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SUMMARY

The two first cell fate decisions taken in the mamma-
lian embryo generate three distinct cell lineages: one
embryonic, the epiblast, and twoextraembryonic, the
trophoblast and primitive endoderm. miRNAs are
essential for early development, but it is not known
if they are utilized in the same way in these three line-
ages. We find that in the pluripotent epiblast they
inhibit apoptosis by blocking the expression of the
proapoptotic protein Bcl2l11 (Bim) but play little role
in the initiation of gastrulation. In contrast, in the tro-
phectoderm, miRNAs maintain the trophoblast stem
cell compartment by directly inhibiting expression
ofCdkn1a (p21) andCdkn1c (p57), and in theprimitive
endoderm, they prevent differentiation by maintain-
ing ERK1/2 phosphorylation through blocking the
expression of Mapk inhibitors. Therefore, we show
that there are fundamental differences in how stem
cellsmaintain their developmental potential in embry-
onic and extraembryonic tissues through miRNAs.

INTRODUCTION

At the time of implantation, the mouse embryo is composed of

three cell lineages, the epiblast, the trophectoderm, and the

primitive endoderm (PE). While the epiblast gives rise to the

embryo proper, the trophectoderm and the PE form all the extra-

embryonic cell types of the placenta and yolk sac. These three

cell lineages are thought to be segregated between 2.5 and

3.5 days post coitum (dpc) by a series of reciprocal repressive

interactions involving Cdx2/Oct4 for trophectoderm/epiblast

segregation and Nanog/Gata6 for epiblast/PE segregation

(reviewed by Rossant and Tam, 2009). Insight into how the

identity of these early lineages is maintained has been helped
Develop
by the analysis of three different self-renewing stable progenitor

cell types derived from the mouse blastocyst that mimic the

behavior of the epiblast, trophectoderm, and PE. These are

embryonic stem (ES) cells, trophoblast stem (TS) cells, and

extraembryonic endoderm stem (XEN) cells. The undifferenti-

ated ES cell state is dependent on the expression of a combina-

tion of transcription factors, most notably Oct4, Sox2, and

Nanog and by signaling through Lif and Bmp4. TS cells are

derived from the trophectoderm, require expression of Cdx2,

Eomesodermin (Eomes) and other TS-specific transcription

factors, and depend on Fgf and Activin/Nodal signaling for

self-renewal. XEN cells show morphological similarities to PE

derivatives, express lineage specific transcription factors such

as Gata6 and Gata4, and require exogenous Fgf signaling for

their derivation (reviewed by Rossant, 2008).

miRNAs are endogenous noncoding small RNAs that act as

critical posttranscriptional regulators of gene expression in

both development and disease. miRNAs are transcribed in the

nucleus and sequentially processed by the RNaseIII enzymes

Drosha and Dicer into small (�22 nucleotide) RNAs that bind

to the 30 UTR of their target mRNAs. This association inhibits

translation and can also lead to message destabilization

(reviewed by Valencia-Sanchez et al., 2006). Knockout of Dicer

leads to severe growth retardation and embryonic death by

7.5 dpc (Bernstein et al., 2003), and similar defects are observed

after mutation of Dgcr8, a critical component of the Drosha

microprocessor complex (Wang et al., 2007). ES cells lacking

Dicer activity show proliferation defects and are unable to

undergo differentiation (Kanellopoulou et al., 2005; Murchison

et al., 2005; Sinkkonen et al., 2008). The differentiation block of

Dicermutant ES cells has been proposed to be due to an inability

to methylate the Oct4 promoter upon differentiation because of

upregulation of Rbl2, a repressor of de novo DNA methyltrans-

ferases (Dnmts) (Sinkkonen et al., 2008). In addition to this

function, miRNAs are also crucial components of the pluripo-

tency regulatory network of ES cells, as core pluripotency factors

both regulate the transcription of miRNAs and are targets of

differentiation inducing miRNAs (Marson et al., 2008; Xu et al.,
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Figure 1. Delayed Initiation of Epiblast Patterning,

Loss of the TS Compartment, andMisspecification

of the Embryonic Visceral Endoderm in the

Absence of Dicer

(A–L) Marker gene expression in control and (A0–L0) Dicer
mutant embryos.
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2009). In contrast, little is known about the role of miRNAs in

extraembryonic development or in TS and XEN cells. In order

to bridge this gap, we have analyzed the developmental defects

of extraembryonic structures in Dicer mutant embryos and the

role of miRNAs in regulating the identity of extraembryonic

stem cells. We have found that contrary to what occurs in the

epiblast where miRNAs modulate cell survival and in ES cells

where they are required for differentiation to occur, in the tro-

phectoderm, PE, and the stem cells derived from these tissues,

miRNAs act to maintain multipotency and self-renewal.
208 Developmental Cell 19, 207–219, August 17, 2010 ª2010 Elsevier Inc.
RESULTS

Patterning of the Epiblast Is Initiated
but Delayed in Dicer Mutant Embryos
To address whether the epiblast is correctly

specified in Dicer mutant embryos (Cobb

et al., 2005), we studied the expression of the

pluripotency marker Oct4 and the early epiblast

marker Cripto. Both these genes were strongly

expressed in control and Dicermutant embryos

(Figures 1A, 1A0, and S1, available online), sug-

gesting a normal maintenance of pluripotency

and initial specification of the epiblast in the

absence of Dicer. Gastrulation begins with the

formation of mesoderm in the posterior epiblast

at 6.5 dpc. To see if this process is correctly

initiated in the absence of Dicer, we examined

expression of Eomes. At 6.5 dpc, we found it

not to be expressed in the majority of Dicer�/�

embryos (Figures 1B and 1B0). In contrast to

this, by 7.5 dpc, a stage at which Dicer mutant

embryos are morphologically abnormal (Fig-

ures 1C0 and 1D0), Eomes and other markers

of the primitive streak such as T and Nodal

were expressed robustly and appropriately

restricted to the posterior in the majority of

Dicer�/� embryos (Figures 1C–1D0 and S1).

Although the expression of these markers was

restricted to the posterior side, in no case did

we observe them to reach the distal tip of the

embryo, indicating that there is a failure to elon-

gate the primitive streak in Dicer null embryos.

In addition to this, markers of the definitive

endoderm such as Hex and Cerl1 were drasti-

cally reduced or lost in the majority of mutant

embryos at this stage (Figure S1), suggesting

defects in definitive endoderm specification.

