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Abstract

We consider single facility location problems (1-median and weighted 1-center) on a plane with
uncertain weights and coordinates of customers (demand points). Specifically, for each customer, only
interval estimates for its weight and coordinates are known. It is required to find a “minmax regret”
location, i.e. to minimize the worst-case loss in the objective function value that may occur because the
decision is made without knowing the exact values of customers’ weights and coordinates that will get
realized. We presentan(@ log? n) algorithm for the interval data minmax regret rectilinear 1-median
problem and an @ log n) algorithm for the interval data minmax regret rectilinear weighted 1-center
problem. For the case of Euclidean distances, we consider uncertainty only in customers’ weights. We
discuss possibilities of solving approximately the minmax regret Euclidean 1-median problem, and
present an @22+ Iog2 n) algorithm for solving the minmax regret Euclidean weighted 1-center
problem, wherex(n) is the inverse Ackermann function.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Facility location; Polynomial algorithm; Robust optimization

1. Introduction

Significant research efforts have been devoted to optimization problems with uncertainty
in input data because of their importance for practice. Two ways of modeling uncertainty
are usually used: the stochastic approach and worst-case analysis.
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In the stochastic approach, uncertainty is modelled by means of assuming some prob-
ability distribution over the space of all possible scenarios (where a scenario is a specific
realization of all parameters of the problem), and the objective is to find a solution with good
probabilistic performance. Models of this type are handled using stochastic programming
technique$21,12]

Inthe worst-case approach, the set of possible scenarios is described deterministically, and
one is looking for a solution that performs reasonably well for all scenarios, i.e. that has the
best “worst-case” performance and hedges against the most hostile scenario. Specifically,
the minmax regretversion of the worst-case approach seeks to minimize the worst-case
loss in the objective function value that may occur because the solution is chosen without
knowing which scenario will take place. In other words, the minmax regret approach seeks to
find a solution that is-optimal for any possible realization of parameters, wils small as
possible. Minmax regret solutions are sometimes catibdstsolutiong24], although there
are several different robustness concepts in the literature (se€36,40,11). Minmax
regret optimization (MRO) has received increasing attention over the last decade, and by
now it is a well-established area of research. A comprehensive treatment of the state of art
in minmax regret discrete optimization up to 1997 and extensive references can be found in
the book{24]. We also refer the reader to the bd@K] for a comprehensive discussion of
the motivation for the minmax regret approach in various types of application environments.

There are two natural ways to define the set of possible scenarios for MRO problems that
have been used in the literature. First, when the set of scenarios is finite, all data instances
from the set can be listed explicitly; such MRO problems are caiedete-scenaridRO
problems. Second, the set of scenarios can be defined by specifying an interval of uncertainty
for every numerical parameter, with the assumption that the parameter can take on any
value within its interval of uncertainty regardless of the values taken by other numerical
parameters; such MRO problems are cail@@rval dataMRO problems. Averbaki]
gave examples of MRO problems that are polynomially solvable in the interval data version
but are NP-hard in the discrete-scenario version.

The minmax regret approach was first applied to a location model by Kouvelig23jal.
although location problems with deterministically modelled uncertainty in data had been
considered earlier (e.§3]). Kouvelis et al[23] presented polynomial algorithms for the
minmax regret 1-median problem on a tree; for the interval data case, the complexity of
their algorithm is @n#), wheren is the number of nodes. Chen and I[i#] presented an
alternative algorithm for the same problem on a tree with the order of complexit$) O
For the same problem on a tree, Averbakh and Berfiarurther improved the order
of complexity—they presented a simple algorithm with complexity ). Averbakh and
Berman have also developed a more complicated algorithm with complexitp@¥ ). For
the same problem on a general network, Averbakh and Beffjgmesented a polynomial
algorithm with the order of complexity @:n2 log n), wheremis the number of edges, for
the case where only node weights are uncertain. Averfiglkbroved that if edge lengths
are uncertain, then the problem is strongly NP-hard on general networks, even if there is
no uncertainty in node weights. Vairaktarakis and Kouvi@ studied the minmax regret
1-median problem on a tree that combines dynamically evolving and uncertain parameters.
An approach that combines the Pareto-optimality concept and the minmax regret criterion
was considered in Fernandez et[&B].
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Minmax regret center location problems on networks have also been studied in the lit-
erature. Averbakh and Bermd8] showed that the interval data minmax regret weighted
1-center problem s polynomially solvable on trees when both node weights and edge lengths
are uncertain. General results on MRO problems with a minimax type of objective func-
tion [3] imply that when only node weights are uncertain, the interval data minmax regret
weightedp-center problem and the multicenter problem with mutual communication are
polynomially solvable on any type of a network where their classical versions (i.e. without
uncertainty) are polynomially solvable. Complexity orders of the corresponding algorithms
can be found if3]. However, Averbakli5] proved that if edge lengths are uncertain, the
minmax regret 1-center problem is strongly NP-hard on general networks.

In this paper, we study the interval data minmax regret single-facility location problems
(the 1-median and the weighted 1-center problems) on a plane. Our main results correspond
to the case of rectilinear distances, where we consider uncertainty both in the weights and the
coordinates of customers. For the minmax regret rectilinear 1-median problem, which can
be formulated as a linear programming problem with Qrariables and ©:%) constraints,
we present an @2 log? n) algorithm. For the minmax regret rectilinear weighted 1-center
problem, we present an(@ log »n) algorithm. We also consider the problems for the case
of Euclidean distances with uncertainty only in node weights. We discuss possibilities of
solving approximately the minmax regret Euclidean 1-median problem, and present an
O(n?2“™ log? n) algorithm for solving the minmax regret Euclidean weighted 1-center
problem, wherex(n) is the inverse Ackermann function.

2. Definitions and problem statement

Let C be a set oh customers located on the pla®é. The location of each customer
¢ € Cis a pointv. = (ac, b.) € R2. Each customeer e C has an associated positive
weight w.. Weightsw,. and coordinates,, b. are not known; instead, for any customer
¢ € Cvaluesw,,w},a-,al, b, b} such thata, <al, b, <b}, O<w, <w] are
known, and it is known that, <w.<w], a; <ar<a}, b <b.<bl.We can assume
thatw,, a., b, are random variables with unknown distributions and can take on any values
in the corresponding intervals of uncertaitity, , w1, [a_, a1, [b,, b7 ]. The location
v Of a customer € C belongs to the fectangle of uncertaintyI'. with cornerpoints
(az,by), (az, b)), (af,bh), (af,by).

A natural motivation for modeling uncertain customers’locations by means of rectangles
of uncertainty in the case of rectilinear distances is as follows. Rectilinear metric is usually
used for modeling transportation in urban environment (“Manhattan metric”). At the time
of choosing a location for the facility, the only available information about locations of
customers may be that they belong to some specific districts (say, between certain streets
and certain avenues). Or, the whole districts may be considered as (global) customers in a
multi-level supply chain, with the assumption that there will be local distribution centers
(e.g., retailers) in the district that will serve the (local) customers from the districts; the
(upper-level) facility to be located (e.g., a warehouse) would be used to supply goods to
the local distribution centers. If the locations of the local distribution centers have not been
specified by the time when alocation for the upper-level facility should be chosen, itis natural
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to model them by means of rectangles of uncertainty. In the case of the Euclidean metric, it
is more difficult to find a natural way to model uncertain locations of customers; therefore,
for the Euclidean case (considered in Sections 5 and 6), we consider only uncertainty in
customers’ weights.

Let us introduce the following notations" = (a,5.), vV = (a7, b}), vNE =
(at,b}), v3E = (at,b7) (SW NW, NE, and SE stand for South—West North—West,
North— East and South East, respectively). die the Cartesian product of intervals
[w,, w}tl, [a;,al], [b,bf],c € C.Any s € Sis called ascenarioand represents a pos-
sible assignment of weights and location coordinates to customeis;", a', b¢ | ¢ €
C}; thenv® = @, by is the location of customer under scenarie. For ano e
{NW,NE, SE, SW}, let S* denote the set of scenaripse S | v(” =y forall c € C}. In
the remainder of the paper, we use the notatieca{NW, NE, SE, SW}. LetV denote the
set{v?|a € A, ¢ € C} (i.e.Vis the set of cornerpoints of the rectangles of uncertainty).
For anyo € A, let V* = {v*|c € C}. For any pointst, y € R?, letd(x, y) denote the
distance betweer andy; in this paper, we consider Euclidean and rectilinear distances.
For any pointg € R?, x1(g) andx2(g) will denote the first and the second coordinates of
g, respectively. A straight line i®2 with slope 1 (with slope-1) will be called apositive
(negativg diagonal line

For any point: € R?, the vertical and horizontal straight lines that go throxgivide the
plane into four quadrants (points of the boundary of a quadrant also belong to the quadrant,
so there are points that belong to more than one quadrant). We will call them North—West
(NW), North—East (NE), South—East (SE), and South-West (SW) quadrantsifith the
natural correspondence between the names and the quadrants (e.g., the quadrant above and
to the right ofx is the NE-quadrant fox).

Forascenario € S, s = {w?, a’, b’ | ¢ € C} and a pointk € R2, let us define

Fiis,x) =Y wPd@,x), Fas, x) =maxw®d @, x).
el ceC

That is, F1(s, x) (Fa(s, x)) is the sum (maximum) of weighted distances betweamd
the customers fron€ with weightsw’®’, ¢ € € and locationa"’, ¢ € C defined by the
scenarics. Suppose that we want to choose a locakidor a facility using the objective of
minimizing a functionF (s, x). In this paper, we consider only the cag&s, x) = Fi(s, x)
andF (s, x) = Fa(s, x). If we know the real scenarig then we have the problem

Problem OPT(s). Minimize {F (s, x)|x € R?}.

