
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Fig. 2. The braid β (in the middle) and its closure.

be the link in F × [0,1] obtained by closing β using k parallel rainbow arcs in Fl and k parallel
rainbow arcs in Fr , as shown in Fig. 2.

Lemma 1.1. As an element of the skein module S(F ) = R[x, x′, y] the closure link β̂ of a braid
on 2k strands is a polynomial having y-degree k, and the coefficient of yk is invertible and of the
form ±t l , l ∈ Z.

Proof. Consider the diagram D of β̂ on F . At every crossing point there are 2 ways to smooth
the diagram, one positive that gives coefficient t in the skein relation, and the other is negative.
A state is the result of smoothing all the crossing; what one has is a bunch of non-intersecting
circles, each is one of x, x′, y, or the trivial loop. The link �, considered as an element of S(F ) ≡
R[x, x′, y], is the sum over all states, each with coefficient a power of t . It is clear that for the
closure β̂ of a braid, there is only one state (the one with horizontal resolutions everywhere) that
gives the maximal power yk , and its coefficient is a power of t . �
2. Some properties of the colored Jones polynomial

2.1. One of the best known applications of the Jones polynomial is a proof (Kauffman, Mura-
sugi, and Thistlethwaite) of the Tait conjecture on the crossing number of alternating links, based
on an exact estimate of the crossing number using the breadth of the Jones polynomial. We will
need a generalization of this estimate for the colored Jones polynomial.

For a Laurent polynomial P(t) ∈ Z[t±1] let d+(P ) and d−(P ) be respectively the maximal
and minimal degree of t in P . The difference br := d+ −d− is called the breadth of P . For a link
diagram D, let s+(D) and s−(D) be the number of circles obtained by positively (respectively,
negatively) smoothing all the double points.

Proposition 2.1. (a) Suppose K is a knot with a knot diagram D having k crossings. Assuming
the framing is black-board. Then

d+
(
JK(n)

)
� k(n − 1)2 + 2(n − 1)s+(D),

d−
(
JK(n)

)
� −k(n − 1)2 − 2(n − 1)s−(D).

Hence the breadth of JK(n) grows at most as a quadratic function in n.
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(b) If K is a non-trivial alternating knot with k crossings. Then the breadth of JK(n) ∈ Z[t±1]
is a quadratic polynomial in n. Moreover

br
(
JK(n)

) = 2k(n − 1)2 + 2(n − 1)(k + 2).

Proof. (a) The n-parallel Dn of D will have kn2 double points. In addition, it is easy to see that
s±(Dn) = ns±(D). Hence Lemma 5.4 of [21] says that

d+
〈
Dn

〉
� f (n) := k(n − 1)2 + 2(n − 1)s+.

Note that here we have taken into account the fact that we shift the index n → n + 1, and use the
normalization in which the unknot takes value −t2 − t−2. Note that f (n) is a strictly increasing
function, f (n + 1) > f (n). Recall that Sn(K) = Dn + terms of lower degrees in D. Hence one
has

d+
〈
Sn(D)

〉
� k(n − 1)2 + 2(n − 1)s+.

The proof for d− is similar.
(b) For an alternating knot diagram one has s+ + s− = k + 2. Note that the diagram Dn is

adequate in the sense of [21, Chapter 5]. For adequate diagrams the estimates of d± in part (a)
are exact (see the proof of Lemma 5.4 of [21]) and the result follows immediately. �
2.2. The L-degree of the recurrence polynomial

Proposition 2.2. Suppose K is a non-trivial alternating knot. Then the recurrence polynomial
αK has L-degree greater than 1.

Proof. Assume the contrary that αK = P(t;M)L + P0(t;M), where P,P0 ∈ Z[t±1,M±1].
Garoufalidis [11] showed that the polynomial σ(αK) = P(t;M−1)L−1 + P0(t;M−1) is also
in the recurrence ideal. Since αK is the generator, it follows that for some γ (t;M) ∈ R(M)

Lσ(αK) = γ (t;M)αK.

One can then easily show that, after normalizing both P,P0 by a same power of M , one has

P0(t;M) = P
(
t; t−2M−1).

The equation αKJK = 0 can now be rewritten as

JK(n + 1) = −P(t; t−2−2n)

P (t; t2n)
JK(n).

It is easy to see that for n big enough, the difference of the breadths br(P (t; t−2−2n)) −
br(P (t; t2n)) is a constant depending only on the polynomial P(t;M), but not on n. From the
above equation it follows that the breadth of JK(n), for n big enough, is a linear function on n.
This contradicts Proposition 2.1. �
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2.3. More on the recurrence polynomial of knots

The following proposition was known to Garoufalidis.

Proposition 2.3. When reduced by t = −1, the recurrence polynomial αK is divisible by L − 1.
In other words, ε(αK)

L−1 ∈ Z[M,L].