These observations indicate that in the absence

of miRNAs, initiation of gastrulation and

mesoderm formation does take place, although

with a delay with respect to wild-type embryos.
However, the failure to elongate the primitive streak, the

abnormal morphology of the Dicer�/� embryos, and the defini-

tive endoderm patterning defects shows that progression of

patterning is abnormal in mutant embryos.

miRNAs Are Required for Maintaining Trophectoderm
Stem Cells and Correct Patterning of the Visceral
Endoderm in the Embryo
To study how the trophectoderm derivatives are patterned in the

absence of Dicer, we analyzed the expression of the trophoblast
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stem (TS) cell markers Eomes, Cdx2, and Esrrb. The expression

of all these genes was severely downregulated or lost at 6.5 and

7.5 dpc in Dicer�/� embryos (Figures 1B–1C0, 1E–1F0, and S1;

data not shown). However, the expression ofmarkers of differen-

tiated trophectodermal cell types such as Ascl2 and Rhox5 was

still found in Dicer mutant embryos (Figures 1G–1H0 and S1).

Loss of the TS stem cell population was not due to a disruption

of the signaling interactions between the epiblast and extraem-

bryonic ectoderm as the expression of Fgf4 and Nodal in the

epiblast as well as Fgfr2, Spc1, and Spc4 in the extraembryonic

ectoderm was still observed in Dicer mutant embryos at 6.5–

7.5 dpc (Figure S1; data not shown). In addition, we observed

correct phosphorylation of ERK1/2 in the extraembryonic

ectoderm of these embryos (Figure S1). These results point to

a specific requirement for miRNAs in maintaining the trophoblast

stem cell compartment in the mouse embryo.

To determine how patterning of the visceral endoderm is

affected in Dicer mutant embryos, we analyzed the expression

of embryonic and extraembryonic visceral endoderm markers.

We found a loss or severe downregulation in the expression of

the embryonic visceral endodermmarker Lim1 in 50% of mutant

embryos analyzed at 5.5 dpc (Figures 1I and 1I0). At 6.5 dpc,

expression of the anterior visceral endoderm marker Cerl1 was

downregulated in two-thirds of Dicer�/� embryos (Figures 1J

and 1J0) and expression of Lefty1 was lost in all mutant embryos

analyzed (Figures 1K and K0). At 7.5 dpc, Cerl1 and Hex expres-

sion was downregulated in 78% of Dicer null embryos analyzed

Figure S1). In contrast to this, we observed that the expression of

the extraembryonic visceral endodermmarker Ttrwas expanded

into the embryonic visceral endoderm of three-quarters of

mutant embryos analyzed at 6.5 dpc (Figures 1L and 1L0).
Therefore, in the absence of miRNAs, we find that the visceral

endoderm is not correctly patterned.

The phenotype displayed by Dicer mutant embryos raises

the possibility that the first three lineages to form in the

embryo, the epiblast, the trophectoderm, and the primitive

endoderm, can be correctly specified in the absence of miRNAs.

However, processed miRNAs may still be present in Dicer

mutant embryos at preimplantation stages due to perdurance

of maternal Dicer. To address this, we examined in Dicer�/�

morulas/blastocysts the expression of three processed mem-

bers of the miR-290 miRNA cluster, which is highly expressed

in preimplantation embryos (Tang et al., 2007). We observed

that these miRNAs (miR-291-3p, miR-295, and miR291-5p)

were expressed in a similar way in control and mutant embryos

(Figures S1M–S1O0). This indicates that at the stage when the

epiblast, trophectoderm, and primitive endoderm are specified,

processedmiRNAs are still present. For this reason, in this study,

we were unable to determine if miRNAs have a role in the

specification of the first lineages of the blastocyst.

miRNA Loss Leads to Different Effects on Proliferation
and Apoptosis in Embryonic and Extraembryonic
Tissues
Given the decreased size of Dicer�/� embryos compared with

wild-types, we analyzed the rate of cell division and found that

there was a significant decrease in the proportion of mitotic cells

(PH3-positive) in both the trophectoderm (9.90% ± 3.33%

versus 24.52 ± 1.75 in controls; Figures 2A, 2A0, and 2C) and
Develop
visceral endoderm (3.21% ± 0.94% versus 15.54% ± 1.78% in

controls; Figure 2C) of Dicer�/� embryos. In contrast to this,

we saw no significant change in the proliferation rate in the

epiblast of Dicer mutant embryos (35 ± 3.33 versus 29.61% ±

1.75% in controls; Figures 2B and 2C). Therefore, while prolifer-

ation defects are likely to contribute to the phenotypes observed

in the extraembryonic structures, they are not the cause of the

developmental delay in the epiblast.

This observation prompted us to analyze the patterns of cell

death inDicermutant embryos.Whenwe studied the distribution

of apoptotic cells, we found a drastic increase in TUNEL positive

nuclei in the epiblast but no apoptosis in either the trophecto-

derm or the visceral endoderm of Dicer null embryos at 5.5

and 6.5 dpc (Figures 2D–2E0). The specific increase in apoptosis

found in the epiblast could be intrinsic to this tissue or secondary

to the defects seen in extraembryonic tissues. To distinguish

between these possibilities, we specifically deleted Dicer from

the epiblast using the Sox2Cre line (Hayashi et al., 2002). Dicer

deletion from the epiblast led to embryos that survived until

9.5 dpc (data not shown). In these embryos, as expected, the

visceral endoderm and the trophoblast stem cell compartment

were unaffected as indicated by the normal expression of

Cerl1 and Cdx2 at 6.5 dpc (Figure S2). Similarly, a number of

genes involved in anterior-posterior patterning such as Six3,

Cerl1, Hnf3b, Nodal, or Lim1 were expressed normally at

7.5–8.0 dpc in Dicerfx/-;Sox2Cre embryos (Figure S2), showing

correct establishment of the anterior-posterior axis. In contrast

to this, we observed a dramatic increase in the levels of TUNEL

staining at 9.0 dpc in Dicerfx/-;Sox2Cre embryos (Figures 2F and

2F0), indicating that miRNAs are required specifically in the

epiblast to inhibit apoptosis. The increased survival of the

Dicerfx/-;Sox2Cre embryos also suggests that the lack of correct

development of the extraembryonic tissues is an important

factor contributing to the primitive streak elongation failure, the

abnormal morphology, and the definitive endoderm patterning

defects seen in the null mutants.