Inthe cas& (s, x)= F1(s, x), Problem OPTY) is the classical 1-median problem and will
be called Problem MEDY; in the caseF (s, x) = Fa(s, x), Problem OPTY) is the classical
weighted 1-center problem and will be called Problem C&EN&n optimal solution to
Problem MED§) (Problem CEN$)) is called a 1-median (1-center) for scenasid_et
F*(s) denote the optimal objective function value for Problem G T(

If the real scenario is unknown but only the boungs, w, a;, af, b_, b for weights
and coordinates of customers are available, different solution criteria for choosing a location
for the facility are possible. The criterion used in this paper is to minimize the worst-case
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regret associated with the chosen location. Here, regret is the difference between the objec-
tive function value that corresponds to the chosen location and the optimal objective function
value (under the realized scenario); the worst-case regret corresponds to the scenario that
achieves the maximum regret for the chosen location.

Specifically, the worst-case regret associated with a locati@n R? is given by the
following subproblem:

Subproblem MAXREGR (x).
Z(x):masx max{F (s, x) — F(s, y)}. (1)

se y€R2

For anyx, y € R?, let us define value

REGRx, y) = TG%X(F(S’ x) — F(s, y)). 2
Alternative ways to represemt(x) are

Z(x) = TE%X(F(S, x) = F*(s)), 3

Z(x)= yrr;?z( REGRux, y). 4)

An optimal solution to the right-hand side of (3) is calle@arst-case scenarifor x. An
optimal solution to the right-hand side of (4) is callediarst-case alternativéor x.
The following problem is considered in the paper:

Problem ROB. Findx € R? that minimizesZ (x).

Let X* denote the set of optimal solutions for Problem ROB (f, x) is convex for all
s € S (as is the case for all problems considered in the paper, seg26é)y. thenZ(x) is
a convex function and™* is a convex set.

In the caseF (s, x) = Fi(s, x) (F(s, x) = Fa(s, x)), Problem ROB will be referred to
as Problem ROBMED (Problem ROBCEN). An optimal solution to Problem ROBMED
(Problem ROBCEN) is called mbust1-median(robust1-cente).

Notice that Problem OP¥)is a special case of Problem ROB (corresponding to the case
whereSconsists of a single scenario, iee. =a}, b, =b}, w; =w] forallc € C). To get
a better intuition about the minmax regret problem, the following interpretation is useful.
For ane > 0 and a scenarig anx € R?is called are-optimal solution to Problem OP3if
F(s, x) — F*(s) <e. Let X, (s) denote the set of attoptimal solutions to Problem OP3)(
One can look for a solution that isoptimal (for a givere > 0) for all possible scenarios,
that is, to look for anx € (1,5 X:(s). For some values af such a solution exists, but for
some (smaller) values afsuch a solution may not exist, because solutions good for one
scenario may be bad for some other scenarios. Then, the soltitiobtained by solving
Problem ROB will bes-optimal for all scenarios € S for any ¢> Z(x*); also, for any
e < Z(x*) we havg )¢ X:(s) =0. So, valueZ (x*) has the interpretation of the minimum
possibles such that there exists a solution whicteisptimal for Problem OPTHj for all
scenarios € S; this value can be used as a measure of degree of uncertainty.
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A setS’ C S of scenarios is calletbcally sufficient forx € R? if value Z(x) does not
change if we replace in (3) maximization ov@&with maximization overs’. A setS’ c S
of scenarios is calledlobally sufficientf it is locally sufficient for allx € R2.

Observation. If a set of scenario$’ contains a worst-case scenario foe R?, thensS’ is
locally sufficient forx.

3. Rectilinear median

Suppose that distances are rectilinear (i.e. fonaayx, x2) € R%2andy=(y1, y2) € R?,
d(x,y)=|x1—y1|+|x2 — y2|) andF (s, x) = F1(s, x). In Section 3.1, we study properties
of Problem ROBMED that allow us to consider only a relatively small number of “efficient”
scenarios; namely, we show thatd) scenarios define completely the objective function
Z(x) for all x, and Qn?) scenarios define the value Bfx) for a specificx. Based on these
properties, in Section 3.2 we develop a linear programming formulation of the problem with
O(n) variables and ©:%) constraints. This formulation is not attractive computationally for
large values oh, so in Section 3.3 we develop a specialized algorithm for solving Problem
ROBMED with complexity Gn?log?n). The general idea of the algorithm is as follows.
We identify two rectangular grids (one grid consists of lines parallel to the coordinate axes,
the other grid consists of positive and negative diagonal lines) with the following property:
Problem ROBMED restricted to the intersection of a cell of the first grid with a cell of the
second grid can be solved in(@¥) time. Then, using convexity of the objective function,
we perform binary search on the lines of the grids to identify optimal cells (i.e. cells that
contain an optimal solution). The nontrivial part is to perform the binary search in almost
quadratic time given that there arg/0) lines in the grids. Using special properties of
the problem and the “search using sorted matrices” technique from theoretical computer
science, we perform the binary search im®&log? n) time.

3.1. General properties
Let H be the convex hull of the st
Lemma 1. There is an optimal solution to Problem ROBMED that belongs.to H

Proof. Consider an optimal solutionto Problem ROBMED. Suppose¢ H. Letl, (I;) be
the vertical (horizontal) straight line throughThe linel, must have common points with
H (otherwisex could be shifted horizontally towardsso thatF; (s, x) would decrease for
anys € S, which would contradict optimality of for Problem ROBMED). Using the same
argument, we can show that the lihemust have common points with. To be specific,
suppose thdj, intersectd to the left ofx, and/, intersects$d abovex (other possible cases
can be considered in an exactly similar way), Bigg 1 Letl; be the negative diagonal line
throughx, and letxy be the point of; N H closest tox. It follows from convexity ofH that
there are no points dfl in the interior of the SE quadrant fat;. Therefore, moving to
xg will not increase valué (s, x) for anys € S, and, therefore, will not destroy optimality
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Fig. 1. lllustration for the proof of Lemma 1.

of x for Problem ROBMED. Thusyy is also an optimal solution for Problem ROBMED.
This proves the lemma.]

The following observation will be used later to identify a relatively small globally suffi-
cient set of scenarios.

Lemma 2. For anyx € R?, there exists a worst-case scenario s for x such thats* for
somex € A.

Proof. Let x € R? be fixed, and suppose that € S is a worst-case scenario for
(Existence of a worst-case scenario follows from compactneSsaotiH.) Let y € R?
be a 1-median for the scenar Theny is a worst-case alternative far and Z(x) =
REGRx, y) = F(s',x) — F(s', y).

Suppose that belongs to the--quadrant fox for somex € A. If we change the scenario
s by moving the location of each customee C to v without changing the weight of the
customer, valué'(s’, x) — F(s’, y) will not decrease. Then, for the scenarfoc S* that we
obtainin thiswayF (s”, x) — F*(s") > F(s",x) — F(s", y) > F(s', x) — F(s', y) = Z(x).
SinceF (s”, x) — F*(s")< Z(x), we have thaf'(s”, x) — F*(s") = Z(x) ands” is also a
worst-case scenario far The lemma is proven. [

For anyo. € A and anyx, y € R?, lets,(x, y) denote the scenarioe $* such that for
anyc e C

¢ _ Jwo ifd(x, vl <d(y, v]),
wY = . 5
‘ { Fifd ) > d(y, vd). )

Let S¥ = {s € S*|there existr, y € R? such thats = s,(x, y)}, S1 = U453
Lemma 3. For anyx € R?, there exists a worst-case scenario s for x such thatS;.

Proof. Letx € R? be fixed. Then, according to Lemma 2, for some A there exists
s’ € 8% such that’ is a worst-case scenario farLety € R? be a 1-median for the scenario
s’. ThenZ(x) = REGRx, y) = F(s', x) — F(s', y). Value F(s’, x) — F(s’, y) will not
decrease i’ is replaced withs, (x, y). Therefores,(x, y) is also a worst-case scenario
forx. O
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Corollary 1. Sets$; is globally sufficient.

Proof. The statement follows immediately from the definition of a globally sufficient set
and Lemma 3. [J

Lemma 4. |S1| = O(n3).

Proof. To prove the lemma, it is sufficient to prove that| = O®) for anya € A.
Suppose that am € A is fixed. For anyx, y € R?, let us define the sat2(x, y) = {g €
R?|d(x,g) >d(y, g)}. The boundary of the open s&F(x, y) consists of segments of

at most three straight lines. Each of these lines is either parallel to a coordinate axis, or
is a (positive or negative) diagonal line. These lines will be cabledndary linesfor

R?(x, y). For each boundary linefor R?(x, y), its normal vectoris defined as the unit
vector orthogonal td and pointing outside oR2(x, y). Notice that the boundary lines
along with their normal vectors uniquely define the Rétx, y). Notice also that the set
V%N R2(x, y) will not change ifR2(x, y) is extended by shifting each boundary line that
does not contain points ¢f* in the direction of its normal vector until it hits a point from

V%, Thus, each possible s&f N R?(x, y) is uniquely defined by a choice of at most three
lines going through points df* and making angles @ft/4)i, i=0, 1, 2, 3with coordinate

axis, and a choice of one of the two possible normal vectors for each of these lines. The
statement of the lemma follows immediately.]

Let G1 be the grid obtained by drawing all possible vertical and horizontal lines through
pointsv € V, and letN (G1) be the set of nodes of that grid. CleafN(G1)| = O(1?). Let
G1, (G1,) denote the set of vertical (horizontal) lines of géid.
For anyo € A, let S5 be the set of scenariose S such thats = s,(x, y) for some
x € R? an%y € N(Gy); let S =, 455 ClearlyS5 C S7,« € A andS, C 1, therefore
|S2| = O(n”).

Lemma 5. SetS> is globally sufficient.