Proof. For a function f (t2, n) of two variables t2 ∈ C and n ∈ Z let f̄ (z) be the limit of f (t2, n)

when

t2 → 1 and t2n is kept equal to z all the time. (†)

The Melvin–Morton conjecture [22], proved by Bar-Natan and Garoufalidis [1], showed that
h(z) := JK(n) is the inverse of the Alexander polynomial. In particular, h(z) �= 0.

Lemma 2.4 below shows that JK(n + k) = JK(n) for any fixed k. Hence the operator L be-
comes the identity after taking the limit (†). Thus applying the limit (†) to the equation αKJK = 0
we see that

αK |t2=1,M=z,L=1h(z) = 0.

Since h(z) �= 0, one has αK |t2=1,M=z,L=1 = 0, which is equivalent to the lemma. �
Lemma 2.4. For every fixed integer k, one has JK(n + k) = JK(n).

Proof. For a knot K of framing 0, JK(n)/[n] is a Laurent polynomial in t4, and (see [22])

JK(n)

[n]
∣∣∣∣
t4=exp h̄

=
∞∑
l=0

Pl(n)h̄l,

where Pl(n) is a polynomial in n of degree at most l:

Pl(n) = Pl,ln
l + Pl,l−1n

l−1 + · · · + Pl,1n + Pl,0.

The limit (†) is the same as the limit n → ∞, with h̄ = 2 ln z/n. Under this limit,

(n + k)i h̄k →
{

0 if i < l,
(2 ln z)l if i = l,

which does not depend on k. �
3. The A-polynomial and its sibling

We briefly recall here the definition of the A-polynomial and introduce a sibling of it. We will
say that f is M-essentially divisible by g if f is M-essentially equal to a polynomial divisible
by g.
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3.1. The character variety of a group

The set of representations of a finitely presented group π into SL2(C) is an algebraic set
defined over C, on which SL2(C) acts by conjugation. The naive quotient space, i.e. the set
of orbits, does not have a good topology/geometry. Two representations in the same orbit (i.e.
conjugate) have the same character, but the converse is not true in general. A better quotient,
the algebro-geometric quotient denoted by χ(π) (see [8,20]), has the structure of an algebraic
set. There is a bijection between χ(π) and the set of all characters of representations of π into
SL2(C), hence χ(π) is usually called the character variety of π . For a manifold Y we use χ(Y )

also to denote χ(π1(Y )).
Suppose π = Z2, the free abelian group with 2 generators. Every pair of generators λ,μ will

define an isomorphism between χ(π) and (C∗)2/τ , where (C∗)2 is the set of non-zero complex
pairs (L,M) and τ is the involution τ(M,L) = (M−1,L−1), as follows: Every representation
is conjugate to an upper diagonal one, with L and M being the upper left entry of λ and μ,
respectively. The isomorphism does not change if one replaces (λ,μ) with (λ−1,μ−1).

3.2. The A-polynomial

Let X be the closure of S3 minus a tubular neighborhood N(K) of a knot K . The boundary
of X is a torus whose fundamental group is free abelian of rank two. An orientation of K will
define a unique pair of an oriented meridian and an oriented longitude such that the linking
number between the longitude and the knot is 0. The pair provides an identification of χ(π1(∂X))

and (C∗)2/τ which actually does not depend on the orientation of K .
The inclusion ∂X ↪→ X induces the restriction map

ρ :χ(X) → χ(∂X) ≡ (C∗)2/τ.

Let Z be the image of ρ and Ẑ ⊂ (C∗)2 the lift of Z under the projection (C∗)2 → (C∗)2/τ .
The Zariski closure of Ẑ ⊂ (C∗)2 ⊂ C

2 in C
2 is an algebraic set consisting of components of

dimension 0 or 1. The union of all the 1-dimension components is defined by a single polynomial
A′

K ∈ Z[M,L], whose coefficients are co-prime. Note that A′
K is defined up to ±1. It is known

that A′
K is divisible by L− 1, hence A′

K = (L− 1)AK , where AK ∈ C[M,L] is called the A-po-
lynomial of K . It is known that AK ∈ Z[M2,L]. By definition, AK does not have repeated factor,
and is not divisible by L − 1.

Question 1. Can AK(L,M) have a factor a non-constant polynomial depending on M only?

3.3. The dual picture

It is also instructive and convenient to see the dual picture in the construction of the A-po-
lynomial. For an algebraic set Y let R[Y ] denote the ring of regular functions on Y . For example,
R[(C∗)2/τ ] = tσ , the σ -invariant subspace of t := C[L±1,M±1], where σ(MaLb) := M−aL−b .

The map ρ in the previous subsection induces an algebra homomorphism

θ :R
[
χ(∂X)

] ≡ tσ → R
[
χ(X)

]
.