Association ofmiRNAswith Argonaute (Ago) proteins is essen-

tial for miRNA induced gene silencing (Hutvagner and Simard,

2008). ES cells deficient for Ago1-4 show increased apoptosis

due to the upregulation of the proapototic protein Bcl2l11 (Bim)

(Su et al., 2009). When we analyzed Dicerfx/-;Sox2Cre embryos,

we found Bim was significantly upregulated when compared

with controls (Figure 2G), indicating that this is the likely cause

for the increased apoptosis observed in the epiblast in the

absence of Dicer. miRNAs of the miR-17 to 92 and miR-106b to

25 clusters have been shown to directly target Bim (Fontana

et al., 2008; Inomata et al., 2009; Kan et al., 2009; Ventura

et al., 2008). For this reason, we analyzed by qPCR the expres-

sion of miR-17-5p, miR-19a, miR-92, and miR-25 that belong to

theseclusters, in 6.5 and8.5dpcembryos. Atboth stages,wede-

tected high expression of these four miRNAs, with them showing

expression levels comparable to those of the small nucleolar

RNAs (snoRNAs) which are used as ‘‘housekeeping genes’’ for

normalization of miRNA expression levels. Given that these are

the stages at which we see increased apoptosis in the Dicer

null and Dicerfx/-;Sox2Cre embryos, these miRNAs are likely to

be regulating Bim protein expression in the early mouse embryo.

Our data show that miRNAs are required to maintain the self-

renewal and multipotency of the cells within the extraembryonic
mental Cell 19, 207–219, August 17, 2010 ª2010 Elsevier Inc. 209



Figure 2. Dicer Is Required to Maintain Cell Proliferation in Extraembryonic Tissues and to Inhibit Apoptosis in the Epiblast

(A and B) Phospho-Histone H3 (PH3) expression in control and (A0 and B0) Dicer mutant embryos.

(C) Quantification of dividing cells in embryonic and extraembryonic tissues ofDicer�/� and control embryos. The average percentage of PH3-positive nuclei from

nine wild-type and six Dicer�/� (±SEM) is shown.

(D–F0) TUNEL staining of wild-type, Dicer null, and epiblast-specific Dicer-deleted embryos.

(G) Expression levels of Bim in protein extracts from 9.5 dpc wild-type and epiblast-specific Dicer-deleted embryos.

(H) Relative expression levels of miRNAs regulating Bim and small nucleolar RNAs (snoRNAs) in pools of E6.5 and E8.5 wild-type embryos.

Student’s t test. *p < 0.05 and ***p < 0.001 as indicated in the text.
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tissues of the trophectoderm and visceral endoderm. In contrast,

in the epiblast miRNAs are involved in controlling cell survival.

Here, Dicer loss leads to increased Bim expression, apoptosis,

and developmental delay but has no major effects on the initia-

tion of gastrulation.

Maintenance of the Multipotency and Self-Renewal
Capacity of TS and XEN Cells by miRNAs
To study in greater detail the roles of miRNAs in extraembryonic

development, we isolated TS and XEN cell lines from embryos

carrying a conditional mutation in Dicer (Cobb et al., 2005). Dicer

deletion was carried out by infecting Dicerfx/fx TS cells with

AdenoCre-GFP and sorting for GFP positive cells 48 hr post-

infection. Genotyping of this sorted population confirmed the

Cre-mediated deletion of Dicer (data not shown). As a control,

Dicerfx/fx TS cells were infected with Adeno-GFP and sorted in

parallel. Four days after infection, we observed a 300-fold
210 Developmental Cell 19, 207–219, August 17, 2010 ª2010 Elsevie
reduction in the levels of Dicer mRNA and the appearance of

the first signs of morphological differentiation (data not shown).

By 7 days after AdenoCre-GFP infection, deleted TS cells pre-

sented a morphology characteristic of differentiated trophoblast

giant cells, with a significantly larger cell size than controls, an

enlarged nucleus (Figures 3A and 3A0) and an increase in the

proportion of polyploid cells (data not shown). A severe prolifer-

ation block was also observed in these cells (Figure 3B), and for

this reason we could not establish a stable Dicer-deleted TS cell

line. When we analyzed changes in gene expression 7 days after

AdenoCre-GFP infection by qPCR, we observed a downregula-

tion in the expression of TS cell markers such as Cdx2, Esrrb,

Eomes, and Fgfr2. This was accompanied by a strong increase

in the expression of the trophoblast giant cell markers Pl-1 and

Pai1, and a smaller, but significant, increase in the expression

of the trophoblast giant cell differentiation determinants Stra13

and Hand1 (Figure 3C). Therefore, after Dicer deletion we saw
r Inc.



Figure 3. Dicer Loss Leads to Growth Arrest and Differentiation in TS and XEN Cells

(A) Morphology of Ad-Cre (A0) and Ad-GFP Dicerfx/fx TS cells 7 days postinfection.

(B) Growth rates of Ad-Cre and Ad-GFP-treated Dicerfx/fx TS cells.

(C) qRT-PCR analysis of differentiation andmultipotency markers in Ad-Cre and Ad-GFP-treatedDicerfx/fx TS cells 7 days postinfection. The average fold change

from two independent experiments (±SEM) is shown.

(D) Morphology of Ad-Cre and (D0) Ad-GFP-treated Dicerfx/fx XEN cells 7 days postinfection.

(E) Growth rates of Ad-Cre and Ad-GFP-treated Dicerfx/fx XEN cells.

(F) qRT-PCR analysis of differentiation and multipotency markers in Ad-Cre and Ad-GFP-treated Dicerfx/fx XEN cells 7 days postinfection. The average fold

change from three independent experiments (±SEM) is shown.
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clear morphological and molecular signs of differentiation of TS

cells into trophoblast giant cells, accompanied by a decrease

in proliferation.