Proof. The proofis similar to the proof of Lemma 3, taking into account that forsaays*,
o € A, there is a 1-median for the scenasithat belongs tavV(G1) [26]. O

For anyx € R? ando € A, let us defineS3(x) = {sy(x,y) |y € N(Gp)}, S2(x) =
UaeaS3(x). For anyo € A, let S;(x) = {sy(x,y) |y € N(Gy), y is a 1-median for the
scenariosy(x, y)}. Let §*(x) = [J, 4S5 (x). The following result is obvious:

Lemma 6. For anyx € R?, the set of scenario$*(x) is locally sufficient for x

Observe that the sét (x) has cardinality @?) (becauseS»(x)| = O(n?) andS*(x) C
S2(x)).

3.2. Linear programming formulation

Let us show how to formulate Problem ROBMED as a linear programming problem if
some finite globally sufficient s&t’ c S; of scenarios is known. The linear program will
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have Qn) variables and QS’| +n) constraints; also, to write down the linear programming
problem, one would have to obtain valugs$(s) for all s € S’.

Suppose thaf’ c § is a finite globally sufficient set of scenarios. Then for any specific
scenaria € S, F(s, x) is a convex piecewise linear function (as a two-variable function of
the two coordinates of), and according to (3 (x) is a convex piecewise linear function
as well. For anye = (x1, x2) € R? and anys € S, valueF (s, x) can be written as

F(s, x) :min{z v: |y§2w§s)d(vés),x), ceCy,
ceC

wherey?, c € C arerealvariables. (Observe that in an optimal solution to the above problem,
the inequalities inside the brackets of the minimization operator will hold as equalities.)
Thus, taking into account (3), we have the following optimization problem to conipute

Z(x) =min {z|z> Y yi—Fs). s €8 yizuwMdo! x), ceC. se st

ceC

Since for any € $; and anye e C, weightw'" is equal to eithew; or w; andv{" = v?

for somex € A, itis sufficient to use only 8y-variablesy**, y*~, « € A, ¢ € C and to
write Problem ROBMED as

minimize z, (6)

22 ) W —F*s), sed, 7
ceC

V> wld?, x), y 2w dw* x), ceC, aeA, (8)

¥~—real variables ce C, ax€ A, 9)

x € R% 7, y7F,

whereys =yt (yS=y2) if w =w} (W =w;) andv’’ =v%. Since forany = (x1, x2) €
R? and anyv = (ay, by) € R?, d(v,x) = |x1 — ap| + |x2 — by| = max{x1 — a, + x2 —
by, x1—ay —x2+by, —x1+ay +x2 — by, —x1+a, — x2 + b, }, each of constraints (8) can
be written as four linear constraints; for example, insteadf8f+ > wrd w3V, x) we will
write ySVF > wl(xvi—a; +xo—b7), ¥V Zwl(vi—a; —xo+b0), VT Zwl (-t
a; +x2— b)), Y3Vt Zwl(—x1+a; — x2+ by). Then, (6)—(9) will become a linear
programming problem withS’| + 32z constraints and/8+ 3 variablesy**, y*~, ¢ €
C, o€ A, x1,x2,2.

Solving Problem ROBMED via the linear programming formulation (6)—(9) does not
seem to be computationally attractive for large values loécause of the size of the linear
programming problem: i1 or S, is used as’, then (6)—(9) has @?) constraints and Q)
variables. In the remainder of the section, we develop an algorithm that solves Problem
ROBMED in O(n2log? n) time.
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Fig. 2. Anillustration forQ (v, g).

3.3. AnO(n2log? n) algorithm

Foranyv € V andg € N(G1), consider the seD (v, g) = {x € R?|d (v, x) =d(v, g)}.
SetQ(v, g) is the boundary of the “diagonal” square with the centew,gtointg on its
boundary, and sides making angles/4 or —z/4 with the coordinate axes, s&éy. 2
Consider the seG of all straight lines that contain sides of squa@&, g), v € V,
g € N(G1); G, forms a diagonal rectangular grid witi»| = O(»°) lines and @n®) cells.
Let G2+ (G2-) denote the set of positive (negative) diagonal lines of the Gpid

Lemma 7. If two pointsx’ and x” can be connected by a continuous curve in the plane
that does not have common points with sides of squ@lesg), v € V, g € N(G1), then
S*(x') = S*(x").

Proof. Observe that for any € N(G1) and anyx € A, whenx is moving along a
continuous curve, scenarg(x, y) can change only whexis crossing a side of the square
Q(v%, y) for somec € C. (This follows directly from the definitions.) The statement of the
lemma follows immediately. [J

Corollary 2. For any cell of gridG2, set$*(x) is the same for all interior points x of
the cell.

Notice also that for any cell of grid1, function F (s, x) is linear inside the cell for any
s € So.

Lemma 8. For anyx € R?, values of all functiong (s, x) — F*(s), s € §*(x), and their
directional derivatives at x in a given direction can be compute@(a?) total time.

Proof. See the appendix.l]

Lemma 9. ProblemROBMED restricted to the intersection of a cell of grigh with a cell
of grid G, can be solved i©(n?) time.
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Proof. Let.oZ be the intersection of a cell of grid; with a cell of gridG». If .7 does not
have interior points, ther/ is a point ( cannot be a line segment because no line of grid
G is parallel to any line of gridy2), and the statement of the lemma is trivial. Suppose that
</ has interior points. Let’ be an interior point of. Then for any other interior point

of .7,

Z(x) = max (F(s, x) — F*(s)) (10)
seS*(x")

(according to Corollary 2 and Lemma 6). Eq. (10) holds also for any pa@inthe boundary

of .7 (because of continuity af (x)). Therefore, Problem ROBMED restricted.td can

be formulated as

minimize{z|z> F(s, x) — F*(s), s € S*(x))}. (11

ZER, xeof
Since./ is a subset of a cell of grid1, functionsF (s, x) — F*(s),s € S*(x’) are linear
functions ofx on .«Z, and according to Lemma 8 coefficients of these linear functions can
be obtained in @:2) time. Eq. (11) is a linear programming problem with 3 variables and
O(n?) constraints; therefore, it can be solved it time[28]. O

Finding the valueZ (x) at a pointx € R? and the directional derivative ¢f(x) atx in
some specified direction (or in a fixed number of specified directions) will be cafietht
testatx.

Theorem 1 (Complexity of the point test For anyx € R?, valueZ(x) and the directional
derivatives ofZ (x) at x in a fixed number of directions can be compute®in?) time.

Proof. Value Z(x) can be obtained by taking the maximum of valueg, x) — F*(s),
s € §*(x), that can be computed in(@) time according to Lemma 8.

Suppose a direction € R? is fixed. According to Lemma 8, directional derivatives of
functions F (s, x) — F*(x), s € $*(x) atx in the directionr can be computed in @2)
time. If none of the points ofV(G1) is a change point (the definition of a change point
was given in the proof of Lemma 8), then the §&{x) does not change for sufficiently
small variations ofk, and the directional derivative df(x) at x in the directionr is the
maximum of directional derivatives of functiors(s, x) — F*(s) at x in the directionr,
where the maximum is taken overe S*(x) such thatF (s, x) — F*(s) = Z(x), and thus
can be computed in @2) time. If some points oV (G1) are change points, the situation
is slightly more complicated because the S$&tx) may change for small variations ®f
However, this difficulty can easily be avoided if we modify (5) as follows:

w. otherwise

C

w® — {wjr if d(x+dr, v¥) > d(y, v¥)for all sufficiently small positive values df,
*) =

keeping all other definitions as before. Clearly, all previous results will still hold after this
change; but now s&t* (x) does not change after sufficiently small shiftxaf the direction

r, and therefore the directional derivativeffx) in the directiorr can be obtained from the
directional derivatives of functiongB (s, x) — F*(s), s € §*(x), as described above.[]
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We will also use dine testwhich for a straight lind. checks whether or nat contains
an optimal solution to Problem ROBMED. In the former case, the line test finds an optimal
solution to Problem ROBMED that belongsltoin the latter case, the line test finds on
which side fromL the setX™* of optimal solutions to Problem ROBMED is. The details and
the complexity of the line test will be discussed later.

The gridsG1 andG» are composed of four groups of parallel lin@s,, G1,, G2—, G2+ .
As follows from Lemma 1 and from convexity of the s€t, for each of the four groups of
parallel linesG1,, G1,, G2—, G2y either there is a line of the group that contains a point
from X*, or all points of X* lie in the strip between some two consecutive lines of the
group. (Two lines of a group are callednsecutivéf there are no other lines of the group
between them.)

Our approach to solving Problem ROBMED will be as follows. For each one of the four
groups of parallel line§/1;,, G1,, G2—, G2+, we perform agroup searchthat either finds
a line of the group that contains an optimal solution to Problem ROBMED, or finds two
consecutive lines of the group such that the set of optimal solukémsin the strip between
them. The group search is performed using binary search on the lines of the group based
on the line test. If at least one of the lines of gr@s, G, has common points witl(*, an
optimal solution to Problem ROBMED will be found at this stage; otherwise, the optimal
cells (containingX*) of grids G1 and G2 will be found at this stage. Given the optimal
cells, an optimal solution to Problem ROBMED can be found in4) time according to
Lemma 9.

From this description, we see that we need to conduct the line test only for lines of grids
G1 andG». We will see that the line test for lines of grids; and G, can be performed
in O(n? log n) time, and using the line test, the binary search over the lines of each of the
groupsGuy,, G1v, Go—, G2y can be performed in @2log? n) time, which will result in
the overall complexity of @2 log? n) for Problem ROBMED.

Now let us discuss how to perform the line test for lines of géidsandG». Consider a
lineL from one of the grids. Let Problem ROBMED)(denote Problem ROBMED restricted
to the lineL (that s, in Problem ROBMEL) it is required to minimize functio (x) over
the lineL). Let X*(L) be the set of optimal solutions to Problem ROBMEP (Function
Z(x) is convex; if we solve Problem ROBMED) and find a point; e L that minimizes
function Z(x) overL, then the point test at; will either discover that} is an optimal
solution to (unrestricted) Problem ROBMED, or will discover on which side ftatime set
X* of optimal solutions to Problem ROBMED is. Thus, the line test has been reduced to
solving Problem ROBMELY).