We will call the kernel p of θ the classical peripheral ideal; it is an ideal of tσ . Let p̂ := tp be the
ideal extension of p in t. The set of zero points of p̂ is the closure of Ẑ in C

2.
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3.4. A sibling of the A-polynomial

The ring t = C[M±1,L±1] embeds naturally into the principal ideal domain t̃ := C(M)[L±1],
where C(M) is the fractional field of C[M]. The ideal extension of p̂ in t̃, which is t̃p̂ = t̃p, is thus
generated by a single polynomial BK ∈ Z[M,L] which has co-prime coefficients and is defined
up to a factor ±Ma with a ∈ Z. Again BK can be chosen to have integer coefficients because
everything can be defined over Z.

From the definitions one has immediately

Proposition 3.1. The polynomial BK is M-essentially divisible by A′
K = (L − 1)AK . The two

algebraic sets {BK = 0} and {A′
K = 0} are M-essentially equal.

Note that BK might not be M-essentially equal to A′
K because BK might contain repeated

factors. If the answer to Question 1 is negative, then the two algebraic sets {BK = 0} and
{A′

K = 0} are equal, and we have a natural way to define the multiplicity of factors of the A-po-
lynomial, using the B-polynomial.

4. The quantum peripheral ideal and the peripheral polynomial

4.1. Skein modules as quantum deformations of character varieties

Recall that ε is the map reducing t = −1. One important result (Bullock, Przytycki, and Sikora
[3,24]) in the theory of skein modules is that ε(S(Y )) has a natural algebra structure and, when
factored by its nilradical, is canonically isomorphic to R[χ(Y )], the ring of regular functions on
the character variety of π1(Y ). The product of 2 links in ε(S(Y )) is their union. Using the skein
relation with t = −1, it is easy to see that the product is well-defined, and that the value of a
knot in the skein module depends only on the homotopy class of the knot in Y . The isomorphism
between ε(χ(Y )) and R[χ(Y )] is given by K(r) = − tr r(K), where K is a homotopy class of a
knot in Y , represented by an element, also denoted by K , of π1(Y ), and r :π1(Y ) → SL2(C) is a
representation of π1(Y ).

In many cases the nilradical of ε(S(Y )) is trivial, and hence ε(S(Y )) is exactly equal to the
ring of regular functions on the character variety of π1(Y ). For example, this is the case when Y

is a torus, or when Y is the complement of a two-bridge knots (see Section 5).
In light of this fact, one can consider S(Y ) as a quantization of the character variety.

4.2. The quantum peripheral ideal

Recall that X is the closure of the complement of a tubular neighborhood N(K) in S3. The
boundary ∂X is a torus, and using the preferred meridian and longitude we will identify S(∂X)

with T σ , see Section 1.4.
The embedding of ∂X into X gives us a map Θ :S(∂X) ≡ T σ → S(X), which can be con-

sidered as a quantum analog of θ . One has the following commutative diagram:

T σ

ε

Θ S(X)

ε

tσ
θ

R[χ(X)].
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The kernel of Θ , denoted by P , is called the quantum peripheral ideal; it is a left ideal of
T σ and can be considered as a quantum analog of the classical peripheral ideal p = ker θ . The
ideal P was introduced by Frohman, Gelca, and Lofaro in [10] and there it is called simply the
peripheral ideal. From the commutative diagram it is clear that ε(P) ⊂ p. The following question
is important.

Question 2. Is it true that ε(P) can never be 0?

4.3. The peripheral polynomial

Let us adapt the construction of the BK polynomial to the quantum setting. Recall that T̃
(see introduction) is a principal left-ideal domain that contains T σ as a subring. The left-ideal
extension P̃ := T̃ P in T̃ is generated by a polynomial

βK(t;M,L) =
s∑

i=0

βK,i(t,M)Li ∈ T+,

where s is assumed to be minimum and all the coefficients βK,i(t,M) ∈ Z[t±1,M±1] are co-
prime. We call βK the peripheral polynomial of K , which is defined up to ±taMb with a, b ∈ Z.

Proposition 4.1. ε(βK) is M-essentially divisible by BK , and hence is M-essentially divisible
by A′

K = (L − 1)AK .

Proof. The proposition follows the fact that εP ⊂ p and Proposition 3.1. �
Proposition 4.2. Suppose ε(P) = p. Then ε(βK)

M= BK .

Proof. For the extensions P̂ := T P and p̂ := tp we also have ε(P̂) = p̂, since εP̂ = ε(T P) =
ε(T )ε(P) = tp.