Next, we tested the effects of Dicer deletion in XEN cells by

infecting Dicerfx/fx cells with AdenoCre-GFP and sorting for

GFP 24 hr postinfection, as described for TS cells. Similar to

what occurred in TS cells, 4 days after infection we observed

a 200-fold reduction in the levels of Dicer mRNA expression

and clear changes is cell morphology (data not shown). By

7 days postinfection, Dicer-deleted XEN cells were significantly

larger than controls, had big vacuoles, had extended large

protrusions (Figures 3D and 3D0), and presented a block in

proliferation (Figure 3E). At the molecular level, these cells

presented a downregulation in the expression of embryonic

visceral endoderm markers such as Hex, ApoE, and Amot and

showed an increase in the expression of extraembryonic visceral

endodermmarkers such asGata4, Ttr,Alk2, andBmp2 aswell as

an increase in the expression of parietal endodermmarkers such

as Pdgfra and Follistatin (Figure 3F). These results parallel what

we observed in Dicermutant embryos, where the loss of embry-

onic visceral endoderm markers was accompanied by the

expansion of extraembryonic visceral endoderm markers into

the embryonic region (Figures 1J–1L0). Therefore, in XEN cells

Dicer deletion leads to differentiation and a block in proliferation.

Together these data show that miRNA depletion in both TS

and XEN cells recapitulates the defects we see inDicer-deficient

embryos. This indicates that the defects present in the trophec-

toderm and primitive endoderm are autonomous to these
Develop
tissues. Therefore, both in vivo and in vitro, we see that depletion

of miRNAs leads to a loss of multipotency and self-renewal in the

extraembryonic lineages of the early embryo.

Cell Cycle Control by miRNAs in Extraembryonic Stem
Cells
Given the proliferation defects we observed in TS and XEN

cells, we investigated whether inhibitors of cell cycle progres-

sion were upregulated upon Dicer deletion. In ES cells, upregu-

lation of Cdkn1a (p21), Rbl2, and Lats2, which are a set of G1/S

regulators targeted by miRNAs, contributes to the proliferation

defects observed in these cells after loss of mature miRNAs

(Wang et al., 2008). In both extraembryonic stem cell types,

concomitant with the growth defects we also observed an

upregulation of these genes when Dicer was deleted (Figures 4A

and 4B). This suggests that this aspect of cell cycle control is

shared between the different stem cells derived from the

blastocyst.

In ES cells, these genes are regulated by members of the

miR-290 cluster of miRNAs which is claimed to be ES cell

specific (Houbaviy et al., 2003; Wang et al., 2008). However,

when we analyzed the expression of three members of the

miR-290 miRNA cluster in ES, TS, XEN, andMEF cells, we found

that they were highly expressed in all stem cells but not in MEFs

(Figure 4C). This suggests that the regulation of G1/S transition

by miRNAs is shared between all three early embryonic stem

cell types and furthermore shows that the miR-290 cluster is

not ES cell specific as previously reported.
mental Cell 19, 207–219, August 17, 2010 ª2010 Elsevier Inc. 211



Figure 4. Dicer Regulates the Expression of Cell Cycle Inhibitors in TS and XEN Cells and Maintains ERK1/2 Signaling Levels in XEN Cells

(A) qRT-PCR analysis of the expression levels of cell cycle regulators in Ad-Cre and Ad- GFP-treatedDicerfx/fx TS and (B)Dicerfx/fx XEN cells 4 days postinfection.

The average fold change from two independent experiments (±SEM) is shown. (C) Expression levels of miR-291-3p, miR-294, and miR-295 in XEN, TS, ES, and

MEF cells. The data shown for each cell type represent the average expression of two cell lines (±SEM). (D) Western blot analysis of phospho-ERK1/2 expression

levels in Ad-Cre and Ad-GFP-treated Dicerfx/fx TS and Dicerfx/fx XEN cells at day 3 postinfection.
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Entry into the endoreduplication cycle is a critical step for

differentiation into trophoblast giant cells and is driven by the up-

regulation of a regulatory network of genes that ensures mitotic

arrest but continued progression through S phase. In TS cells,

the upregulation of the Cdk inhibitors Cdkn1c (p57) and Cdkn1a

(p21) block entry into mitosis and promotes their differentiation

into trophoblast giant cells (Ullah et al., 2008). Given that

Dicer-deficient TS cells show growth arrest and differentiate

into trophoblast giant cells (Figures 3A, 3A0, and 3C), we investi-

gated if, together with p21, p57 is also affected by loss of

miRNAs. We found that after Dicer deletion in TS cells, an

upregulation of p57 could be observed, something not seen in

XEN cells (Figure 4A; data not shown). This indicates that

miRNAs have an additional role in cell cycle control in the

trophectoderm, where by regulating p57 expression they block

entry into the endoreduplication cycle and thus differentiation

into trophoblast giant cells.

Regulation of ERK1/2 Signaling by miRNAs in XEN Cells
In the embryo, the Fgf signaling pathway is required for themain-

tenance of TS cells and the formation of the primitive endoderm

(Chazaud et al., 2006; Nichols et al., 2009; Tanaka et al., 1998;

Yamanaka et al., 2010). In the absence of Dicer, we see a loss

of TS cell identity and XEN cells exhibit growth arrest and loss

of multipotency. For these reasons, we examined the status of

activation of the Fgf signaling pathway after Dicer deletion.

When this was done, we did not observe any significant change

in the levels of ERK1/2 phosphorylation in the trophectoderm or

in TS cells (Figures S1 and 4D). On the contrary, XEN cells suffer

a drastic decrease in the levels of phosphorylated ERK1/2 as

early as 3 days after AdenoCre-GFP infection (Figure 4D), which

precedes any overt changes in XEN cell morphology.
212 Developmental Cell 19, 207–219, August 17, 2010 ª2010 Elsevie
To address if a decrease in ERK1/2 signaling could be the

cause for the phenotypes observed in XEN cells, we blocked

signaling using specific inhibitors for the Fgf receptors

(SU5403 and PD17307) or for Mek (U0126), the kinase that phos-

phorylates ERK1/2. Interestingly we found that while Fgf

receptor inhibitors had no effect on XEN cells, Mek inhibition

led to growth defects and downregulation of embryonic visceral

endoderm marker gene expression (Figure S3). Therefore, in

XEN cells inhibition of ERK1/2 signaling recapitulates some of

the phenotypes caused by miRNA depletion. We next asked if

excess Fgf4 or Pdgf, ligands that can stimulate ERK1/2 phos-

phorylation (Figure 5A), could rescue the phenotypes caused

by loss of Dicer. We found that treatment of Dicer-deleted XEN

cells with either of these two factors rescued the morphological

changes associated with miRNA loss and prevented the down-

regulation in the expression of the embryonic visceral endoderm

markers ApoE, Amot, and Hex, markers associated with the

multipotent state of XEN cells (Figures 5B and 5C). However,

neither excess Fgf4 or Pdgf could block the upregulation of

parietal or extraembryonic visceral endodermmarkers and could

only partially rescue the proliferation defects of Dicer-deleted

XEN cells (Figure 5D; data not shown). Therefore, miRNA-medi-

ated mechanisms independent of ERK1/2 signaling are likely to

be contributing to these specific phenotypes. Together, these

results indicate that in XEN cells miRNAs are involved in the

maintenance of early markers of the undifferentiated visceral

endoderm by regulating the Mapk signaling pathway.