SetX™*(L) is convex because of convexity df(x). An open interval oL that contains
all points of X*(L) is called docalization interval (Below, all intervals are assumed to be
open unless stated otherwise.) Notice that there @né)dntersection points of the line
with other lines of gridsG; andG» (further calledcritical points).

Lemma 10. Given alocalization interval that does not contain any critical poiRt®blem
ROBMED(L) can be solved i®(2) time.

Proof. If a localization interval does not contain any critical points, then the localization
interval belongs to the intersection of a cell of géid with a cell of gridG», and therefore
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according to the proof of Lemma 9 Problem ROBME¢an be formulated as a linear
programming problem with @) constraints and 3 variables, which can be solved#?®
time[28]. O

A straightforward way to solve Problem ROBMHD(is as follows. Obtain all ©:3)
critical points and sort them; this takeg3 log n) time. SinceZ (x) is convex, the point test
at a pointx of the lineL allows to determine whetheiis optimal for Problem ROBMELY),
and if not, on which side fromthe setx* (L) of optimal solutions to Problem ROBMEDY
is. Using binary search over the critical points and applying the point teglag@) critical
points, we can find in @2 log n) time a localization interval that does not contain critical
points (or find an optimal solution to Problem ROBMEL(f there is a critical point in
X*(L)). Then an optimal solution to Problem ROBMHI(can be found in @?2) time
according to Lemma 10.

The straightforward approach described above conducts the line tegtind® n) total
time; the bottleneck of complexity is finding explicitly and sorting the critical points. It
is possible to improve the order of complexity of the line test ta®dog n) (instead of
O(n® log n)) by exploiting special structure of the set of critical points, which allows to
avoid obtaining explicitly and sorting this set. To reduce the order of complexity, we need
to be able to do binary search over the critical points without explicitly generating all of
them. Let us discuss the corresponding modification of the line test. We will need some
auxiliary lemmas.

The following lemma is obvious (given the previous discussion) but we state it explicitly
for reference purposes.

Lemma 11. For any given set M of points of L with cardinali§(»?), it is possible to
find in O(n? log n) time a localization interval that does not contain any points of M if
M does not have common points wittf (L), or to find an optimal solution to Problem
ROBMED() if M N X*(L) is not empty.

The following lemma is the main tool for our algorithm.

Lemma 12. Suppose that there is a real matiX = ||m;; || with k3 rows andk; columns

such that the entries in each row are nondecreasing from left to right and the entries in each
column are nonincreasing from top to botto(Buch a matrix will be calledorted.)The
entries of M may be unknowhut we assume that given a row index i and a column index
j» the entrym;; can be found irD(1) time. For any two real numbets b, a <b, letr(a, b)
denote the number of entries of M that are contained in the open intérya). Suppose

that two numberg_, g1, g— < g+ are given. Then it is possible to find@(k; + k) time
anumberg such thay— <¢ <q+ andr(g—, § < §r(g-. 4+), 7@, 4:) <Fr(g-. ¢+).

Proof. The result of the lemma can be obtained using the standard “search using sorted
matrices” techniquél,20]; details can be found if6]. [

Lemma 13. Suppose that a matrix M is as in the statement of the previous lemma with
k1= O(n?) andkz = On?). If L is considered as a number linand if the entries of M
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represent points on the line(Le., each entryn;; of M represents the point of L thatss;;
units away from the origin in the positive directipthen it is possible to find i®(n? log n)
time a localization interval that does not contain any entries ofdvito find an optimal
solution to ProblenrROBMED(L) if the intersection of M an&™* (L) is not empty.

Proof. Using the result of the previous lemma and the point test, we can organize binary
search so that at every iteration the number of entridd thfat are contained in the current
localization interval is reduced at least by fac%oand each iteration takeg/@) time. The
statement of the lemma follows immediately.]

To solve Problem ROBMEDY) in O(»? log n) time, we will use the following idea. We
will identify several finite sets of points of the line(calledcovering setsthat have the
following properties:

(1) Together, they “cover” the set of critical points, that is, each critical point belongs to at
least one of the covering sets.

(2) Each covering set either has cardinality:), or it can be represented as a sorted matrix
M with O(r2) rows and columns.

Then, according to Lemmas 11 and 13, for each covering set we can find i@ »)
time a localization interval that does not contain elements of the covering set (or to find an
optimal solution to Problem ROBMED] if there is one in the covering set). The intersection
of the localization intervals corresponding to the covering sets will give us a localization
interval that does not contain any critical points; then, we can apply Lemma 10.

For any pointg € N(G1), letl’(g) (I”(g)) denote the positive (negative) diagonal line
that goes through. Let K; denote the set of critical points. In the following, a common
point of two straight lines is called thegoint of intersectionf the lines arenonparallel
that is, two lines that coincide are not considered to have points of intersection.

Consider the following sets of points of the liheSetJ; (J2, J3, Ja, respectively) is the
set of points of intersection df with the lines symmetrical to the linég), g € N(G1)
about the vertical (horizontal, positive diagonal, negative diagonal, respectively) lines that
go through pointe € V, seeFig. 3. SetJs (Js, J7, Js, respectively) is the set of points
of intersection ofL with the lines symmetrical to the lind&(g), ¢ € N(G1), about the
vertical (horizontal, positive diagonal, negative diagonal, respectively) lines that go through
pointsv € V. Observe thatls (J7) is the set of points of intersection of the lihavith the
linesl’(g), g € N(Gy) (with the linesl”(g), g € N(G1)). SetJg is the set of points of
intersection oL with the lines of gridG.

Observe thak; C U?zll,-, because any line of gri@, is symmetrical to eithel (g)
orl”(g) for someg € N(G1) about either vertical, or horizontal, or positive diagonal, or
negative diagonal line going through some V. We consider separately the cases where
L belongs to grids; and where it belongs to grid».

Casel: Line L belongs to gridG;. Suppose thdt is horizontal (the case of a vertical
line L is analogous). We will considéras a number line with the positive direction defined
by vector (1,0). Observe thadg| = O(n), |Ja| = O(n?), |J7| = Om?), |J;| = On®), i =
1,2,3,5,6,8. SinceJs, J7, and Jg satisfy the condition of Lemma 11, we can obtain
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Fig. 3. An illustration for the sef;.

in O(n? log n) time localization intervals that do not contain any pointsJaf J7, Jo.
According to the previous discussion, it remains to show that each one of th& sets
1,2, 3,5, 6,8 can be represented as a malbsatisfying the conditions of Lemma 13.

Consider set/;. For anyv € V andg € N(G1) let y{,g denote the point of intersection
of L with the line symmetrical to lin¢'(g) about the vertical line going through Then
J1= {y;g, v eV, g e N(Gp)}. Sortthe pointg € N(G1) in the order of nonincreasing
values ofx1(g) — x2(g), and sort the points € V in the order of nonincreasing values
of their first coordinates(v) (this can be done in @2 log n) time becauséC| = n and
IN(G1)| = O(n?)). Then the matrixy = ||y;g || satisfies the conditions of Lemma 13.

Consider setl,. For anyv € V andg € N(Gy), let y{jg denote the point of intersection
of L with the line symmetrical to lin€(g) about the horizontal line going throughThen
Jo= {y{jg, veV, ge N(Gp)}. Sort the pointg € N(G1) in the order of nondecreasing
values ofx1(g) — x2(g), and sort the points € V in the order of nonincreasing values
of their second coordinates(v). Then the matrixM = ||y, || satisfies the conditions of
Lemma 13.

Considersefs. Forany € V andg € N(G1), Iety{jé denote the point ofintersectionlof
with the line symmetrical to ling(g) about the positive diagonal line going througihen
J3z = {y{);/,, v eV, ge N(Gp)}. Sortthe pointg € N(G1) in the order of nonincreasing
values ofx1(g) — x2(g), and sort the points € V in the order of nonincreasing values of
x1(v) — x2(v). Then the matrixM = ||y1’]’;, || satisfies the conditions of Lemma 13.

The cases of setg;, Js, andJg are clearly similar.

Thus, sety/;,i =1, ..., 9 are covering sets for the set of critical poiktg, and the line

test forL can be conducted in @? log n) time.
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Case2: LineL belongsto grids,. Suppose thatlinkis positive diagonal (the case where
L is a negative diagonal line is analogous). We will considers a number line with the
positive direction defined by vector (1,1). Observe that= O(n), J3=Js = J5=Jsg =0,
|J7| = O(n?). According to the previous discussion, it remains to show that each one of the
setsJ1, Jo, Jg can be represented as a matvsatisfying the conditions of Lemma 13.

Foranyv € V andg € N(Gy), lety;, andy,, be defined as in Case 1.

Consider set/y, J1 = {y;g, v eV, g e N(Gp)}. Sort the pointg € N(G1) in the
order of nonincreasing values ©f(g) — x2(g) and sort the points € V in the order of
nonincreasing values of their first coordinatgsv). Then the matrixM = IIY,’JgII satisfies
the conditions of Lemma 13.

Consider setly, Jo = {y{jg, v € V, g € N(Gp)}. Sort the pointg € N(G1) in the
order of nondecreasing valuesxaf(g) — x2(g), and sort the points € V in the order of
nonincreasing values of their second coordinai¢s). Then the matrixy/ = ||y;/g | satisfies
the conditions of Lemma 13.

Consider seflg. For anyv € V andg € N(Gy), let y;; denote the point of intersection
of L with the line symmetrical to lin&’(g) about the negative diagonal line througiThen
Jg = {y,’jg, veV, ge N(Gp)}. Sort the pointg € N(G1) in the order of nonincreasing
values ofx1(g) + x2(g), and sort the points € V in the order of nonincreasing values of
x1(v) 4+ x2(v). Then the matrixM = ||y{,’§’|| satisfies the conditions of Lemma 13.

Thus, sety/;,i =1, ..., 9 are covering sets for the set of critical poiitg, and the line
test forL can be conducted in @? log n) time.