From the definition we have that h(M)BK ∈ p̂ for some non-zero polynomial h(M) ∈ Z[M].
Hence ε−1(h(M)BK) ⊂ P̂ is not empty. Take an element u ∈ ε−1(h(M)BK); it is M-essentially
divisible by βK , the generator. Applying the map ε, one gets BK is M-essentially divisible
by ε(βK). Combining with Proposition 4.1 one has ε(βK)

M= BK . �
Conjecture 2. For every knot we have ε(P) = p, and hence ε(βK)

M= BK .

Later we will show that for all two-bridge knots holds true the conjecture, which is closely
related to the AJ conjecture. A sufficient condition for the conjecture to hold true is given in
Section 6.

4.4. The orthogonal ideal and recurrence relations

There is a bilinear pairing

S
(
N(K)

) ⊗ S(X) → R, with � ⊗ �′ → 〈�, �′〉 := 〈� ∪ �′〉 ∈ S
(
S3) = R, (1)
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where � and �′ are framed links in N(K) and X, respectively. The orthogonal ideal O is defined
by

O := {
�′ ∈ S(∂X)

∣∣ 〈
�,Θ(�′)

〉 = 0 for every � ∈ S
(
N(K)

)}
.

It is clear that O is a left ideal of S(∂X) ≡ T σ and P ⊂ O. In [10], where O was first introduced,
O was called the formal ideal. What is important for us is the following

Proposition 4.3. The orthogonal ideal is in the recurrence ideal of a knot, O ⊂ AK . As a conse-
quence, P ⊂ AK .

This was proved by Garoufalidis [11]. Frohman, Gelca, and Lofaro [10] proved that every el-
ement �′ in the orthogonal ideal O gives rise to a linear recurrence relation for the colored Jones
polynomial. The idea is simple and beautiful: �′ annihilates everything in S(N(K)), in particular,
〈Tn(z),Θ(�′)〉 = 0; but this equation, after some calculation, can be rewritten as a linear recur-
rence relation for the colored Jones polynomial. Garoufalidis, using the Weyl symmetry, further
simplified the recurrence relation, and obtained that O = AK ∩ T σ , which is stronger than the
proposition.

Conjecture 3. The right kernel of the bilinear form (1) is trivial.

This conjecture implies that O = P , from which, due to an argument of A. Sikora and the
author, one can show that the colored Jones polynomial distinguishes the unknot from other
knots.

4.5. Relation between the peripheral and recurrence polynomials

Lemma 4.4. The peripheral polynomial βK is divisible by the recurrence polynomial αK in the
sense that there are polynomials g(t,M) ∈ Z[t,M] and γ (t,M,L) ∈ T+ such that

βK(t,M,L) = 1

g(t,M)
γ (t,M,L)αK(t,M,L). (2)

Moreover g(t,M) and γ (t,M,L) can be chosen so that εg �= 0.

Proof. From Proposition 4.3 we have that P ⊂ A. Hence the left-ideal extension P̂ := T P is
also a subset of A, since both are left ideals of T . It follows that βK , as the generator of the
extension of P̂ in T̃ , is divisible by the generator of the extension of A, and (2) follows.

We can assume that t + 1 does not divide both g(t,M) and γ (t,M,L) simultaneously. If
εg = 0 then g is divisible by t + 1, and hence γ is not. But then from the equality

gβK = γ αK,

it follows that αK is divisible by t + 1, which is impossible, since all the coefficients of powers
of L in αK are supposed to be co-prime. �
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5. Two-bridge knots and their skein modules

5.1. Two-bridge knots

A two-bridge knot is a knot K ⊂ S3 such that there is a 2-sphere S2 ⊂ S3 that separates S3

into 2 balls B1 and B2, and the intersection of K and each ball is isotopic to 2 trivial arcs in
the ball. The branched double covering of S3 along a two-bridge knot is a lens space L(p,m),
which is obtained by doing a p/m surgery on the unknot. Such a two-bridge knot is denoted by
b(p,m). It is known that both p,m are odd. One can always assume that p > m � 1. It is known
that b(p,m) = b(p,m′) if mm′ ≡ 1 (mod p).

We will present the ball B1 as the rectangular parallelepiped, see Fig. 3,

B1 = {
(x1, x2, x3) ∈ R

3
∣∣ 0 � x1 � 6, 0 � x2 � 2, 0 � x3 � 1

}
.

We suppose that the knot intersects the interior of B1 in two vertical (i.e. parallel to the x3-axis)
straight intervals UV and U ′V ′, where U = (1,1,1), U ′ = (5,1,1), and V = (1,1,0),V ′ =
(5,1,0). After an isotopy, we assume that the part of K outside the interior of B1 are 2 non-
intersecting arcs u and v on S2 := ∂B1, where u connects U and U ′, and v connects V and V ′.
Later we will describe explicitly the arc u. If one cuts S2 along the arc u, then one obtains a disk,
hence the other arc v is uniquely determined by u, up to isotopy.