We next screened for negative regulators of the pathway

whose expression is upregulated in the absence of Dicer and

therefore would result in decreased ERK1/2 activity. We found

an increase in the expression of Sulf2,Rasa2, andDusp1 (Kupzig

et al., 2006; Lamanna et al., 2008; Owens and Keyse, 2007) in
r Inc.



Figure 5. Loss of Multipotency in Dicer�/� XEN Cells Is Due to Decreased ERK1/2 Signaling

(A) Western blot analysis of phospho-ERK1/2 levels in Ad-GFP-treated Dicer fx/fx XEN cells and Ad-Cre-treated Dicer fx/fx XEN cells cultured in normal media or in

the presence of Fgf4 or Pdgf at 3 days postinfection. (B) Morphology of Ad-GFP and AdCre Dicerfx/fx XEN cells left untreated or treated with the indicated growth

factors at 7 days postinfection. (C) qPCR analysis of embryonic visceral endoderm markers and (D) cell division rate calculated as number of cell divisions per

2 days of Ad-GFP or AdCre Dicerfx/fx XEN cells treated with the indicated growth factors at 7 days postinfection. A representative experiment is shown.

(E)Western blot and (F) qPCR analysis of the expression levels ofSulf2,Rasa2, andDusp1 in Ad-Cre and Ad-GFP-treatedDicerfx/fx XEN cells 4 days postinfection.

The average fold change from three independent experiments (±SEM) is shown.
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XEN cells upon Dicer deletion both at the mRNA and protein

levels (Figures 5E and 5F). This suggests that in XEN cells,

miRNAs maintain multipotency through ERK1/2 activation, by

decreasing the levels of Mapk pathway inhibitors.

Identification of miRNAs Highly Expressed in TS
and XEN Cells
To identify specific miRNAs highly expressed in the trophecto-

derm and primitive endoderm that could be responsible for

maintaining the multipotent state, we carried out an expression

screen by qPCR of 312 miRNAs in TS and XEN. As a point of

comparison, we also analyzed the expression of these miRNAs

in ES cells and mouse embryonic fibroblasts (MEFs). The first
Develop
conclusion that can be drawn from this study is that the profiles

of miRNA expression in XEN and TS cells are very similar and

cluster together when compared to those of ES cells and

MEFs (Figure 6A). miRNAs can be grouped into families accord-

ing to a common seed site and therefore to a common set of

target genes (Grimson et al., 2007) (from now on we will use a

representative member to refer to the whole miRNA family; the

other members of the family can be found in the database of

TargetScan, www.targetscan.org). The fact that all 22 of the

highly expressed miRNA families in XEN cells are also highly ex-

pressed in TS cells (Figure 6B) illustrates the degree of similarity

between the XEN and TS miRNA expression profiles. These

miRNA expression profiles of TS and XEN cells are in turn closer
mental Cell 19, 207–219, August 17, 2010 ª2010 Elsevier Inc. 213
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Figure 6. miRNA Expression Profiling of Blastocyst-Derived Stem Cells

(A) Hierarchical clustering of the miRNA expression profiles of TS, XEN, ES, and MEF cells.

(B) Tables showing all miRNA families with a relative expression greater than 10 in the cell lines shown. All miRNA family members found in the array are listed.
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to the profile of ES cells than to those of MEFs, correlating with

the stem cell nature and early embryonic origin of TS and XEN

cells (Figure 5A). Interestingly (Figure 6B), we found three families

of miRNAs that were specifically enriched in extraembryonic

stem cells (miR-466a-3p, miR-467b and miR-467b*), four that

were enriched in all three stem cell types (miR-291a-3p, miR-

292-3p, miR-291a-5p, and miR-669a), one that was enriched

in ES and TS cells (miR-290-5p) and three miRNA families that

were enriched in ES cells only (miR-200b, miR-543, and miR-

135a).

This study allowed us to identify 26 highly expressed families

of miRNAs in TS cells and 22 highly expressed families of

miRNAs in XEN cells (Figure 6B). These miRNAs made up 95%

and 94% of the total quantity of miRNA examined in the two

cell lines respectively and are likely to account for the majority

of miRNA induced silencing. We used the miRNA target

prediction program TargetScan to determine which of these

miRNAs could be regulating the genes that we found to be

responsible for the phenotypes observed in the trophectoderm

and primitive endoderm (Figure 7A). Of the 26 highly expressed

miRNA families identified in TS cells, we found two that were
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predicted to target p57, the miR-25 family and the miR-466a-3p

family. A number of members of the miR-25 family have already

been shown to directly inhibit p57, miR-92b has been shown to

directly target p57 in human ES cells (Sengupta et al., 2009) and

miR-25 has been shown to target p57 in gastric cancer cells

(Kim et al., 2009). It is therefore likely that this family of miRNAs

is regulating p57 expression in the trophectoderm.

In XEN cells, we found a number of highly expressed miRNAs

predicted to target Rasa2, Dusp1, and Sulf2 (Figure 7A). Given

that none of these miRNA families have been reported to target

these genes, we tested if representative miRNAs could regulate

the expression of a luciferase reporter attached to the 30 UTR of

Rasa2,Dusp1, orSulf2. In the case ofRasa2, miR-20a, amember

of the miR-17-5p family, miR-30b, a member of the miR-30

family, and miR-466a-3p, a member of the miR-466a-3p family,

could all significantly decrease activity of the 30 UTR-luciferase
reporter of this gene in HEK293T cells, while miR-295 did not

affect reporter expression (Figure 7B). Mutation of the predicted

binding sites for miR-20a made the Rasa2 30 UTR-luciferase
reporter insensitive to the overexpression of this miRNA, indi-

cating that it is through this site that miR-20a controls Rasa2
r Inc.



