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Abstract-A structural stability result for one-step discretizations of semilinear differential equai 
tions with an exponential dichotomy in its linear part is presented and interpreted as a shadowing 
result. Estimates are given in terms of the stepsize and of the order of the discretization method 
chosen. 

1. INTRODUCTION 

The main result of this paper (Theorem 3.1 and Corollary 3.1) is rather technical in nature, and 
therefore, we give a somewhat informal description in this introductory section. Throughout this 
paper, we consider differential equations of the form 

i = -4(t) Y + a(& Y) 0) 

with t E IR and y belonging to a Banach space Y. We assume that A E CP+l, a E CP+l, and 

a(t, 0) = 0, a&(t, 0) = 0 for all t E R. The main assumption we make is that the linear equation 
0 = A(t)y admits an exponential dichotomy on R. We show in this paper that locally, in a small 

neighborhood of 0 E Y, the differential equation (1) is correctly reproduced by one-step numerical 
methods of order p > 2. For sufficiently small stepsize h and initial time to = 0 (this is just for 

simplicity), two “time variant discrete dynamical systems” are compared: 

(a) the solution operator of the difference equation obtained by discretizing the differential 

equation (1) with stepsize h, 
(b) the time-h-solution operator of the differential equation (1). 

The “time variant dynamical systems” described in (a) and (b) are in fact no dynamical 

systems in the strict mathematical sense, they are rather cocycles associated with nonautonomous 
difference equations. Equations of this type have not attracted much attention until only recently. 

Things have changed, however. In recent years, the theory of difference equations has experienced 
a tremendous renaissance which is demonstrated by the list [l-4] of new monographs in this 

field. In [5,6], the time variance of the dynamics is emphasized. There we speak of “dynamical 

processes” instead of “time variant dynamical systems,” and e.g., the “time variant family of 
stable manifolds” is called “stable fiber bundle.” According notions are used for the other types 

The authors are indebted to W.-J. Beyn for valuable comments on the list of references. 
*This paper was written during a stay (supported by the PHAREprogram of the European Community, Grant 
No. 1962) of the second author in the Mathematical Institute of the University of Augsburg. 
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of invariant manifolds. Also, in the present paper, we use these new notions in order to distinguish 
our nonautonomous point of view from the autonomous one. 

The main result of this paper (see Theorem 3.1) provides a coordinate transformation that 

carries the above (a) and (b) onto each other. To be more precise, we present a sequence of 
self-homeomorphisms { ‘&h}kEN of Y, 0 (hP)-near to the identity, indexed by the time sequence 
{ICh}kEN and carrying (a) onto (b). The corresponding stable fiber bundles are mapped onto 
each other, and the same holds true for the unstable fiber bundles. Geometrically this means 

that the “rotating saddle structure” inherent in the given differential equation persists under 
discretization. It also means that exact and numerical solutions are mutually shadowing each 

other. 
The present paper is a natural extension of methods and results from [7-lo] elaborated for 

the autonomous case. In the present paper, we start with a rather formal generalization of the 
Grobman-Hartman lemma and apply it to discretizations about equilibria of nonautonomous 

ordinary differential equations. Naturally enough, it turns out later on that the assumptions 
we have to impose for purely technical reasons are just the conditions defining an exponential 

dichotomy for the linear part. 

2. A NONAUTONOMOUS GROBMAN-HARTMAN LEMMA 

It is an outstanding theorem in differentiable dynamics that locally, in a neighbourhood of a 

hyperbolic equilibrium point, diffeomorphisms are conjugate to their linear part. A global version 

of this result can be formulated as follows. 

THEOREM 2.1. (GROBMAN-HARTMAN LEMMA, [ll, THEOREM 5.141) Let 24, S, X be Ba- 

nach spaces, U E L(U,U), S E L(S,S), X E L(X,X), X = U x S, X = diag(U,S). Let 
e,n E CO(X,X) be Lipschitzian and Lip(<), Lip(n) < K. Assume that X is invertible and 

K < min{l -a,l/]S1]}, h w ere a = max{ IU-‘], IS]} and a < 1. Then there exists a unique 

h E C”(X, X) such that, with l-t = idx + h, the relation 

(X+rl)x==(x+J) (2) 

holds true. Moreover, 7-l is a homeomorphism of X onto X, and therefore, it is a conjugacy from 

x+< tox+n. 

In this theorem and throughout this paper, we use standard notation and terminology. In the 
following, Ki, K2, etc., will denote positive constants. The positive constants K~(E), K~(E), etc., 

will depend on some parameter E. The constants K1, KQ(E), etc., will not necessarily be the same 

at different appearances. Given Banach spaces X, y, for each j = 0, 1,2,. . . , Cj(X, y) denotes, 

with the norm 
max 

{ 11 
sup f’“‘(s)1 ]ZEX ]m=O,l,..., j ) 

> > 
the Banach space of all j times continuously differentiable functions from X to Y with bounded 
derivatives. For brevity, we write C’(X, y) = C(X, y). Partial derivates are denoted by f;, fi, 
cpk, cp:, ~p$~), etc. The Banach space of bounded linear operators from X to Y is denoted by 

L(X,y). The norm of X E L(X,Y) is defined by inf 
{ 

c E Iw ] ]XZ] 5 ~1x1, for all z E X 
> 

. 