5.2. Skein module of complements of two-bridge knots

Let W be the top rectangle of B1, W = {(x1, x2, x3) ∈ X1 | x3 = 1}. Note that X1 :=
B1 \ (UV ∪ U ′V ′) is the cylinder over a two-punctured disk W \ {U,U ′}. Hence S(X1) is iso-
morphic to the commutative algebra R[x, x′, y], as described in Section 1.5. Here x is a small
loop circling U , x′ a small loop circling U ′, and y = ∂W . One of our main results is

Theorem 2. The skein module S(S3 \ b(p,m)) is free over R with basis {xayb,0 � a,0 � b �
(p − 1)/2}.

The remaining part of the section is devoted to a proof of this theorem. Moreover, we will
present more explicit structures of the skein module S(S3 \ b(p,m)).

Fig. 3. The ball B1.
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Fig. 4. ul , um, and ur for p = 7, m = 5.

5.3. Description of the two-bridge knot: The curve u

Let ψ be the rotation by 180◦ about the axis {x1 = 3, x2 = 1} (which is parallel to the x3-axis
and passing through the center of the rectangle W ). One has ψ(B1) = B1.

For a set Z ⊂ R
3 let Z[a, b] be the part of Z in the strip {a � x1 � b}, i.e. Z[a, b] := Z ∩

{(x1, x2, x3) | a � x1 � b}. We will consider 3 pieces B1[0,1],B1[1,5], and B1[5,6] of B1.
Recall that W is the top rectangle of the rectangular parallelepiped X1. On W [0,1] let ul be

the collection of (p − 1)/2 half-circles centered at U , with radii ε,2ε, . . . , (p − 1)ε/2, where
ε = 2/(p + 1), see Fig. 4. The end points of the half-circles, together with the center U , are
on a straight line; there are exactly p of them, including U . Mark them from bottom to top by
U1, . . . ,Up . (Thus U = U(p+1)/2.)

Similarly, on W [5,6] let ur be the collection of (p − 1)/2 half-circles centered at U ′, with
radii ε,2ε, . . . , (p − 1)ε/2, where ε = 2/(p + 1). Mark the end-points of the half-circles and U ′
from bottom to top by U ′

1, . . . ,U
′
p . (Thus U ′ = U ′

(p+1)/2.)

Recall that S2 = ∂B1. On S2[1,5] we construct um as follows. Note that S2[1,5] is a cylinder
over S2[1,1]: S2[1,5] = [1,5] × S2[1,1]. Informally um is the braid on the cylinder S2[1,5] =
[1,5] × S2[1,1] representing the rotation by (p − m)π/p. Formally, we first connect U1 with
U ′

1+(p−m)/2 by a straight interval. Then for all i,2 � i � p, connect Ui with U ′
i+(p−m)/2 by non-

intersecting arcs on S2[1,5]; up to isotopy there is a unique way to do so, see Fig. 4. There are
in total p arcs; denote them by um. We can assume that each arc in um always travel from left
to right (no backwards traverse, just like in the case of braids), and moreover, um is invariant
under ψ .

Let u be the arc on S2 obtained by combining ul , um and ur ; it connects U and U ′ and is
invariant under ψ , see Fig. 5. Up to isotopy there is a unique arc v on S2 connecting V and V ′.

Proposition 5.1. The knot K consisting of the arcs u,v, the straight intervals UV and U ′V ′ is
the two-bridge knot b(p,m).

Proof. It is clear that K is a two-bridge knot. Let S̃2 be the 2-fold covering of S2 = ∂B1 branched
along the 4 points U,U ′,V ,V ′. One can recognize the knot type by looking at the homology
class of the lift of u. Note that S̃2 is a torus, with the following preferred meridian and longitude.
The plane passing through U,U ′,V ,V ′ intersects S2[0,1] in an arc m that connect U and V .
The total lift m̃ of m is a closed curve on the torus S̃2 which will serve as the meridian. The total
lift l̃ of the straight interval UU ′ is another closed curve serving as the longitude. It is easy to
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Fig. 5. The arc u.

Fig. 6. The ball X1.

see that m̃ and l̃ form a basis of H1(S̃
2,Z), and that the total lift of the curve u, as a homology

class, is equal to p m̃ + (p − m)l̃. According to [2, Chapter 12], K is a two-bridge knot of type
(p,m). �
5.4. From X1 to the knot complement X

Let ω be the boundary curve of a small normal neighborhood of the arc u in S2 ≡ ∂B1. We
can assume that ω is invariant under ψ . Then X = S3 \ N(K) is obtained from B1 by gluing a
2-handle to along ω.