Figure 7. miRNAs that Are Highly Expressed in TS and XEN Cells Directly Target Cell Cycle Regulators and ERK Signaling Modulators

(A) Predicted target sites for miRNAs highly expressed in XEN or TS cells in the 30 UTR of Rasa2, Dusp1, Sulf2, and p57.

(B) Validation of Rasa2, Dusp1, and Sulf2 target sites by dual-Luciferase assay in HEK293T cells cotransfected with the stated miRNA. In the mutant versions of

each 30 UTR, four nucleotides from the seed site of the miRNA have been substituted.

(C) miRNA regulation of Rasa2 andDusp1 30 UTR in control and Dicer-deleted XEN cells. Three independent experiments were conducted. The graphs displayed

show the average, ±SEM. Student’s t test. *p < 0.05, **p < 0.01, and ***p < 0.001 of the effects of a miRNA binding site mutation.
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expression. In contrast to this, mutation of the miR-30b site only

partially rescued the 30 UTR-luciferase reporter activity and

mutation of the miR-466a-3p sites did not significantly affect

the reporter’s activity, suggesting that these miRNAs may be

acting through other sites (Figure 7B). We also observed that

the 30 UTR-luciferase reporter of Rasa2 shows significantly

higher activity in Dicer-deficient XEN cells than in control XEN

cells (Figure 7C). Therefore, together these findings support a

direct role for miRNAs in regulating Rasa2 expression.
Develop
With Dusp1, miR-669a and miR-92a, a member of the miR-25

family, decreased 30 UTR-luciferase reporter activity but only

mutation of the miR-669a predicted binding site restored

activity, indicating that it is likely that other sites for miR-92a exist

within the Dusp1 30 UTR (Figure 7B). Again, the higher activity of

theDusp1 30 UTR-luciferase reporter observed inDicer-deficient

XEN cells than in controls points to the direct regulation ofDusp1

by miRNAs (Figure 7C). miR-669a, which is highly expressed in

XEN cells and predicted to target Sulf2, did not affect expression
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of this gene (Figure 7B). This suggests that either other miRNAs

are regulating Sulf2 expression in the primitive endoderm or

that increased Sulf2 expression is not a direct effect of miRNA

depletion. Our studies have therefore identified that miRNAs

belonging to the miR-17-5p, miR-25, miR-30, miR-466a-3p,

andmiR-669a families are repressing the expression of inhibitors

of theMapk pathway in the primitive endoderm and therefore are

likely to be regulating the multipotency of this tissue.

DISCUSSION

Analysis of Dicer-deficient embryos and extraembryonic stem

cell lines has allowed us to address what roles miRNAs play in

the early embryo. In the epiblast of Dicer�/� embryos, gastrula-

tion is initiated although a day later than in controls. This delay

is likely due to the smaller size of the embryos as a critical cell

number is necessary for the initiation of gastrulation (Tam and

Behringer, 1997). The smaller size of Dicer mutant embryos is

unlikely to be caused by proliferation defects as we see little

change in the proliferation rates of epiblast cells from Dicer�/�

embryos compared to controls. In contrast to this, we observe

an increase in the levels of apoptosis in this tissue, and it is likely

that this accounts for the reduced size and developmental delay

observed in Dicer null embryos. This increase in apoptosis is

also seen when Dicer is specifically deleted from the epiblast,

although in this case it is only detected at a later developmental

stage (7.5–8.5 dpc). Dicerfx/-;Sox2Cre embryos present a much

less severe phenotype than that seen in the full knockout, with

embryos surviving to 9.5 dpc and displaying normal establish-

ment of the embryonic axes. Given the essential role that extra-

embryonic tissues have on the patterning and nutrition of the

epiblast, it is likely that the less severe phenotype observed in

Dicerfx/-;Sox2Cre embryos is at least in part due to the extraem-

bryonic tissues being normal in these embryos. However, differ-

ences in the timing of the loss of mature miRNAs could also

account for the delay in the appearance of the phenotype in

the Dicerfx/-;Sox2Cre embryos. In these embryos Dicer deletion

would only occur at around 4.5–5.5 dpc (Hayashi et al., 2002),

and from then there needs to be a loss of any residual Dicer

protein and a subsequent loss of processed miRNAs. Therefore,

mature miRNAs are likely to be lost later in Dicerfx/-;Sox2Cre

embryos than in Dicer�/� embryos. However, in both mutants

the increase in apoptosis precedes any obvious morphological

defects, supporting the hypothesis that elevated cell death is

responsible for the majority of the phenotypes observed in

embryonic tissues upon Dicer deletion.

In Dicerfx/-;Sox2Cre embryos elevated apoptosis was accom-

panied by increased Bim expression. Bim is a proapoptotic

protein (O’Connor et al., 1998) that can trigger apoptosis by

neutralizing prosurvival Bcl2-like molecules and/or by activating

the Bcl2 inhibitor Bax (Pinon et al., 2008). Indeed, when the

miRNA RISC complex components Argonaute1-4 are removed

from ES cells, increased apoptosis is observed as a conse-

quence of raised Bim expression (Su et al., 2009). Our observa-

tion that the members of the miR-17 to 92 and miR-106b to

25 clusters miR-17-5p, miR-19a, miR-92, and miR-25, previ-

ously shown to directly target Bim (Ventura et al., 2008), are

highly expressed at stages when apoptosis is severely increased

in Dicer�/� and Dicerfx/-;Sox2Cre embryos, suggests that these
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miRNAs may be directly regulating apoptosis in the early mouse

embryo.

In a previous analysis of the Dicer�/� mutation, the expression

ofOct4 and Twere found to bemuch reduced inmutant embryos

(Bernstein et al., 2003). It is possible that differences in the

genetic background of the embryos analyzed could account

for the increased severity of the previously published study.

However, the extended analysis we have carried out both in

the null mutant embryos as well as in embryos where Dicer has

been removed specifically from the epiblast, strongly supports

our view that miRNAs are not directly involved in the initiation

of gastrulation and germ layer specification in the mouse

embryo. Our findings also contrast with those made in ES cells

where Dicer�/� cells cannot initiate the differentiation program

(Kanellopoulou et al., 2005; Murchison et al., 2005; Sinkkonen

et al., 2008) because of an inability to methylate and silence

the Oct4 promoter (Sinkkonen et al., 2008). Furthermore, Dicer

and Dcgr8-deficient ES cells present growth defects attributed

to a lengthening of the cell cycle (Kanellopoulou et al., 2005;

Murchison et al., 2005; Sinkkonen et al., 2008; Wang et al.,

2008). Previously maternal Dicer has been demonstrated to

allow for correct processing ofmiRNAs during early preimplanta-

tion development (Murchison et al., 2007; Tang et al., 2007), and

in this study we show that expression of processed forms of

miRNAs of the miR-290 cluster persist at the blastocyst stage.