We have proven

Theorem 2. Thelinetestfor aline from grid1 or grid G, can be performed i®(»? log 1)
time.

To obtain an algorithm for Problem ROBMED with the time complexity ¢k&log? ),
it remains to show that for each one of the grodps, G1,, G2, Go_ it is possible to
perform the group search in(@”log?n) time using the line test. This is clear for the
groupsGi,, G1;, becauseGyy,| = O(n), |G1,| = O(n), and the lines 061, (of G1;,) can
be sorted in @: log n) time; subsequent application of the standard binary search uses
O(log n) line tests and, therefore, takes/®log? n) time. The situation with the groups
G2, andG,_ is somewhat more complicated becalGg, |=0(1°), |Go_|=0(n3), and we
cannot afford to obtain explicitly and sort the lines in the groups in order to perform binary
search. However, special structure of these groups allows us to avoid generating explicitly
and sorting all the lines of these groups. We use the same ideas (based on Lemmas 12 and
13) that allowed us to reduce complexity for the line test.

Consider, for example, groug@s... Let G/2+ be the set of positive diagonal lines that go
through the points oV (G1), and letG5,_ be the set of lines symmetrical to the lines@f,
about the positive diagonal lines that go through the pairds . Clearly|G/, O(n?),
|G, | =03, Goy C (Gh, UGY,).

The area between two parallel lines (not including the lines themselves) is called a
localization stripif it contains all points ofX*. To perform the group search for,,, we
need to either find a line that has a common point with or to find a localization strip
that does not contain any lines 66 .

=
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The lines ofG5_ can be ordered in @2 log n) time; then, applying the regular binary

search based on the line test, we can perform(irf@g? ) time the group search fco}”2+,
that is, to find in Qrn?log?n) time a localization strip that does not contain any lines of

5, (orto find a line ofG5,, that has common points witki*).

It remains to perform the group search &4 in O(n?log? n) time; then, either a line of
G that contains a point of * will be found, or two localization strips that do not contain
lines fromG,, andG7,, respectively, will be found, and the intersection of these strips
will give a localization strip that does not contain lines frar, .

Foranyv € V andg € N(Gy), letl,; denote the line symmetrical to the positive
diagonal line that goes throughabout the positive diagonal line that goes through
Then, /2’+ ={lylv € V, g € N(Gyp)}. Any positive diagonal line is uniquely defined
by the valuex; — x2 for the points of the line (which is the same for all points of any
positive diagonal line). Therefore, lingg, v € V, g € N(G1) can be considered as real
numbers (equal to the corresponding values;of x»). Sort the pointg € N(G1) in the
order of nonincreasing values ©f(g) — x2(g), and sort the points € V in the order of
nonincreasing values ofi(v) — x2(v) (this can be done in @2 log n) time); then, the
matrix M = ||/,¢ || satisfies the condition of Lemma 12 with= O(n) andk, = O(n?). So,
the group search foG;, can be performed in @2log? n) time using the binary search
technique discussed in the proof of Lemma 13 (where instead of the point test we use the
line test, which accounts for the additional logarithm in the order of complexity). Thus, the
group search fo6,, can be performed in @?log® n) time.

The case of groufo— is completely analogous. We obtain

Theorem 3. ProblemROBMED can be solved i©(n? log? ) time.

4. Rectilinear center

In this section, we consider the caseffs, x) = F»(s, x) and rectilinear distances. In
Section 4.1, we consider the case where uncertainty is only in weights of customers (but not
in locations). First, we observe that it is sufficient to consider orilgfficient” scenarios.

Next, we observe that the problem decomposes into two one-dimensional problems, which
can be solved in linear time if all valugs*(s) for the n “efficient” scenarios are known.

Last, using computational geometry, we show thanalaluesF*(s) for the “efficient”
scenarios can be computed in @ log n) time, which results in @ log n) algorithm for
Problem ROBCEN.

In Section 4.2, we consider the case of uncertainty in both weights and locations of
customers. The general logic in this case is rather similar to that of the previous case,
but details are much more complicated. First, we introduce an auxiliary problem without
uncertainty that is an extension of the standard weighted 1-center problem and can be
solved in Gn) time. Next, we show that if we have optimal objective valuesoadxiliary
problems, then Problem ROBCEN can be formulated as a linear programming problem
with 3 variables and k6constraints, and therefore can be solved in linear time. Last, using
computational geometry arguments and techniques, we show that the optimal objective
values of the 4 auxiliary problems can be obtained irzOlog n) total time, which results
in O(n log n) algorithm for Problem ROBCEN.
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4.1. Uncertain weights, certain locations

First, let us consider the case of uncertainty in weights without uncertainty in locations,
thatis,a, =a' =ac, b, =b} =b., v. = (ac, b.), ¢ € C, because this case will provide
useful insights, and the algorithm in this case is much simpler.

Lets. be the scenario that assigns weighjt to customec and weightw_, to any other
customer’, and letS3 = {s., c € C}.

Lemma 14. (a) SetSs is globally sufficient.
(b) Z(x) = max.cc{wSd(ve, x) — F*(s.)}.

Proof. Consider ant € R2. Let {w.., c € C} be the weights corresponding to a worst-
case scenari®’ for x, and lety’ € R? be an optimal solution to Problem CEN) Let

¢ e argmax.c w.d(ve, x) (i.e. w,d(vy, x) >w.d(ve, x) for anyc € C). Observe that
d(er, x) =d(ve, y') (sincew!,d(vy, x) = F(s',x) 2 F(s',y') = F*(s") Zw,d(ve, y")).
Therefore, valud (s, x) — F(s’, y') cannot decrease if we replace scenafisith scenario
se. It cannot increase either, and must be an optimal solution to Problem CENY
(otherwises’ cannot be a worst-case scenario fpr Therefore,s. is also a worst-case
scenario forx, which proves part (a). NOWZ (x) = F(sc, x) — F*(s¢) = whd(ve, x) —
F*(se). Sincew}d(ve, x) — F*(s;) < Z(x) for anyc € C, we have part (b) as well.(J

Remark. The lemma is a direct corollary of the general results on MRO problems with a
minimax type of objective function fror8].

For convenience of presentation we will consiflgdistances instead &f distances, i.e.
we assume that for any= (x1, x2) andy = (y1, y2), d(x, y) = max{|x1 — y1|, |x2 — y2|}.
(We notice that if there is no uncertainty in locations, the casig dfstancesi(x, y) =
|x1— y1| + |x2 — y2| can be reduced to the casd gfdistances by the change of coordinates
xX] =Xx1+ X2, X5 = X1 — X2.)

For anyx=(x1, x2), according to Lemma 14 we ha¥éx)=max{Z1(x1), Z2(x2)}, where
Z1(x1) =maxec {w} (|x1—acl) — F*(sc)}, Z2(x2) =maxec{w} (|x2 — bel) — F*(sc)}
If values F*(s.), ¢ € C are known, then Problem ROBCEN decomposes into two one-
dimensional problems: sincg; (x1) depends only or; andZ»(x2) depends only ory, it
is sufficient to findx; that minimizesZ;(x1) andx; that minimizesZ(x2), and the point
x*=(x7, x3) will be an optimal solution to Problem ROBCEN. The problem of minimizing
functionZ; (x;),i=1, 2, is the problem of finding a minmax of: Zinear functions which can
be solved in @n) time [28]. Therefore, having valueB*(s.), ¢ € C, Problem ROBCEN
can be solved in Gr) time. Now it remains to find valueg*(s.), ¢ € C efficiently.
Next, we show that all these values can be found (n ©g ) total time, which results in
O log n) time complexity for solving Problem ROBCEN in the case of ho uncertainty in
locations.

We have that for any = (x1, x2) € R2ands € S, F(s, x) =max{F’(s, x1), F" (s, x2)},
whereF' (s, x1) = maxec {w (Ix1 —ac)}, F"(s, x2) =maxec{w (Ix2— be)). There-
fore, Problem CENY) decomposes into two one-dimensional problems;
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F*(s) =maxX{F'(s), F"(s)}, where

F'(s) = min maxw (lx1 —ac))},  F"(s) = min maxw (Ix2 — b} (12)
X1€R ceC X26R ceC

According to (12), each one df’(s) and F”(s) is a minmax of 2 linear functions and
therefore can be found in @) time; however, we have to solve these problemsrfor
scenarios fromSz. We show that all values’'(s), F”(s),s € S3 can be obtained in
O(n log n) total time.

To be specific, consider obtaining valug¥s), s € S3 (the case of valueB” (s), s € S3
is completely similar). Consider scenasio={w_, ¢ € C} that sets all weights to be equal
to the corresponding lower bounds. Consider funcfion(x1) = max.cc {w; (|x1 — ac|)}.
The piecewise-linear nonnegative convex function(x1) is the upper envelope ofidinear
functions and therefore can be obtained itn Mg ») time [31] (it can be represented by
means of listing all its ©@z) corner points in increasing order, along with the values of the
function at the corner points and the slopes of linear pieces)xLdie the point where
F~(x1) has its minimum value. Notice th&t (s.) =miny,cg Max{F~ (x1), w} (|x1—ac|)}
becausev (|x1 — ac|) >w, (Ix1 — a.|) for anyxi.

Having obtained functionF~ (x1), value F’(s.) can be found as follows. Fined~ =
max{x1 | F~ (xp)=w] (Jx1—ac|), x1<ac},rt=min{x1| F~(x))=w} (x1—ac|), x1>a.}
(notice that it is possible that™ = —oo or r™ = 4-00, if the corresponding equation has
no solutions). Values™ andr™ can be found in @log ») time using binary search on the
corner points off ~(x1). Now, if x; € [r~,rt], thenF’'(sc) = F~(xy); if x; ¢[r—,rt],
thenF’(s.) = min{F~(r~), F~(r7)}. So, having obtained functioR— (x1), value F’(s.)
can be found in Qlog n) time for anyc € C; therefore, all value$”(s.), c € C can be
found in Q(n log n) time.