Recall that on S2[1,5] the curve u consists of p arcs, and we assume that the part of ω on
S2[1,5] consists of 2p arcs parallel and close to those of u. For example, the 2 arcs of u on
S2[1,5] containing U and U ′ are drawn in Fig. 6 by bold line, and the part of ω near them
are drawn by lighter lines. Let the plane x1 = 3 intersect these lighter lines (which are parts
of ω) at the points P,Q,Q′,P ′ (order from top to bottom), as in Fig. 6. We have ψ(P ) = P ′,
ψ(Q) = Q′.

5.5. Relative skein module

Let us recall the definition of the relative skein module S(X1;P,Q′) (see [5]). A type 1
tangle is the disjoint union of a framed link and a framed arc in X1 such that the parts of the
arc near the two end points are on the boundary ∂X1, and the framing on these parts are given
by vectors normal to ∂X1. Type 1 tangles are considered up to isotopy relative the endpoints.
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Then S(X1;P,Q′) is the R-vector space generated by type 1 tangles with endpoints at P,Q′
modulo the usual skein relations, like in the definition of S(X). One defines in a similar way
the relative Kauffman bracket skein module S(Σ;P,Q′) := S(Σ × [0,1];P,Q′), where we
identify Σ × [0,1] with a collar of Σ in X1.

Since ∂X1 = Σ , there is a natural bilinear map S(Σ;P,Q′)⊗S(X1) → S(X1;P,Q′), where
� ⊗ �′ → � � �′, which is the disjoint union of � and �′.

The pair P,Q divide ω into two arcs, the one that is fully drawn in Fig. 6 (and that goes
around point U ) is denoted by nl . Similarly, the pair P ′,Q′ divide ω into two arcs, the one
that is fully drawn in Fig. 6 (and that goes around point U ′) is denoted by nr . For G,H among
P,Q,P ′,Q′ let d(GH) be the straight interval connecting G and H , whose interior is slightly
pushed inside the interior of B1 (to avoid intersections with other arcs on the boundary ∂B1)
and whose framing is given by vectors normal to ∂B1. Let a1 be d(P,Q′); a2 be nl followed by
d(QQ′); a3 be d(PP ′) followed by nr ; and a4 be nl followed by d(QP ′) then followed by nr .
In all cases the framing is given by vectors normal to ∂B1.

Using the skein relations one can simplify the arc part of elements in S(X1;P,Q), showing
that the arc part is one of the four ai , i = 1,2,3,4. More precisely one has the following lemma,
which is a slightly different version of [5, Lemma 3.1]. The simple proof in [5] works for our
version as well.

Lemma 5.2. The relative skein S(X1;P,Q) is equal to the union
⋃4

i=1(ai � S(X1)).

5.6. From S(X1) to S(X) through sliding

5.6.1. Let Σ = S2 \ {U,U ′,V ,V ′}. Then S(Σ) is an algebra, and S(X1) = R[x, x′, y] is a
left S(Σ)-module, since ∂X1 = Σ : For � ∈ S(Σ) and �′ ∈ S(X1) the action � � �′ ∈ S(X1) is
the disjoint union of � and �′. It is easy to see that the action descends to an action of S(Σ) on
R[x, y] ≡ R[x, x′, y]/(x = x′).

5.6.2. Sliding
Recall that X is obtained from X1 by attaching a 2-handle along the curve ω. The embedding

of X1 into X gives rise to a linear map from S(X1) ≡ R[x, x′, y] to S(X). It is known that the
map is surjective, and its kernel K, see [5,23], can be described through slides as follows.

Suppose a is a type 1 tangle whose 2 endpoints are on ω such that outside a small neighbor-
hood of the 2 endpoints a is in the interior of X1 and in a small neighborhood of the endpoints a

is on the boundary ∂B1 = S2. The two end points of a divide ω into 2 arcs ωl and ωr . The loop
ω partitions S2 = ∂B1, which is a sphere, into 2 parts; the one not containing U,U ′ is called the
outside one. Let us isotope a (relatively to the endpoints) to a′ so that in a small neighborhood of
the endpoints a′ is in the outside part of ω.

Let sl(a) be a′.ωl − a′.ωr , considered as an element of the skein module S(X1). Here a′.ωl

is the framed link obtained by combining a′ and ωl . Note that sl(a) is defined up to a factor
±t3n, n ∈ Z: The exchange ωl ↔ ωr changes the sign, and isotopies in neighborhoods of the
endpoints change the framing, which results in a factor equal to a power of (−t3).

It is clear that as framed links in X, a′.ωl is isotopic to a′.ωr , since one is obtained from the
other by sliding over the 2-handle attached to the curve ω. Hence we always have sl(a) ∈ K.
It was known that K is spanned by all possible sl(a), where a can be chosen among all type 1
tangles with pre-given two endpoints on ω.
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5.6.3. The kernel
Now we choose and fix the two end points of a: P and Q′; i.e. a ∈ S(X1;P,Q′). We will

assume that ωl contains nl . The kernel K is spanned over R by sl(a),a ∈ S(X1;P,Q′). From
the description of S(X1;P,Q) in Lemma 5.2 we have

Lemma 5.3. The kernel K is equal to the R-span of {sl(ai ) � S(X1), i = 1,2,3,4}.