The spectrum of X E L(X, X) is denoted by u(X). In product spaces, the norm is defined by 

max{]u], Is]}. (Though single bars denote norms in different spaces, no confusion should arise.) 

Lipschitz constants are denoted by Lip(.). 
The proof [ll, Exercise 5.191 of Theorem 2.1 begins with the observation that, in virtue of the 

Lipschitz inverse function theorem [ll, Exercise C.111, the mapping X + 5 is a homeomorphism 
of X onto X. The second step is to split the conjugacy equation (2) and to rewrite it as system 

(3) 
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where, of course, superscripts U and S stay for the U- and S-coordinate, respectively. A straight- 

forward application of the contraction mapping principle yields that system (3) has a unique 

solution in C(X,X) = C(X,U) x C(X,S). The last step in the proof of Theorem 2.1 is to point 

out that the resulting map ‘Ft = (idu + h ‘, ids + hs) is a homeomorphism of X onto X. 
In order to extend the proof of Theorem 2.1 we just sketched to a nonautonomous setting, we 

replace the one-cell conjugacy diagram (cf. equation (2)) 

by the doubly-infinite (n E Z) conjugacy diagram 

- u, x s, -G+& ) U n+l x &,I - 

3-t, I 1 7-t n+l 

- iii, x s, Xn+% c U n+1 x Sri+++ - 

Given a sequence { (X,, 1 * I,)}ym of B anach spaces, let C denote the Banach space of all 
doubly-infinite bounded sequences h = (. . . , h,, hn+l, . . .) with coordinates in C(Xn, Xn). The 

norm on C is defined as llhll = sup{ Ih,l I n E Z}, where lhnl = sup{ Ihn(x,)ln 1 2, E A’,}, 
n E Z. The following theorem is the discrete analogue of the main result in [12]. For other 

discrete-time nonautonomous variants of the Grobman-Hartman Lemma, see [13,14] as well as 

the forthcoming monograph [6]. (E ssentially, all continuous- and discrete-time invariant manifold 
and linearization results treated in [15] are valid (see [6]) in the nonautonomous case as well.) 

THEOREM 2.2. Let U,, S,, X, be Banach spaces, U, E L(U,,U,+r), S, E L(S,,&+i), X, E 
L(X,, Xn+i), X, = U, x S,, X, = diag(ll,, S,), n E Z. Assume that 

X,isinvertibleanda=sup{max{]~~l],~S,I)]n~Z}<l. (4) 

Furthermore, let &, nn E C(Xn, Xn+i) be Lipschitzian and satisfy 

I&], 1~~1 I K and Lip(&),Lip(rln) i kc, for all n E Z, (5) 

where K, IC are positive constants and 

~<min[l--a,&}, forallnEZ. 

Then there exists a unique h = (. . . , h,, h,+l, . . .) E C such that, with ti, = id,, + h,, we obtain 
the relations (cf. equation (2)) 

wn + %) XL = xl.+1 (X72 + rn) 1 for all n E Z. (7) 

Moreover, for all n E Z, 7-l, is a homeomorphism of X, onto X, and ‘H = (. . . , ‘H,, F&+l,. . .) is, 
therefore, a conjugacy from {X, + &}r’ to {X, + qn}rm. 
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PROOF. Using (4)-(6), it is immediately seen that Lip (&) < Kand]X;‘] =max{]U;l],]~;l]} = 
Is;~] < l/~. Thus, the conditions of the Lipschitz inverse function theorem [ll, Exercise C.ll] 
are satisfied and so X, + Jn is a homeomorphism of X, onto &+I, n E Z. It follows that 
system (7) can be reformulated as a fixed-point-equation F(h) = h, where (cf. (3)) 

(F(h)): = U,-‘{h:+, (X,+EJ-$(id,+h,)+~~} 

(F(h)): = { - - S, ihf 1 + ~2-i (id,-1 + &-I) - cf_i}(Xn-i +&-I)-‘, 

for all n E Z. We claim that .F is a contraction on C. In fact, given h,j E C arbitrarily, it is 

routine to check that 

l(w4),l - < max a h I +2K) ,alh,_ll +2K} I allhll +2K, { (I n+ I 
1 (.W): - (W,):l 5 a (I%+, -.$$+,I ++n -.inj) 541 +~)llh-Al, 

l(F(h))f - (F(j));1 I +:_, -$-,I ++n-1 +,-II I (a+fi)llh-Al, 

for all n E Z and consequently, F(h) E C and &F(h) - F(j))11 5 (u + K)llh - jll. This proves the 
claim. In what follows, let h denote the unique solution of F(h) = h in C. (Applying (4)-(6) 

again, we obtain that 

for all n E Z, and consequently, 

II4 I (l-o-+lsu~{]~n-&] ln~z}. (8) 