We have shown that Problem ROBCEN in the case of rectilinear distances and uncertainty
only in weights can be solved in@ log ») time.

4.2. Uncertain weights and uncertain locations

Consider now the case of uncertainty in both weights and locatigns.a.", b <b/,
¢ € C.We again considéy distance®/ (x, y)=|x1— y1|+|x2— y2| foranyx =(x1, x2), y=
(y1, ¥2). (When locations of customers are uncertain, it is no longer true that the case of
distances is equivalent to the casdgfdistances.) For any compact $étc R? and any
pointx € R?, let us definel(x, U) = min{d(x, y)| y € U}. Suppose that for eache C,
a rectanglel, c R? with sides parallel to the coordinate axes is fixed (in the following,
these rectangles will be either the rectangles of uncertdiptgr single points), and let
T = {T.,c € C}. For any pointr € R? and a vector of weight® = {w,, ¢ € C}, let us
define

F(x, W, T)=maxw.d(x, T,)
ceC

That is, F(x, W, T) is the maximum of weighted distances fronto the corresponding
rectangled . Consider the following auxiliary problem
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Problem CEN1(W, T). Findx € R? so as to minimize” (x, W, T).

Problem CEN1Y, T) is an extension of the standard weighted 1-center problem to the
case where customers are represented by rectafigtather than points.

Since for any € C, functiond (x, T,) is the upper envelope of at most 9 linear functions
of x = (x1, x2), F(x, W, T) as a function ofc, x is the upper envelope of at most 9
linear functions of two variablesi, x2; so, Problem CENW, T') can be written as a linear
programming problem with 3 variables and at most®nstraints and solved in(@) time
according td28].

For anyo € A andc € C, let us define valug*(a, ¢) as follows: F*(«, ¢) is the
optimal objective function value for Problem CENHU(T), where in the vector of weights
W customerc has weightw and any other customef € C has weightw_, T is the
pointv%, and for any othet’ € C, T,/ is the corresponding rectangle of uncertaifty.
TheseW and T will be denotedW (c) and T (, ¢), respectively, and the corresponding
Problem CEN1W, T) will be referred to as Problem CEN#/((c), T (¢, ¢)); therefore,
F*(a, ¢) =min, g2 F (x, W(c), T (2, ¢)).

Lemma 15. For anyx € R?, Z(x) = MaXca, ccc(wid(@?, x) — F*(a, c)).

Proof. For anyo € A andc € C, let us definey, . € R? andsy, . € S as follows:

Ya.c IS the optimal solution to Problem CEN¥((c), T («, ¢)) (if this problem has more
than one optimal solution, an arbitrary rule, e.g. lexicographic, can be used to choose one
of them);

sa.c is the scenario where customers located av? and has weightv, and for any
¢ e C, ¢’ # ¢, customer’ has weightw_, and is located at the point éf. closest toyy,..

Let us fix an arbitrary € R?. First, observe that for anye A ande € C, w}rd(vZ, x) —

F*(a, ) < Z(x) (becausevtd (v*, x) < F(sq.c, X), F*(ot, ¢) = F (Sy.c, ya.c), and therefore
whd @, x)— F*(o, ¢) < F(So.c0 X)— F(Sq.c, Ya.c) < Z(x)). To prove the lemma, it remains
to show that there exist € A andc € C such thatw!d(v%, x) — F*(a, ¢) = Z(x).

A pair (s',y), s’ € S,y € R?, is called aworst-case pair for xif Z(x) = F(s', x) —
F(s',y"). Let (s’, y') be a worst-case pair for. Let ¢’ € arg maxec {wg“/)d(x, vés/))}.
Then,Z(x)=F(s',x) = F(s', y)) = wf,f/)d(x, vﬁf/)) — F(s’,y"). Suppose that®"” belongs
to theo/-quadrant fox for somex’ € A (for the definition of an’-quadrant fox, see Section
2). Then, valueF (s’, x) — F(s’, y’) will not decrease if in the scenariowe replaca;if/)
with vgf, wif,)with wj, and wS” with w; for anyc # ¢’ (this can be shown using an
argument similar to that used in the proof of Lemma 14). It cannot increase either because
(s’, y') is a worst-case pair for. The scenario obtained after this modification’ofvill be
calleds”. We see thats”, y’) is also a worst-case pair farand F (s”, x) = wjd(x, vg‘/’).

Now, observe that

F(s",y) = F* (o, /)= F(sy.cts Yor et (13)
and

F(s",x) = whd(x, v%) < F sy o0, %) (14)
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Therefore
F(sor.crsX) — F(sor. oty Y ) 2 F(s", x) — F(s", ) = Z(x).

Recalling the definition ofZ(x), we see thatF (s, », x) — F(sy .o/, Yo'.c!) = Z(x) =
F(s",x) — F(s",y") and therefor&s, ./, y,.) iS a worst-case pair fox. Taking into
account (13) and (14), we see théts, -, x) = F(s", x) = wjd(x, vf‘,,/). using F (sy ./,
Yor,er) = F*(o, ¢'), we haveZ (x) = wd(x, v¥%) — F*(e/, ¢). The lemma s proven. O]

Functionw}d (v, x) is the upper envelope of four linear functions.of= (x1, x2),
and thereforeZ(x) is the upper envelope of &6linear functions. Thus, if all values
F*(o,¢), a € A, ¢ € C are known, Problem ROBCEN can be formulated as a linear
programming problem with 3 variables andsl€onstraints and solved in(@) time [28].
(Another way to show that given valué¥ (o, ¢), o € A, ¢ € C Problem ROBCEN can be
solved in Qn) time is to decompose the problem into two one-dimensional problems using
Lemma 15 and an argument similar to that used in the previous subsection). Since Prob-
lem CEN1, T) can be solved in @) time (as observed above), alt 4aluesF*(a, c)
can be obtained in @2) time. Below, we show that in fact all#dvalues F*(x, ¢) can
be obtained in @: log n) total time, which will result in @n log »n) time complexity for
Problem ROBCEN.

LetW~={w_,c € CandT ={I., ¢ € C}.FunctionH (x)=F(x, W~, T) is the upper
envelope of at most/Blinear functions (because functiefix, I'.) for anyc € C is the
upper envelope of at most 9 linear functions). Vertices, edges, and faces of this envelope (we
will refer to them as to vertices, edges, and faceH ¢f)) along with all “vertex-face” and
“face-vertex” incidence lists can be found iOlog n) time using convex hull algorithms
[17,32] The total number of vertices, edges, and faceqiis {31]. We will refer to values
of function H (x) as toz-coordinates of the corresponding points of the upper envelope.

We say that a functioyi (x) defined onR? satisfies th&-gon propertyf forany z € R, the
set{x € R?| f(x)<z}is aconvexk-gon withk <8 such that the angles between the sides of
thisk-gon and the coordinate axes are multiples 6f (k =0 if the set{x € R?| f(x) <z}
is empty or consists of a single point). For ang C, functiond (x, I';) satisfies the 8-gon
property; so does functioH (x) as it inherits the 8-gon property from functioaéx, I'),
ceC.

Letz1, z2, ..., z4 be the distinck-coordinates of the vertices &f (x) in the increasing
order g = O(n)). We will refer to valuesy, zo, ..., z, as to “levels”. LetH; denote the
polygon{x | H (x) <z;}. Having obtainedH (x) with its vertex-faces incidence structure,
all polygonsH;,i € {1,2,..., g} can be obtained in @) time as follows. For each face
of H(x) we find the levels of its lowest and highest vertices, gagndz;, respectively,
and assign the face to levels z; 1, ..., z;—1. (If a face is unbounded and does not have
a highest vertex, then the face is assigned to leyels1, . . ., z4, wherez; is the level of
the lowest vertex of the face. H (x) has a horizontal face, then this face is at the bottom
of H(x) and is not assigned to any level.) The lowest and highest vertices of all faces can
be found in Qn) total time because there aré{) pairs of incident vertices and facgi].
BecauseH (x) satisfies the 8-gon property, no more than 8 faces can be assigned to each
levelz;,i =1,2,...,q. The faces assigned to a lewgldefine the polygorH;.
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We need to show that all valuds: (o, ¢), o € A, ¢ € C can be obtained in @ log n)
time. Let us fix some: € A andc¢ € C. Notice thatF (x, W(c), T (o, ¢)) = max{H (x),
wid(w?, x)} and thatF* (o, ¢) = minxeRzI:"(x, W(c), T (o, ¢)) is the smallest value €
R such that the polygorx | H(x) <z} (which is ak-gon with k <8) and the square
{x | wd(?, x) <z} have nonempty intersection. For ang {1, 2, ..., ¢}, the intersection
of H; and the squaréx | wld(v?%, x) <z;} can be found in @) time. This intersection is
nonempty if and only ifF*(, ¢) <z;.Thus, for anyi € {1,2, ..., ¢} it takes Q1) time to
check whethefF* («, ¢) < z;;notice also that1 < F*(o, ¢) < + oo. Applying binary search
onzi, z2,...,24, in O(log n) time we either discover that* (o, ¢) = z1, or we find the
largest € {1, 2, ..., g} suchthatF'*(«, ¢) > z;;letit bei*. In the latter case valuB* (o, c)
is defined by the faces dff (x) assigned to levet;+ (no more than 8 faces) and the four
faces of functionwd(v%, x) (which is the upper envelope of four linear functions), and
can be found in QL) time using a linear programming problem with 3 variables and at most
12 constraints. Therefore, all valug$(a, ¢), « € A, ¢ € C can be obtained in @ log n)
time. We have proven

Theorem 4. ProblemROBCENIn the case of rectilinear distances can be solved(n log n)
time.