We will call an element in sl(ai ) � S(X1) a relation of type i. Here i = 1,2,3,4.

Lemma 5.4. One has

sl(a1) = sl
(
d(PQ′)

)
, sl(a2) = sl

(
d(QQ′)

)
,

sl(a3) = sl
(
d(PP ′)

)
, sl(a4) = sl

(
d(P ′Q)

)
.

Proof. The first identity is a tautology. The last three follows from trivially a simple isotopy of
the links involved. �
5.6.4. Simplifying the kernel

Let K′ be the R-span of sl(a1) � S(X1) and (x − x′)S(X1).

Lemma 5.5. For every � ∈ S(X1) one has � − ψ(�) ∈ (x − x′)S(X1).

Proof. Note that ψ(x) = x′,ψ(x′) = x, and ψ(y) = y. Hence for any link �, the skein ψ(�),
as an element in S(X1) = R[x, x′, y], is obtained from the skein of � by the involution x → x′,
x′ → x, y → y. It follows that for any framed link �, and one has � − ψ� ∈ (x − x′)S(X1) ⊂ K′.�
Lemma 5.6. One has K = K′.

Proof. First we prove that K′ ⊂ K. Since sl(a1) � S(X1) is already in K, we need to show
(x − x′)S(X1) is in K. Note that sl(d(PQ)) is exactly x − x′. Moreover, for any link � in the
interior of X1 one has sl(d(PQ) ∗ �) = (x − x′)�. Hence (x − x′) � ∈ K, and hence K′ ⊂ K.

Now we prove K ⊂ K′.
By Lemma 5.4 one has sl(a3) = sl(d(PP ′)). Since both d(PP ′) and ω is invariant under ψ ,

we have ψ(d(PP ).ωl(PP ′)) = d(PP ).ωr(PP ′), where ωl(PP ′) and ωr(PP ′) are the two
arcs of d obtained by dividing ω using the two points P,P ′. Hence sl(d(PP ′)) � S(X1) =
(d(PP ).ωl(PP ′) − d(PP ).ωr(PP ′)) � S(X1) is in (x − x′)S(X1) ⊂ K′ by Lemma 5.5. The
proof that all relations of type 2 belongs to K′ is similar.

For type 4, by Lemma 5.4 we have sl(a4) = sl(d(P ′Q)). Since ψ(P ) = P ′,ψ(Q) = Q′,
one has ψ(sl(d(P ′Q))) = sl(d(PQ′)) = sl(a1). Hence [sl(a4) − sl(a1)] � S(X1) belongs to
(x − x′)S(X1) by Lemma 5.5. Thus sl(a4) � S(X1) is in K′. �
5.7. Proof of Theorem 2

We have S(X) = R[x, x′, y]/K′. Note that R[x, x′, y]/(x − x′)S(X1) = R[x, y]. Hence
S = R[x, y]/K′′, where K′′ is the R-span of sl(a1) � R[x, y]. Note that there is a natural
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R[x]-module structure on S(X): Here x is a meridian, thus belongs to the boundary of X.
Over R[x], R[x, y] is spanned by 1, y, y2, . . . . Hence K′′, as a R[x] module, is spanned by
sl(a1) � yk = (a1.ωl − a1.ωr) � yk , k = 0,1,2, . . . .

Note that a1.ωr is the closure in the sense of Section 1.5 of a braid on (p + 1) strands, while
a1.ωl is the closure of a braid on (p−1) strands. Moreover, a1.ωr �yk is the closure of a braid on
(p+1)+2k strands, while a1.ωl �yk is the closure of a braid on (p−1)+2k strands. Lemma 1.1
shows that (a1.ωl − a1.ωr) � yk , as an element of R[x, y], has y-degree (p + 1)/2 + k, with
highest coefficient invertible and of the form a power of t . Hence when we factor out R[x, y]
by K′′, we get a free R[x]-module with representatives yl , l = 0,1,2, . . . , (p − 1)/2, as a basis.
This completes the proof of Theorem 2.

Remark 5.7. The same proof shows that the theorem still holds true if we replace the ground
ring R = C[t±1] by RZ := Z[t±1].

Corollary 5.8. For two-bridge knots one has ε(S(X)) = R(χ(X)), the ring of regular functions
on the character variety.