In several cases, inequality (8) is sharper than llhll 5 (1 -a)-l2K, a consequence of I (F(h)),1 < 

+ll + 2K.j 
It is left to prove that, for all n E Z, IFt, is a homeomorphism of X, onto X,. Interchanging 

the role of {J71}roo and {??n}Tm, the previous argument yields the existence of a unique j = 

(. . . , j,, jn+i, . .) E C, such that, with Jn = id, + j,, we get (X, +&)Z = &+1(X, +7]n). Since 

(X, + En)Jn% = Jn+l( X, + qn)7-lFI, = &+I%+I (X, +Sn) and (. . . , Jk3-tn - id,, Jk+l%+l - 
i&+1,.. .) E C, the uniqueness property in (7) shows that JnNHn = id,, for all n E Z. A similar 

reasoning yields that ‘H,& = id,, for all n E Z. I 

REMARK 2.1. Assume, in addition to the assumptions of Theorem 2.2, that 

there exists a constant L such that IV,] 5 L, for all n E Z. (9) 

Let X denote the Banach space of all doubly-infinite bounded sequences x = (. . . , x,, xn+l, . . .) 
with coordinates in X,. The norm on X is defined as I IjxI 1 I = sup { Ix, In I n E Z}. By letting 
xx = (. . . ) Xn-~xn-~,Xnxn,. . .), a bounded linear operator X E L(X, X) is defined. Observe 
that X = diag(U,S), where U E L(U,U), S = L(S,S) and U = {x E X I xn E Z-4,, for all 
n E Z}, S = {x E X I 2, E S, for all n E Z}, U = (. . .,Un_-lun_-l,Unun ,...) for u E U, 
s = (..., ~n-l.%-l,J%n,~ .) for s E S. Since X is invertible and IIIU-llll, jllSlll 5 a < 1, 
X is a hyperbolic linear operator on X and, in case condition (9) is satisfied, the statement 
of Theorem 2.2 about a nonautonomous Grobman-Hartman lemma can be interpreted as the 
classical autonomous Grobman-Hartman result in a suitably chosen sequence space. Though 
Theorem 2.2 is not in the most general form (nonlinear perturbations of the form <, 77 E C(X, X) 
can also be allowed), it is general enough for our purposes. 
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REMARK 2.2. (continuation): By elementary Taylor-Laurent expansions, it is easily seen that 

g(X) is contained in the closed annular hull of the set U {cJ(X~) ] n E Z}. The notion (o(Xn)) 

makes sense here because the Banach spaces X, and X n+i can be identified via the linear homeo- 

morphism X, E L(X,, Xn+i). Thus, we get o(X) c cl({p E Cc 1 there exist n E Z and X E o(Xn), 
such that ]/.J] = IX]}). On the other hand, it follows directly from the definition and from the 
closedness of the spectrum that 

a(X) 3 cl( U {0(X,) 1 n E Z}). 

In what follows, we present an example showing that, in general, cr(X) is different from cl( U 
{o(Xn) I n E Z}). In fact, consider the separable Hilbert space (Zz, I . I). For n 2 3, let Q,, be a 

weighted Toeplitz permutation matrix defined by 

( 

1, if (i,j) = (1,n) or (i,j) = (k,k), k 2 n+ 1 

q; = n- 1, if (i, j) = (2,l) 

(n - k + 2)-l(n - k + l), if(i,j)=(k,k-l), k=3,4 ,..., n 

0, otherwise . 

It is immediate that Qn is invertible and R, = Qil is given by r; = l/qjni, i, j = 1,2, . . .; n 2 3. 
A direct computation shows that 

Qn,Rn~L(h,h), lQnl=n-ll, I%.[=& n 2 3, (10) 

Qz = RE = idl,, n 2 3. (11) 

For n I 2, set Qn = Qs, R, = RB. Finally, for n E Z, set X, = 12, X, = 10. idl, - R,. Using 

the R-part of (lo), ‘t 1 is easily seen that X, E L(/2,/2), (U, = X,, S, = {0}), IX,] 5 12, X, is 
invertible and IX;‘] I l/8. In virtue of (ll), the spectral theorem yields that a(-&) c {X E 
C I [XI = l}, o(Xn) C {A E Cc I IX - 101 = 1). Thus, 10 $ g(Xn) and, by the construction, 

(10 . idl, - Xn)-’ = Qn, for all n E Z. With the notation adopted in Remark 2.1, consider 

now the operator 10 . idx - X E L(X,X). If it were invertible, we had sup { IQn] I n E Z} = 

sup{/(lO.idl,-X,)-l] ]nEiZ} < 00, contradicting the Q-part of (10). Summing up the 

previous considerations, we get cl(U{a(Xn) I n E Z}) c {A E @ I IX - lo] = 1) but 10 E C(X). 
(A somewhat more detailed analysis shows that cl(U{a(Xn) I n E Z}) = {A E Cc I IX - lo] = 1) 

and g(X) = {X E C I IX - 101 5 1). We do not know if there is any theoretical relationship 
between a(X) and the convex hull of the set cl(U{a(X,) I n E Z}).) 