5. Euclidean median

Suppose that distances are Euclidean, thatis, foxangc1, x2) € R?andy=(y1, y2) €
R?, d(x,y) = \/(xl — y1)? + (x2 — y2)?, and suppose thaf (s, x) = Fi(s, x). For the
Euclidean case, we assume that there is no uncertainty in locations (i.a” = a,
b7 =bf =b.,v.=(ac, b.), c € C),and all uncertainty is in weights. Therefore, a scenario
corresponds to assigning weights to customers. The reasons for this assumption were stated
in Section 2.

For anyx, y € R?, let us define scenarig (x, y) = {w}(x,y), c € C}as follows:

£ _ wc_ If d(-x’ vl)) <d()’, vc)ﬂ
We (X, y) = {w+ if d(x, v) > d(y, ve).

c

Then, it is clear thaREGRx, y) = F(s*(x, y),x) — F(s*(x, y), y). Let S1 be the set
of scenarioss € S such thats = s*(x, y) for somex,y € R2. It is well-known that

|81 =0(n?) (e.g.[17, Theorem 3.1, p. 47{lifferent scenarios of; correspond to different
ways to partitiom points on the plane into two disjoint sets by a straight line).

Lemma 16. SetS; is globally sufficient.
Proof. For anyx € R?, there exists a worst-case scenarfor x such thats € Sq; this is

straightforward to show using an argument similar to that used in the proof of Lemma 3.
The statement of the lemma follows immediately.]
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In the case of Euclidean distances, we will be interested in solving Problem ROBMED
only approximately, because even Problem M§Dgr a specific scenaris, which is the
classical Weber problef836] and a special case of Problem ROBMED, is not well-solvable
exactly, and available methods find only approximate solutions to Problem §)iEdeg.,
e.0.,[9,13,22,25]). For ane > 0, a feasible solutiow for an optimization problem is called
an e-optimal solutionfor the problem, if the objective function valueatiffers from the
optimal objective function value by no more than

A natural approach to solving Problem ROBMED is as follows:

(1) Obtain the sef;.

(2) Foreachy € $1, solve Problem MEDH) approximately with a precisiogy > 0; that is,
obtain values#*(s), s € $1 such that G F*(s) — F*(s) <é1.

(3) Solve the following problem with a precisiap > O:

minimize Z(x), (15)
X€R?
where
Z(x) = max(F(s, x) — F*(s)). (16)
s€ST

It is clear thatZ (x) < Z(x) and Z(x) — Z(x) <& for anyx € R?; therefore, we have the
following

Lemma 17. An gz-optimal solutionx* to (15) will be an (¢1 + &2)-optimal solution to
ProblemROBMED.

Z(x) is a convex function, and (15) can be solved approximately by iterative methods of
convex optimization. Each iteration of such methods typically consists of computing value
of Z(x) and its subgradient at some specifie R2.

Lemma 18. For anyx € RZ, all O(n?) valuesF (s, x), s € S1 can be obtained iD(n?)
total time.

Proof. Clearly, eachs € §1 corresponds to a partition of the set of customers by a straight
line passing through the location of a customer. Rotating this straight line about the customer
location on the line generateg#) scenarios frons1, and valuesF (s, x) for these Qn)
scenarios (for a fixed € R?) are obtained in Q) total time by updating dynamically

the valueF (s, x) for the current scenario during such a rotation (for details[&jgeSince

there aren customers, all valueB (s, x), s € S are generated in @2) time. O

If values F*(s), s € S1 have already been obtained, then according to Lemma 18 the
maximizer in (16) can be obtained in(@¥) time. If a scenaria’ is a maximizer in (16),
then a subgradient of (s’, x) at x will also be a subgradient af (x) at x. Therefore,
we have
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Lemma 19. When values™(s), s € $1 have been obtainedhe value of functior (x)
and its subgradient at any pointe R2 can be obtained i®(1?) time.

Thus, finding an(e1 + ¢2)-optimal solution to Problem ROBMED has been reduced to
solving Q(n?) regular Weber problems (Problems MER(s € §’) with precisione; and
minimizing convex functiori(x) with precisioney; the value and a subgradient;%(x) at
any pointx € R? can be obtained in @2) time.

6. Euclidean center

As inthe previous section, suppose that distances are Euclidean and uncertainty is only in
weights. Suppose thdt(s, x) = Fa(s, x). Let scenarios,, ¢ € C be as defined in Section
4.1.

Lemma 20. Z(x) = max.ec {wSd(ve, x) — F*(sc)}.
Proof. The proof is completely similar to the proof of Lemma 14, part ()

Since Problem CENJ can be solved in Q) time [16,29,1] all valuesF*(s.),c € C
can be obtained in @2) time.

Having obtained valueg™*(s.), ¢ € C, Problem ROBCEN is reduced to the problem of
minimizing Z (x). Foranyc € C, letZ.(x)=wd (v, x) — F*(s.) and letZ.={(x,z)|x €
R?, z € R, z>Z.(x)}. The graph of functiot (x) is the upper envelogeof the functions
Z.(x), c € C. Eis the boundary of the intersection of the coffesc € C. The problem of
minimizing Z (x) seems very similar to the classical Euclidean weighted 1-center problem
(Problem CENg)), with the exception that in Problem CEdjl(vertices of all cones are
at the same height. So, it seems natural to try to extend known efficient algorithms for
Problem CEN$) to the problem of minimizingZ (x). The fastest algorithms for solving the
classical Euclidean weighted 1-center problem are the linear-time algorithms ofIByer
and Megiddd29] based on the multidimensional search techniqu@®ff Unfortunately,
they do not seem to be applicable to our case; the property that the vertices of the cones
are at the same height in Problem CEN§ essential for these algorithms. It appears that
the parametric-search based algorithm of Megif¥ can be extended to the problem of
minimizing Z (x) without major modifications in an appropriate model of computation (the
model of computation should allow infinite-precision real arithmetic, finding in constant
time intersection points and tangency points of certain curves, etc.); the complexity of
the algorithm is @ log®n(log log n)?). Since Gn?) time has been spent on obtaining
valuesF*(s.), ¢ € C, this will result in Qn?) time complexity for Problem ROBCEN.
However, since ©:2) time is already used for obtaining valug%(s.), ¢ € C, it is not
attractive to use complicated and difficult to implement techniques such as the parametric
search for minimizingZ(x) if Z(x) can be minimized in almost quadratic time using
simpler approaches. Below, we describe a geometric algorithm that minighize#n time
O(n22*™ log? n), wherex(n) is the inverse Ackermann functig] that grows very slowly
and can be considered as a constant for any practical purposes (for any possible “practical”
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values ofn, a(n) <4 and therefore 2™ < 16). The algorithm uses classical results and

constructions from computational geometry, and its logic is much simpler than that of the

parametric approach. For simplicity of presentation and to avoid tedious consideration of

practically unimportant special cases, we assume that the pQinise C are ingeneral

position that is, they are all distinct and no three of them belong to the same straight line.
We need the following:

Lemma 21. Suppose a finite s& C R of distinct“candidaté values is known such that
the optimal objective function valugé = min,.,2Z(x) for ProblemROBCENDbelongs to
K. Then given the set K and values*(s.), ¢ € C, ProblemROBCEN can be solved in
O(n log n log |K| + |K]) time.

Proof. Suppose a finite sé{ that satisfies the condition of the lemma and the values
F*(s¢),c € C are given. For any value € R, it is possible to check in @ log n)
time whetherz >z*. This can be done as follows. Consider the circdlész) = {x €

R?| Z.(x)<z}, ¢ € C.Thecircles?.(z) correspond to horizontal slices of the coaesat
heightz. Observe that > z* if and only if the intersection of the circléB.(z), ¢ € C is not
empty. The intersection afcircles can be computed in(@ log n) time[15]; therefore, for
anyz € R itis possible to check in @ log n) time whether; > z*.

Sincez* € K, z* can be found now using binary search over the elements. @it
each iteration, we find the mediahof the current seK and check whethes > z* using
the test described above. 3f> z*, the elements oK which are greater thag can be
discarded; if7’ < z*, the elements oK which are smaller or equal tg can be discarded.
After O(log |K|) iterations, value* is found. The total time spent on finding medians and
discarding elements is@ | + 3|K| + %|K |+ ---) = O(/K|), S0 the total time spent on
finding z* is O(n log n log | K| + |K|). After finding z*, an optimal solution to Problem
ROBCEN can be found by obtaining the intersection of the cirtleg*),c € C. O

Now it remains to find a reasonably small Katf candidate values that would contain
Below, we discuss how to find such a #eof cardinality Qn22“") in O(n22*™ log? n)
time, wherex(n) is the inverse Ackermann function. Together with Lemma 21, this will
provide an @n22*™ log? n) algorithm for solving Problem ROBCEN.

The upper envelopk of functionsZ.(x), ¢ € C represents a two-dimensional manifold
and consists of vertices, edges, and facescLet(x], x3) be an optimal solution to Problem
ROBCEN. The poinp* = (x*, z*) € R%is a lowest point of the enveloge(where height
is associated witk-coordinate); it can be a vertex, an interior point of an edge, or an interior
point of a face oE. Let us consider separately all three cases.

Face Suppose thap* is an interior point of a face dE. Thenx* is a local minimum
of the functionZ.(x) that corresponds to the face. The functity(x) has a unique local
(which is also global) minimum at = v.. So, in this case* = — F*(s.) for somec € C.

We include then values— F*(s.), ¢ € C in K; this makes sure that € K if there is an
optimal solution to Problem ROBCEN that corresponds to an interior point of a face of the
envelopeE.