Proof. By the result of [18], the ring R(χ(X)) is C[x̄, ȳ]/(ϕ(x̄, ȳ)), where ϕ(x̄, ȳ) is a polyno-
mial of ȳ-degree (p + 1)/2, with leading coefficient 1. Here x̄, ȳ are respectively the traces of
the loop x, y. The corollary follows immediately. �
6. Proof of Theorem 1

6.1. The peripheral polynomial of two-bridge knots

Theorem 2 about the structure of the skein module of complements of two-bridge knots is
used to prove the following

Proposition 6.1. For the two-bridge knot K = b(p,m) the peripheral polynomial βK is never 0
and has L-degree less than or equal to (p + 1)/2.

Proof. By definition one has the following exact sequence of R[x]-modules

0 → P ↪→ T σ Θ−→ S(X). (3)

When x = M + M−1, the field R(M) of rational functions in M is a flat R[x]-module, since
R(M) contains the fractional field of R[x] as a subfield. Hence the following sequence, which
is obtained from (3) by tensoring with R(M), is exact

0 →R(M) ⊗R[x] P ↪→ R(M) ⊗R[x] T σ id⊗Θ−−−−→R(M) ⊗R[x] S(X). (4)

Note that the first module R(M) ⊗R[x] P is exactly P̃ , the left-ideal extension of P from T σ

to T̃ . It is easy to check that the second module R(M) ⊗R[x] T σ is T̃ . One can now rewrite (4)
as

0 → P̃ ↪→ T̃ id⊗Θ−−−−→ R(M) ⊗R[x] S(X). (5)
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The third module is a finite-dimensional R(M)-vector space; in fact, its basis is {yi, 0 � i �
(p − 1)/2}, since S(X) is R[x]-free with the same basis, by Theorem 2. The middle module T̃
is an R(M)-vector space of infinite dimension; in fact, its basis is {La, a ∈ Z}. Thus the kernel
P̃ is never 0, and hence its generator βK is not 0. Moreover the image of (p + 1)/2 + 1 ele-
ments 1,L,L2, . . . ,L(p+1)/2 are linearly dependent. Hence there must be a non-trivial element
in the kernel of L-degree less than or equal to (p + 1)/2. �
Corollary 6.2. Every two-bridge knot β(p,m) satisfies a recurrence relation with L-degree less
than or equal to (p + 1)/2.

This is because βK is divisible by the recurrence polynomial αK . Note that the existence of
recurrence relations for arbitrary knots was established in [12] by another method. But in [12]
the L-degree is much larger.

6.2. Conjecture 2 holds true for two-bridge knots

Proposition 6.3. Suppose for a knot K the skein module S(X) is free over R and ε(S(X)) =
R(χ(X)). Then ε(P) = p, and hence ε(βK)

M= BK .

Proof. Consider again the exact sequence (3), but now as sequence of modules over R = C[t±1],
a principle ideal domain. By assumption, the last module S(X) is free over R. Hence when
tensoring (3) with any R-module, one gets an exact sequence. In particular, tensoring with C,
considered as R-module by putting t = −1, one has the exact sequence

0 → ε(P) ↪→ ε
(
T σ

) ε(Θ)−−−→ ε
(
S(X)

)
.

Notice that ε(T σ ) = tσ , ε(S(X)) = R(χ(X)), and ε(Θ) = θ . Thus p, being the kernel of θ , is
equal to ε(P). The second statement follows from Proposition 4.2. �

From Theorem 2, Corollary 5.8 and Proposition 6.3 we get

Theorem 3. Conjecture 2 holds true for two-bridge knots: ε(P) = p and ε(βK) = BK .

6.3. Proof of Theorem 1

(a) is Proposition 6.1.

(b) One has ε(βK)
M= BK by Theorem 3. Thus the algebraic set {ε(βK) = 0} M= {BK = 0} is

M-essentially equal to {A′
K = 0}, by Proposition 3.1. Applying ε to (2) we get

ε(βK)
M= ε(γ )ε(αK), (6)

which means ε(βK) is M-divisible by ε(αK). Hence {ε(αK) = 0} is M-essentially an algebraic

subset of {ε(βK) = 0} M= {A′ = 0}.
K
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(c) Suppose AK has L-degree (p − 1)/2. Then A′
K = (L − 1)AK has L-degree (p + 1)/2.

By Proposition 6.1, βK has L-degree less than or equal to (p + 1)/2. But ε(βK) is M-essentially
divisible by A′

K . Hence the L-degree of βK must be exactly (p + 1)/2, and also

ε(βK)
M= (L − 1)AK.

Combining with (6) we have

AK
M= ε(γ )

ε(αK)

L − 1
. (7)

Recall that ε(αK)
L−1 is a polynomial by Proposition 2.3. From (2) and the fact that the L-degree of

αK is bigger than 1 (Proposition 2.2) it follows that the L-degree of γ is less than (p − 1)/2,

which is the L-degree of AK . Hence if AK is Z-irreducible, from (7) one must have ε(γ )
M= 1

and ε(αK)
L−1

M= AK . This completes the proof of Theorem 1.
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