REMARK 2.3. The argument which led from Theorem 2.1 to Theorem 2.2 works equally well 
when generalizing basic invariant manifold theory to the nonautonomous case. For example, 
consider the classical stable manifold theorem [ll, Theorem 6.51 for mappings of the form 

uxs+uxs, (u, s) + (Vu + eU(u, s), ss + &u, s)). 

As it is well known, the stable manifold M is obtained as 

graph(p) = {MS), s) E U x S I s E S}, 
where p is the unique bounded Lipschitzian solution of the invariance equation 

CL(s) = u-‘k(ss + 5‘%(4,4) - u-Y MS), s) 7 s E s. 

In order to extend the stable manifold theorem to the nonautonomous case, i.e., to state and 
prove a stable fiber bundle theorem for nonautonomous difference equations, the only thing to do 
is the introduction and the solution-as in the proof of Theorem 2.2, via the contraction mapping 
principle--of the doubly-infinite system 

of invariance equations. For a precise statement see the proof of Theorem 4.1. 
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3. AN APPLICATION TO NUMERICAL ANALYSIS 

Let Y be a Banach space, f E CP+l (I[$ x Y, Y), and consider the ordinary differential equation 

Y’ = f(t, Y). Th e solution through (to, z) E lR x Y is denoted by @)(a, to, z). The r-discretization 

of order p = 1,2,... is defined as a mapping cp E CP+‘(lR+ x IR x Y, Y) satisfying, with some 
positive constants K and TO (independent of 7, to and z) the inequality 

I~‘(to+~,~o,-Z)-~(~,to,~)I IKr P+l 
1 for all to E R, 7 E (O,rc], z E Y. (12) 

(Actually, inequality (12) is needed only on a Y-ball of sufficiently large radius. Also the bound- 
edness of derivatives of f and cp is required only in this sense.) It is well known (see [16]) 
that, for each T > 0, there exists a constant K = K(T) such that K(T2) < K(Tl) whenever 

Tz < Tl and, with cp(k, r,tc, z) defined by the recursion cp(O,r,tc,z) = z, cp(k + l,~, tc,z) = 

(P(T, t0 + h cp@, 7, to, zz)), k E N, we get 

m(to+T,to,i)-~(N,~,to,l)l SF, (13) 

whenever to E R, N E N, T/N < 70 and z E Y. 
In other words, on any interval of finite length T, the exact solution is O(N-P)-approximated by 

the numerical solution obtained by solving the nonautonomous difference equation (with ze = z) 

T kT 
zk+l = V’ j+O+N,Zk , 

) 

k=O,l,..., N-l. 

LEMMA 3.1. Under the previous conditions, the estimate 

holds true whenever to E R, N E IV, (T/N) < 70 and z E Y. 

PROOF. In virtue of (12), Q$m!“‘(to, to, z) = cpim”‘(O, to, z), m = 0, 1, . . . ,p, and hence, differentiat- 
ing Taylor’s expansion formula 

@(to + 7, to, z) - (p(T, to, z) = ((p - l)!)$l - s)“-‘(@)(t, + 57, to, z) - cp$+, to, z)) dsrP, 
0 

with the remainder in integral form, we obtain that 

IWo +~,to,z) - dWo,z)I I KT~, for all to E R, 7 E (0,701, z E y. (15) 

For brevity, we write Fk(z) = @(to+kT/N,to+(k-l)T/N,z), Gk(Z) = (p(T/N, to+(k-l)T/N,z) 

and observe that @(to + kT/N, to, 0) = FkFk_1 . . . Fl and cp(k,T/N, to, a) = GkGk_I.. . G1, k = 

1,2,. . . ) N. Applying Gronwall’s lemma to the variational equation of G = f(t, y), it follows that 

IFL(z)I 5 1 +a/N and (using (15),(13)) [G;(z)] i 1 + b/N and 

]FL(Fk--1.. . FI) - Gk(Gk_l.. .G1)1 < IF;(Fk-1.. . FI) - G;(Fk_1.. . FI)[ 

+ IG;(Fk-1.. .FI)-G;(Gk+..G1)l 

SK ; 
( > 

P 

+ c IF/+1.. . FI - Gk_1.. . G11 

for all k = 1,2, . . . , N, to E R, T/N < 70, z E Y (where, of course, a, b, c, d (and e) are constants 
independent of N). The desired inequality follows now via 
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= FN. 
I( 

..FI): - (GN...G1):( 

= F~(FN-~. . . Fl). Fh_r(F~_2.. . Fl). . . . . F{ 

-&(GN-~ . . . G1) * GIN-1 (GN_P . . . G1) . . . . 