Given that we only see increased apoptosis from 5.5 dpc and

ES cells are derived from 3.5 dpc preimplantation embryos, it

is likely that the dissimilar phenotypes seen in the Dicer null

epiblasts and ES cells reflect different requirements for miRNAs

during development rather than different roles of miRNAs in vivo

and in vitro.

Very little is known about the roles of miRNAs in extraembry-

onic tissues. We find that in stark contrast to what happens in

the epiblast, extraembryonic cell types require miRNAs both

in vivo and in vitro to prevent differentiation and maintain the

self-renewal capacity of progenitor cell types. This is most

clearly seen in trophectoderm of Dicer null embryos where there

is a loss of expression of genes that mark the TS cell compart-

ment such as Cdx2, Eomes, or Esrrb, but not of genes found in

trophoblast derivatives. This phenotype is recapitulated

in vitro, with Dicer deletion in TS cells leading to differentiation

and cell cycle arrest. These results argue that in Dicer null

embryos, the TS cell population is correctly established but as

development proceeds and differentiation progresses, this

pool is quickly depleted due to an inability to maintain multipo-

tency and self-renewal.

Two main signaling pathways have been shown to prevent

the differentiation of TS cells and thus maintain their stem cell

condition; Fgf signaling via ERK1/2 activation (Tanaka et al.,

1998) and Activin signaling via Smad2/3 phosphorylation (Erle-

bacher et al., 2004; Natale et al., 2009). However, we see no

change in the levels of ERK1/2 or Smad2/3 phosphorylation

after Dicer deletion in TS cells (this study and data not shown).

Similarly the expression of components of these pathways, as

well as ERK1/2 phosphorylation appears normal in Dicer null

embryos. Little is known regarding other mechanisms controlling

TS cell multipotency. The overexpression of Hand1 and Stra13

has been previously shown to cause the differentiation of TS

cells into trophoblast giant cells independently of ERK1/2
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signaling (Hughes et al., 2004). However, 4 days after Dicer dele-

tion in TS cells, when we first observe signs of morphological

differentiation, neither of these genes is significantly upregulated

(data not shown). More recently it has been demonstrated that

inhibition of Cdk1 in TS cells causes entry into the endoredupli-

cation cycle and differentiation into trophoblast giant cells (Ullah

et al., 2008). It has also been shown that the Cdk1 inhibitor p57 is

required for differentiation into trophoblast giant cells to occur

(Ullah et al., 2008). Given that we observe an upregulation of

the Cdk inhibitors p57 and p21 shortly after Dicer deletion in

TS cells, it is likely that this is what drives their differentiation

into trophoblast giant cells.

In the visceral endoderm and in XEN cells, we find thatmiRNAs

are required to maintain multipotency. The ERK1/2 signaling

pathway is essential for the specification of the primitive endo-

derm, formation of the visceral endoderm, and XEN cell mainte-

nance (Liu et al., 2009; Nichols et al., 2009; Yamanaka et al.,

2010; this study). Our work indicates that miRNAs maintain the

embryonic visceral endoderm by modulating ERK1/2 signaling,

via the inhibition of negative regulators of this pathway such as

Sulf2, Rasa2, and Dusp1. Surprisingly, although Fgf signaling

via ERK1/2 is required for TS cell multipotency (Tanaka et al.,

1998), we have found no effect of miRNAs in modulating this

pathway inTScells, indicating themiRNAscontribute to themain-

tenance of multipotency of TS and XEN cells in different ways.

qPCR-based analysis of the miRNA expression profiles of TS

and XEN cells has allowed us to precisely identify miRNAs that

are highly expressed in these cell types, and that presumable

account for most of the phenotypes observed after Dicer dele-

tion. Interestingly, we find that the miRNA families that are highly

expressed in XEN cells are also highly expressed in TS cells. This

overlap is reflected when we analyze the miRNA families that are

likely to regulate p57 in the trophectoderm and that regulate the

Mapk inhibitors in the primitive endoderm. For example, miRNAs

of the miR-25 family have been shown to target p57 (Kim et al.,

2009; Sengupta et al., 2009), and we find that they also target

Dusp1 in XEN cells. Also, members of the miR-466a-3p family

are predicted to target p57 and we have shown that they target

Rasa2 in XEN cells. Therefore, it seems that a common set of

miRNA families are important for maintaining multipotency in

both extraembryonic tissues, although through the regulation

of different genes.

Of particular interest are the miRNAs that we find to be

enriched in TS and XEN cells with respect to ES cells and

MEFs. These miRNAs, of the miR-466a-3p, miR-467b and

miR-467b* families, cluster together and map to the intronic

region of the Sfbmt2 gene. Sfmbt2 is a polycomb gene (Kly-

menko et al., 2006) that is imprinted (Kuzmin et al., 2008) and

its expression is restricted to extraembryonic tissues (Franken-

berg et al., 2007; Kuzmin et al., 2008). This suggests that the

expression in TS and XEN cells of this cluster of miRNAs is likely

to be due to coregulation with Sfmbt2. miRNA families within this

cluster are predicted to target p57, and we have shown that they

target Dusp1 and Rasa2 in XEN cells and therefore are likely to

play important roles in the maintenance of both the trophecto-

derm and primitive endoderm.

We also found that, as occurs in ES cells (Wang et al., 2008),

the expression of inhibitors of the G1/S transition, such as p21,

Rbl2, and Lats2, is increased upon miRNA depletion in TS and
Develop
XEN cells. Furthermore, we found that miRNAs of the miR-290

cluster, that regulate the cell cycle by blocking the expression

of these inhibitors in ES cells and have previously been assumed

to be ES cells specific (Houbaviy et al., 2003; Wang et al., 2008),

are also highly expressed in extraembryonic stem cells. This

argues that, in addition to the tissue-specific factors that control

the cell cycle in TS cells (p57) and in XEN cells (ERK signaling),

there is an additional level of regulation of cell cycle progression

bymiRNAs that is conserved in all three preimplantation lineages

of the mouse embryo and is provided by miRNAs of the miR-290

cluster. The implication of miRNAs in the control of G1/S

transition via regulation of p21 has been described in stem cells

from other organisms such as the germline stem cells of

Drosophila (Hatfield et al., 2005; Yu et al., 2009). This suggests

that this role for miRNAs is evolutionarily conserved and could

be present in multiple different progenitor cell types of the

embryo.