5 2 IF&(FN-i.. . FI) . . . . . FL+,(Fk.. . FI). pi(Fk_-l.. . FI) 
k=l 

-G#'/+l.. . Cl)] . G!+,(Gk_z.. e GI) . . . . . G;I 

< N 1 + m=y4)N-1 6 - ( 
This completes the proof of Lemma 3.1. 

REMARK 3.1. Similar computations yield also that 

f@“‘(to + T, to,z) - cplm) 
(‘Iv”,) 

N T t z < K(T) 
-Np--m’ 

whenever m=O,l,... ,p,toEIW,NE~,T/N<7oandzEy 

From now on, assume that f(t, y) = A(t)y + a(t, y), where A E CP+l(W, L(y, y)), a E CP+l 

(IR x Y, Y) and, for all t E W, u(t,O) = 0, u&(t,O) = 0. The solution of jr = A(t) y through 

(to, z) E IR x Y is denoted by Q(., to)z. 

Further, assume there exists a function ~1 E C P+‘(Y,lR+), with the properties that ~(9) = 0 

whenever (yy( >_ 1, and p(y) = 1 whenever Iy( 2 A, for some A > 0. (This requirement concerns 
the finer structure of the Banach space and is met, e.g., if y is finite-dimensional or a Hilbert 
space.) With a(t, y; E) = a(t, y)p(y/ E , consider now the ordinary differential equation ) 

ti = 4t)y + a(& Y; E), t E R, y E y, E > 0. (16) 

The solution of (16) through (to, z) E R x Y is denoted by @(a, to,z;E). For t, to E R, z E Y, 

E > 0, set r(t, to, z; E) = @(t, to, 2; E) - Q(t, t0)z. 

LEMMA 3.2. There exists a continuous function R : R+ x R+ + Et+, increasing in both variables, 

with fl(O,T) = 0, for all T > 0, such that 

Ir(t, to, .; E)I I fi(s, T)s(t - to), 

b-3, to, .; &)I 5 fl(c, T)(t - to), 

whenever to E I, to 5 t 5 to + T, T > 0, E > 0, (17) 

whenever to E P, to 5 t 5 to + T, T 2 0, E > 0. (18) 

PROOF. The differentiability assumptions on a imply that, for a suitable bounded continuous 

function w : iR+ --t KC+ with w(0) = 0, one has 

[a@, GE) - a(& w; &)I I W(E)IT - WI, whenever t E JR, z, w E y, E > 0. 

In particular, lu(t,z;e)l 5 w(E)& for all t E W, z E Y, E > 0. Since 

+(t, to, z; E) = A(t)T(t, to, z; E) + u(t, @(t, to, z; E); E) (19) 
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and r(tc, ts, z; E) = 0, an elementary application of Gronwall’s lemma yields that, with CY = 

su~{lA(t)l I t E R), 

Ir(t, to, 2; E)I I ,(,)Ei (exp(a(t - to)) - 1)) for all to E R, t > to, z E J.J, e > 0. 

Thus, (17) follows. Furthermore, since T is obviously differentiable in z, (18) is equivalent to 

Lip(r(t, to, .; E)) I WE, T)(t - to), and this latter inequality is a direct consequence of Gronwall’s 
lemma when applied to the difference of equations (19) and f(t, to, W;E) = A(t)r(t, to, w; E) + 

a(t, Q(t, to, w; s); s). I 

In what follows, we put further restrictions on 6 = A(t)y and assume there are positive con- 

stants p, TO, M satisfying p < 1 and, for each n E Z, we assume there exists a splitting 

V, x W, = y with projections P, E L(Y, Vn) and Qn E L(Y, W,), P, + Qn = idy such that 

Q(nTo, (n + ~)To)~,+I = Vn and I@(nTa, (n + l)Te)w] 5 p]w], whenever Y E Vn+i (20) 

Q((n + l)Ta,nTe)W, = Wn+l and IQ((n + l)Tc,nTa)wl i: P]w], whenever w E W, (21) 

Pnl, IQnl I M, for all n E Z. (22) 

From now on, we consider equation (16) with the particular initial condition y(O) = z. Also con- 

ditions (20)-(22) were already formulated in anticipation of this technical simplification. There 

is another technical simplification: the stepsize is chosen to be To/N, (N E W, large). The first 
paragraph of Section 4 helps the reader to reformulate the results for arbitrary initial time to. 

(With s, N fixed, the sequence of homeomorphisms is indexed then by {to/To + m/N},sz. It is 

not hard to show that Y&/T~+~,N depends continuously on to. (The basic reason for this is that 
in Theorem 2.1 the homeomorphism 7f depends continuously on < and 7.)) 

Now we are in a position to state and prove the main results of this paper. Our aim is to 

compare exact and numerical solutions of equation (16). More precisely, the time-To/N-sequence 
{@(kTa/N, 0, z; s)}r of the exact solution through (0, z) E lR x y is compared with a numerical 
solution suitably chosen, i.e., for some w E y suitably chosen, with the solution sequence of the 

nonautonomous difference equation wk+l = (p(Te/N, kTa/N, ?&; E), k = 0, 1,2,. . . (and we = w). 

With the notations of Theorem 3.1, below, w = ~-IO(Z) and ]wk -Q(kTo/N, 0, z; &)I 5 L(s)/NP for 
all k E N. Similarly, since Xc is a homeomorphism, given w E Y arbitrarily, there exists a z E JJ 

(as a matter of fact, z = ‘H,‘(w)), such that ]wk - Q(kTe/N,O, z;E)[ 5 L(s)/Np, for all k E N. 

Thus, using a terminology dating back (see [17]) to Anosov and Bowen, exact and numerical 

solutions are mutually shadowing each other. In particular, the O(N-(p+‘))-pseudo-orbit {wk}r 
is O(N-P)-shadowed by the time-To/N-sequence of the exact solution @(t, 0, Xi’(w); E). For the 

reader’s convenience, we recall the notions appearing in this shadowing statement: Suppose we 
are given a mapping F : y + y. The sequence {zk}: c y is then said to be a &pseudo-orbit 

if ]zk+i - F(Zk)] < 6, k E W. This pseudo-orbit is &-shadowed by the true orbit {gk}F C Y if 

(yk+l = F(yk) and ]Zk - yk] < E, k E N. 

In describing the relationship between true orbits and orbits found by computers (round-off- 

errors!), the concept of shadowing has found some nice applications (see, e.g., [l&19] and the 
references therein). While most of these papers are devoted to explaining numerical results, 
especially numerically computed chaotic orbits, our approach is analytical and more traditional. 

Heading for the main results of this paper, we first present a conjugacy result for Nth power 
subsequences. By considering the collection of initial conditions { y(nTe) = z}~,;, we will see that 

Theorem 2.2 is directly applicable for Nth power (exact resp., numerical) solution subsequences. 
The extension to the full solution sequences is accomplished in Corollary 3.1. 

THEOREM 3.1. Assume that all conditions preceding Lemmas 3.1 and 3.2 are satisfied. Fur- 

thermore, assume that the conditions (20)-(22) are met and that p 2 2. Consider equa- 

tion (16). Its solution operator and r-discretization are denoted by @(t, to, .; E) and (~(7, to, .; E), 
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respectively. Let (p(O,T, to,z;E) = z and recursively, for k E N, define cp(k + l,~,to, Z;E) = 

(~(7, to + kr, cp(k, 7, to, z; E); E). Then there is a positive constant EO with the following property. 

Given E E (O,EO] arbitrarily, there exist an integer No = NO(E) and a constant L = L(E) and, 

for each integer N 2 No, there exists a unique sequence {tin}TW = {F&(E, N)}rW of home& 
morphisms of y onto y such that (provided E E (0, EO] and N 2 NO), for all 71 E Z, z E JJ, we 

get 

P kN,$nToJ&( =3ik+n( @ ((n + k)To, nTo, z; 4)) k = 0, 1,2,. . . (23) 

and 

PROOF. It is enough to show that (23) is true for k = 1. In fact, (23) is trivially satisfied for 

k = 0 and (“extrapolating” in the long conjugacy diagram prior to Theorem 2.2, i.e., by induction, 

starting from the k = 1 case) the k > 2 case follows from the cocycle formulas 

Set X, = Y, lgln = m={lf’,al, IQnvl), for all Y E G, % = h, & = Wn, -G = W(n + ~)To, 

nTo), u7l = -%I I k, % = XT2 I G, tn = r((n + l)To, nT0, G&), 7772 = Jn + cp(N,To/N, 

co, .; E) - @((n + l)To, nT0, .;&), n E z. 

We point out that the conditions of Theorem 2.2 are satisfied. Observe that 1~1~ = 1’1~1, 

whenever u E U, and Is/, = I (, s w h enever s E S,,n E Z. Hence, by virtue of (20) and (21), the 
constant a can be chosen for p and condition (4) is satisfied. 

To check (5) and (6), a little more care is needed. Since 

IYI 5 Pnvl + IQnyI 5 2ma.x { Pnyl, IQn(y)l} = 21~1, 

and, using (22), 

IYI, 5 MIYI, for all y E Y, 

the norms 1 . 1 and 1 . In, n E Z, are uniformly equivalent. Therefore, though being somewhat 
altered by the renorming, the lemmas are still directly applicable. Fix EO so that, with the 

notation adopted in Lemma 3.2, 2Mfl(~o,To)To < (1-~)/3. Further, given E E (0, EO] arbitrarily, 
choose NO = NO(E) so that, with the notation adopted in Lemma 3.1 (70 and K(To) may depend 

on E now), To/No < TO and 2MK(To)/N~-’ < (1 - ~)/3. By (13), (17) and the renorming 

inequality (~1% 5 Mlyl, th e constant K in (5) can be chosen for M~(Eo, TO)E&O + MK(To)/N,P. 