EXPERIMENTAL PROCEDURES

Mouse Lines

Dicerfx/fx, Dicer+/� (Cobb et al., 2005), and Sox2Cre+/� mice (Hayashi et al.,

2002) were maintained on a mixed background. Embryos were genotyped

as described (Martinez Barbera et al., 2000) using published conditions.

Whole-Mount In Situ Hybridization, TUNEL Staining, and

Immunohistochemistry

Whole-mount in situ hybridization (WISH) was carried following standard

procedures (Thomas and Beddington, 1996). WISH for microRNA detection

was carried out using 30 DIG-labeled LNA probes (Exiqon) as described

(Kloosterman et al., 2006) with the following modifications. Preimplantation

embryos were dehydrated in serial dilutions of Ethanol (25%, 50%, and

70%) in saline (150 mM) and stored in 70% ethanol/saline at �20�C. When

used, blastocysts were rehydrated in serial dilutions of ethanol/saline before

being permeabilized for 10 min in fresh RIPA buffer and postfixed for 20 min

in 0.2% glutaraldehyde /4% paraformaldehyde in PBS. Whole-mount TUNEL

staining was carried out using the ApopTag Plus Peroxidase In Situ Apoptosis

Kit (Chemicon International). Staining for Phospho-ERK (Cell Signaling) was

performed as described (Corson et al., 2003) and for PH3 as described

(Rivera-Perez et al., 2003) with the following modifications: embryos were

cultured for 1 hr in N2B27 (Invitrogen) containing 200 nm nocodazole and after

fixation embryos were washed in Triton-X100 (0.5% in PBS). Ten percent goat

serum was used in the blocking solution. Anti-PH3 (1:500) was diluted in

blocking solution diluted 1 in 10 in PBS-Triton-X100 (0.5%). Cell counting

was performed on four mutant and six wild-type embryos using the ImageJ

program (Abramoff et al., 2004). Three confocal sections were counted for

each embryo. PH3-stained cells were expressed as a percentage of total cells

and averaged to give overall percentage for wild-types andmutants. Statistical

significance was measured using a two-tailed Student’s t test (p < 0.05).

Cell Culture

TS and XEN cell lines were derived from Dicerfx/fx intercrosses and cultured as

described (Kunath et al., 2005; Tanaka et al., 1998). Cells were infected with

either Ad-GFP or AdCre-GFP adenovirus (University of Iowa Gene Transfer

vector Core). GFP-positive cells were purified by FACS either 24 hr (for XEN

cells) or 48 hr (for TS cells) after infection. Dicerfx/fx XEN cells were treated

with Fgf4 (20 ng/ml), Pdgf (30 ng/ml) (R&D Systems), PD17307 (100 ng/ml),

SU5043 (10 mM), U0126 (25 mM), or DMSO (1:1000) or left untreated for up

to 7 days. For growth curves cumulative population doublings per passage

were calculated as log2 (number of cells at time of subculture divided by

number of cells plated) and plotted against total time in culture.

Quantitative PCR and Western Blot Analysis

mRNAwas extracted using the RNeasyMiniKit (QIAGEN). cDNAwas prepared

from 0.75 mg total RNA using Superscript III reverse transcriptase (Invitrogen)
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and random nonamer primers (Invitrogen). qPCR was performed using SYBR

Green I (QIAGEN). Primers and conditions for PCR reactions are detailed in the

Supplemental Experimental Procedures.

For qPCR analysis of miRNA expression RNA was extracted using the

miRVanamiRNA Isolation Kit (Ambion). PCRs were performed by Geneservice

using the TaqMan Mouse microRNA Assay Set v1.0 (Applied Biosystems). For

embryos, miRNA was extracted from pools of embryos and expression normal-

ized to sno202 expression. For cells, miRNA expression analysiswas conducted

on ES-E14, ES-m5, TS-Dicerfx/fx, TS-B1, XEN-Dicerfx/fx, XEN- IM8A1, MEF-cd1,

and MEF-t cells and data were normalized to sno135 expression.

The hierarchical clustering of the miRNA expression profiles in the different

cell lines was carried out with the program MultiExperimental Viewer Version

4.1 (MeV v4.1) using the complete linkage method and the correlation coeffi-

cient as the similarity measure.

For identification of highly expressed miRNA families, miRNAs were

grouped by seed sequence as occurs on the TargetScan website. The total

relative expression for each family was calculated as the sum of the relative

expression of each member of that family present in our array.

The antibodies used for western blot analysis are listed in the Supplemental

Experimental Procedures.

Luciferase Assays

The complete 30 UTR regions of the mouse genes Rasa2, Dusp1, Sulf2, and

Cdkn1c (sequences obtained from the Ensembl Genome Browser, www.

ensembl.org) were amplified from mouse genomic DNA and cloned into the

NotI and XhoI sites of the psiCHECK-2 vector (Promega), the primers used

for cloning the 30 UTR as well as the point mutations introduced in the mutated

versions are detailed in the Supplemental Experimental Procedures. HEK293T

cells were cotransfected in triplicate with 400 ng of 30 UTR/psiCHECK

construct and 100 nM of each microRNA mimic (Dharmacon) using Lipofect-

amine 2000 (Invitrogen) according to manufacturers’ instructions. In the

mock experiment, only the 30 UTR/psiCHECK2 vector was transfected. XEN

cells were infected with AdCre-GFP or Ad-GFP FACS sorted as previously

described. Three days after infection, cells were transfected in triplicate with

800 ng of 30 UTR/psiCHECK2 construct or the empty psiCHECK2 vector using

jet-PRIME transfection reagent (Polyplus-Transfection). The luciferase and re-

nilla activities were measured 24 to 36 hr after transfection using the Dual

Luciferase Reporter Assay System (Promega). The relative luciferase activity

in transfected XEN cells was normalized against the activity of the empty

vector.

Three independent experiments were conducted. A Student’s t test was

used to verify significance, p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and two tables and can be found with this article online at

doi:10.1016/j.devcel.2010.07.014.
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