Similarly, (14), (IS), and the renorming inequality 1~) I 21~1, 5 2MlyJ imply that IC can be 

chosen for ~M~(Eo, To)To + ~MK(To)/N:-~ and so condition (5) is satisfied. There is no loss 
of generality in assuming that 2Mr~ < exp(-CuTo), where a = sup{)A(t)l ) t E R}. Since 
IS;’ 1 5 IX,-’ 1 < 2M exp(aTo), it follows that also condition (6) and therefore, all conditions of 
Theorem 2.2 are satisfied. 

Observe that X, + en = @((n + l)To, nTo, .; E) and X, + rln = cp(N, To/N, Go, .; E). Applying 
Theorem 2.2, we see that (23) is identical to (7), and (24) is implied by (8). It is straight- 

forward to check that L(E) can be chosen, for (1 - ~1)~‘SMK(To) (where K(To) may depend 
on E, too ). I 

REMARK 3.2. Further restrictions on the numerical method guarantee that the constant K(T) 
in (13) and (14) does not depend on E if the differential equation Q = f(t, y) z A(t)y + a(t, y) is 
replaced by the one-parameter family of equations (16). As it is shown-mutatis mutandisby 
the arguments in [20, pp. 385-3911 elaborated for autonomous equations, this is the case for 
explicit Runge-Kutta methods. As an easy consequence of this, it follows then that also the 
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constants No and L in (24) are independent of E varying in (0, ~01. Another advantage of Runge- 
Kutta methods is that then cp(~, to, Z; ~0) = (~(7, to, Z) for 7 and 1.~1 sufficiently small. Thus (for 
Runge-Kutta methods), locally, in a small neighborhood of 0 E y, Theorem 3.1 can be interpreted 
as a result on the original ordinary differential equation jr = A(t)y + a(& y). 

COROLLARY 3.1. The conjugacy obtained in Theorem 3.1 can be extended to the full solution set 

{cp(k To/N, mTo/N, z; E) [ k E N, m E Z} of the nonautonomous difference equations obtained 
via To/N-discretization. 

PROOF. We “interpolate” in the long conjugacy diagram prior to Theorem 2.2. For n E Z, e E N, 

z E Y, we set 

It is easy to see that ?tH,+el~ is well defined and that this mapping is a homeomorphism of Y 
onto y, 

cp k,N, n+z To,~-&+~/N(~);E ( “( 7 >- -%+(k+t)/~ @ ( ((n+@$) Tb,(n+ $) To,%;&)). 

Furthermore, we get 
L(E) 

JX+e,i&) - 21 I Np’ 

for all n E Z, k E N,C E N, z E Y (providing N 2 NO(E),& E (0,&o]). I 

COROLLARY 3.2. The sequence of homeomorphisms obtained in Corollary 3.1 shares possible 
periodicity properties of (16). 

PROOF. 

(a) Assume that both @(to + T, to, Z;E) and (~(7, to, Z;E) are periodic in to with minimal 
period p > 0. Analyzing (20)-(22), we see that TO can be chosen for an integer multiple 
of p, say TO = jop for some jo E M. Assume that N = ijo for some positive integer i. 

Then the uniqueness property in Theorem 3.1 yields that tiFt,+e,~ = 3Cm+(e+ki),~, for 
all n,m,k,l E Z. 

(b) For N fixed, the uniqueness property in Theorem 3.1 implies also that 7i,+e,~ is in- 

dependent of n and C provided that @(to + T, to, z; &) and (~(7, to, z; E) are independent 
of to. I 

4. REMARKS ON EXPONENTIAL DICHOTOMIES 

We now return to the linear equation D = A(t)y and examine conditions (20)-(22). It is 
an elementary observation that (20)-(22) are consequences of an exponential dichotomy of this 
equation. Moreover, in case the estimate 

sup{IA(t)l 1 t E W} = cx < co (25) 

is valid, (20)-(22) are equivalent to an exponential dichotomy (and (22) is a consequence 
of (20),(21) [21, Section IV.31). F or convenience of the reader, we recall one of the various 
equivalent definitions [21, Section IV.31 of exponential dichotomy: The linear equation jl = A(t)y 
is said to have an exponential dichotomy if there exist positive constants M, y and, for each 
t E I[$, there exists a splitting L/t x St = Y with projections Pt E L(Y,&) and Qt E L(Y,&), 
Pt + Qt = idy such that 



Semilinear Differential Equations 

(a) Q(to,t)& = Ut, and ]Q(te,t)u] < Me-+‘(t-to)]u] whenever u E U,, t 1 to, 
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(b) W, to& = S, and ]\E(t,te)s] 5 iWe-~(t-tol]s] whenever s E S,,, t 1 to, 

(c) I&l, p&l 5 A4 for all t E R. 

By kinematic similarities, i.e., by linear time-dependent coordinate transformations, systems 

with an exponential dichotomy can be carried over (see [21, Sections IV.2 and IV.61) to the 

simpler form where U, = ZAc, St = Se, for all t E R. 

The standard reference books on ordinary differential equations with exponential dichotomies 

are [21,22]. Though most results in those books were proved to remain valid (see, e.g., [16,23] 

and the references therein) in the discrete case, we do not know of any published expository 

treatment of exponential dichotomies for difference equations (see [24], however). Neither do 

we know of any research papers devoted to the combinations of discretizations and exponential 

dichotomies. The predecessors (see [7,9,10]) f o our Theorem 3.1 concern the time-independent 

case. The analogue of Theorem 3.1 for autonomous ordinary differential equations was proved 

in [lo]. On the link of structural stability and exponential dichotomies, see [14,23,25]. 

Concluding this paper, we present a perturbation result on how the stable fiber bundle, i.e., the 

time variant family of stable manifolds is affected by discretizations. The corresponding statement 

for autonomous equations was proved, with increasing generality, in [7,9,10]. We use the notation 

adopted in the previous section and assume, of course, that all the conditions imposed in Section 3 

are satisfied. 

THEOREM 4.1. The stable fiber bundle {Mi}n,Z of the time-To/N-sequence of the solution 

operator of (16) is O(N-P)-approximated by the stable fiber bundle {M2N},,, of the nonau- 
tonomous difference equation obtained via To/N-discretization of order p. 

PROOF. The argument we used in proving Corollary 3.1 shows that it is enough to prove the 

corresponding statement for Nth power subsequences. 

Modifying the proof of the classical stable manifold theorem in the same way (cf. Remark 2.3) 

we modified the proof of Theorem 2.1, a simple computation yields the existence of a family of 

bounded Lipschitzian functions 

such that, with 

we get 

and 

M:, = { (/&(w),w) E V, x W, = Y Iw E W}, 

M;={ z E Y I (a((k+n)To,nTo,z;E) + 0, ask-+oc 
> (26) 

@ ((n + ~Yo, ~To, WJ = @+I, EE(O,EO], nEZ. 

Similarly, for each N 2 NO(E), there exists a family of bounded Lipschitzian functions 

such that, with 

one obtains 

and 

e,N 
Pn : w, + v,, EE(O,EOl, nE& 

EN M; = { (p2N(w),W) E vn x wn = Y I w E w-}, 

M 
{ ( 

To zN= z~Y((p kN,N,nTo,z;s 
> 

-+O, ask-+oa 
> 

cp N, $,nTo,MzN;~ 
> 

= M;,N,, EE(O,E& nEZ. 

(27) 



34 B. AULBACH AND B. M. GARAY 

Further, for some positive constant 1(s) independent of n and N, N 1 NO(E), we have 

Lip(&) ,Lip(&N) 5 l(E), E E (0,&o], n E Z 

(and E(E) + 0 as E -+ 0). 
It is well known that the homeomorphism ‘FI in Theorem 2.1 is Holder continuous and has a 

Holder continuous inverse [ll, Exercise 5.471. By a quick analysis of the parameters in solving 

[ll, Exercise 5.471, 7-&(O) = 0 and there are positive constants a, b, b < 1, such that 

17-&(z) - F&(Z)] ) p-p(z) - IH,1(z)l 5 a 12 - Zlb 

for all n E W, z, Z E Y, ]z], It] 2 1. In particular, the collection of homeomorphisms {‘&, NH,~}?~ 

is equicontinuous in a neigborhood of 0 E Y. 
It follows now from (23) and from the stable fiber bundle limiting characterizations (26),(27) 

that 
‘H, (ME) = MfyN, n E Z. 

Pick an arbitrary (&(w),w) = z E ML and consider also (pzN(ti),271) = ‘Iin E MzN. By 

virtue of (24) and (22), 

i 9 + Z(E) It2 - WI < (1 + Z(s))%$ I 

Obviously, the same result is true for the unstable fiber bundle as well. Thus, the persistence of 
the “rotating saddle structure” is established. Together with Theorem 3.1, the previous theorem 

shows that equation (16) is correctly reproduced by numerical methods. 

REMARK 4.1. Starting from the inequality stated in Remark 3.1, we may repeat all considerations 

from [lo, Section 31. After some lengthy computations, we obtain that ,u’,, pzN E CP+‘(Wn, Vn) 
and that, with some positive constant Ic = k(s) (independent of n and m), 

(MJ’“’ E E (0,&o], N > NO(E), n E Z, m = O,l,. . . ,p. 
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