Edge Suppose* is aninterior point of the edge defined by functiahgx) andZ; (x) for
someu, b € C. Thenz* =min{z | z=Z,(x) =Z,(x), x € R?}. Forany particularg € R,
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the set of solutions of equatidfy, (x) = zg (of equationZ,(x) = zg) is the circumference
of the circle ¥, (z0) (¥5(z0)) (defined in the proof of Lemma 21). The minimum value
of zo such that the two circumferences intersect is achieved when the two circumferences
are tangent. (In the degenerate cage- v, the two circumferences may coincide, but we
assumed that poinis, ¢ € C are in general position, 3¢ # vp). Thenx™ lies on the lind
that passes through andv,. Letx =x(¢) be a parameterization of the lihelhen function
Z,(x(t)) (function Z, (x(¢r)) is a piecewise linear function ofwvith 2 linear pieces, ang*
(and, thereforez*) can be found in QL) time by solving the equatiof, (x(¢)) = Z, (x (1))
and choosing the best of the solutions. We conclude that for any pair of custonhessC,
it is possible to find in @1) time a candidate valug, » thatis equal ta™ if there is an
optimal solution to Problem ROBCEN that corresponds to an interior point of the edge
defined by function&, (x) andZ (x). We include the ©:2) valueg/, pa€CbeC into
K; this makes sure that € K if there is an optimal solution to Problem ROBCEN that
corresponds to an interior point of an edge of the envelbpe

Vertex The case wherp™* is a vertex oft is more difficult because a vertex is defined
by a triple of functionsZ, (x), Z,(x), Z.(x), a, b, ¢ € C, and there may b&(»n3) such
triples. We say that a customere C is dominated by a customére C if Z,(x) < Zp(x)
for all x € R2. A customera € C is calleddominatedf it is dominated by at Ieast one
other customer. Notice that custonaeis dominated by customérif and only if w < wb
andZ, (vp) < Zp(vp) (that is,Z,(vp) < — F*(sp)). Therefore, it takes @) time to check
whether a customet is dominated by a customér and therefore it takes @?) time to
identify all dominated customers. Notice that deleting all dominated customer€fdmas
not affect the envelopE. So, we will assume that there are no dominated customé&s in

Lemma 22. Suppose that,a € C andx’ € R?, and suppose thav} >w; and Z.(x")
>Z,(x). Thenforany >1, Z.(v. +t(x — ve)) = Zy(ve + 1 (x" — v)).

Proof. For anyr>1, letx'(t) = ve + t(x’ — v.). Let 4. = d(v¢, x'(t)) — d(ve, x') and
Ay = d(vg, x' (1)) — d(vg, x'). It suffices to show thaZ.(x'(¢)) — Z.(x") = Z,(x'(t)) —
Za(x") or wrA.>w] A,. This inequality follows from4.> 4, sincew >w; >0 and
A = (t — 1d(v., x') >0. The inequalityd,. > A4, is equivalent to the triangle inequality
dx' (), x") +dg, x) =d (v, x'(t)). O

Consider a lexicographical ordex" of customers: € C determlned b)(wJr F*(sc))
c € C.Thatis, for anya, b € C, we writea < b if either w] <w; or w} = w;” and
—F*(sq) > — F*(sp). (That is,a < b either if the angle of coné_f;, is sharper than the
angle of coneZ,, or if both cones have equal angles but the vertex of cones higher
than the vertex of con#,.) Notice that there may be lexicographical ties, that is, customers
a,b € C such thatw = w,‘f and—F*(s,) = —F*(sp). For anya, b € C, we writea < b
(a is lexicographically not greater thdy) if it is not true thatb < a. For any customer
ceC,letC.={a € C|a < ¢}, and letE. be the upper envelope of functio#s (x), a €
C.. Suppose thap* is a vertex ofE defined by functionsZ,, (x), Z,(x), Z.(x) for some
a,b,c e C (thatis,Z,(x*) = Z,(x*) = Z.(x*) = z*), seeFig. 4 Without loss of generality
suppose that < ¢ andb < c. Sincep* € E, we also have™* € E_; thus, p* is a vertex
of E.. By Lemma 22 and taking into account the definition@f, all points of the ray
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X

Fig. 4. The vertexp* of the upper envelope of functior®; (), Z; (), Z.(). The boundary of the shaded region is
the intersection of the upper envelope with a plareconst.

{(x*(2), Zc(x*(2))) | t =1}, wherex*(t) = v, + t(x* — v.) belong toE.. Therefore, the
envelopeE, has an unbounded face defined by functiix). We have the following

Lemma 23. If p* is a vertex of Ethen for some € C, p* is a vertex of an unbounded
face ofE. that is defined by functiof.(x).

Lemma 23 indicates that envelop&sare more convenient to work with than the envelope
E, as for them it is easier to “catch” a face that may conjainThe lexicographical order
implies also another important property of the envelopgs: € C.

Lemma 24. If the numbersv, ¢ € C are all distinct then for anyc € C the envelope
E. has a unique unbounded fa@nd this face is defined by functidh (x). If the numbers
w}, ¢ € C are not all distinct then for anyc € C the envelopeE. has at most one
unbounded face defined by functidp(x) (although in this casé&,. may have more than
one unbounded fagand may not have an unbounded face defined fiy)).

Proof. Letus fix some € C. Foranyz € R, let®.(z) = ﬂaeCc ¥.(z) (where¥,(z) was
defined in the proof of Lemma 21). If alt*, a € C are distinct, then for any € C.\{c},
w} <wt. Therefore, for all sufficiently large, ®.(z) = ¥.(z), which implies the first
statement of the lemma.

Suppose now that notall}, a € C are distinct. LeC.={a € C. : w =w]}. Then for
all sufficiently largez, @.(z) is defined only by functionZ,(x), a € C., and the boundary
of @.(z) consists of arcs of some circl&4,(z), a € C.. Notice that the lexicographical
order implies that for any: € C/, the radius of the circlé?,(z) is not larger than the

radius of the circleP.(z). Using this property and induction on the cardinalityGf it is
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straightforward to see that for all sufficiently largéhe boundary ofb.(z) has no more
than one arc of the circl#.(z). This implies the second statement of the lemmial.

Lemma 25. For anyc € C, it is possible to check i®(n) time whether there exists an
unbounded facg, of the envelopé&. that is defined by functiod. (x). If such a face exists
it is unique(according to Lemma4) and hasO(n2*™) vertices whereo(n) is the inverse
Ackermann functiorand all these vertices can be compute®im 2™ log? n) time.

Proof. Let us fixc € C. For anya € C.\{c}, let &, be the intersection curve of the
boundaries of the cone%, andZ,.. Observe that for any, b € C.\{c}, the curvesZ, and
%), can intersect at most four times. Indeed, an intersection poiad € R° of the curves
2, and.Z;, must satisfy the equations

(z + F*(se))/w} + =d (v, x),
(z+ F*(s2))/w} = d(va, x), 17)
(z+ F*(sp))/w; = d(vp, x).

Let us square both sides of each equation in (17), and then let us subtract the first equation
from the second and from the third. The left sides of all three new equations are quadratic
functions ofz. We obtain linear functions of the coordinates of pairt R? in the right sides
of the second and the third equations. Then, the second and the third equations represent
a system of two linear equations with two unknowns with respect to the coordinates of
Solving this system for the coordinatesxafill give their expressions as (at most) quadratic
functions ofz (It is not difficult to see that since we assumed that the pojpts € C are
in general position, the system cannot be degenerate.) Substituting these expressions into
the first equatioriz + F*(s.))% = (wrd(ve, x))? we obtain a quartic equation with variable
z, which has at most four solutions.

Since every pair of curve¥’,, ), can intersect at most four times, the unbounded face
f. of the envelopeE, that is defined by functio,. (x) (if it exists) has @14(n)) vertices
and edges, wherky(n) = O(n2*™) is the maximum size of afn, 4)-Davenport—Schinzel
sequencg?]. (Davenport—Schinzel sequences are powerful combinatorial structures that
play a central role in many geometric problems; see, ffor a comprehensive intro-
duction.) All vertices of the facg, can be computed in @4(n) log? n) = O(n2“™ log? n)
time [2] if a point inside the face is known, or if a directiere R? is known such that for
all sufficiently larger € R the point(v. + tr, Z.(v. + tr)) belongs to the facg.. Here
we assume a model of computation with infinite precision real arithmetic that allows us to
compute the intersection points of any pair of curg8g %, in O(1) time (this assumption
is common in computational geomef{g}).

To complete the proof, it is sufficient to show that we can check m)@me whether
there exists an unbounded fage of the envelopeE, that is defined by functio,. (x),
and that if such a facg. exists, we can find in Gr) time a direction € R? such that for
all sufficiently larger € R the point(v. + tr, Z.(v. + tr)) belongs to the facg, (that is,
Ze(ve +tr)=Zy(ve +tr),a € Cp).

Considerthe sef.={a € C. : w/=w]}.If C.={c},thenforany: € C.\{c}, w} <w],
and therefore the unbounded fageexists and any nonzero vector fraR® can be taken as
r. Suppose that’. # {c}. Consider any: € C/\{c}. Sincew; = w} andF*(s;) > F*(s4),
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it is not difficult to see that for any unit vectere R2 such thatv, — ve, r) < M

we haveZ. (v, + tr) < Z,(v. + tr) for all sufficiently larger € R, and for any unlt vector

r € R? such that{v, — ve, r) > Mwe haveZ. (ve + tr) > Zy(ve + tr) for all
sufficiently larger € R. (Here(-, -) is the regular dot product.) Hence, the unbounded face
f. exists if and only if there exists a unit vectore R? such that for al € Ci\{c},

(Vg — Ve, 1) > % Clearly in Qn) time we can either find such a vectoor to

show that it does not exist. If we find such avectdhen for any: € C. and all sufficiently
larget € R, Z.(ve + tr) > Z,(ve + tr). The lemma is proven. [J

Lemmas 23-25 suggest the following approach. For eaehC, check in Qn) time
whether there is an unbounded fagteof the envelopet, defined by functiornZ.(x). If
such a face exists, obtain all its(@2*"™) vertices in @n2*™ log? n) time, and include
their z-coordinates into se&k. This makes sure that € K if there is an optimal solution
to Problem ROBCEN that corresponds to a vertex of the enveloggombining all the
results, we have

Theorem 5. The algorithm described above solves ProbROBCENin O(222*"™ log? n)
time.

7. Conclusion

In this paper, we studied interval data minmax regret single facility location problems
on a plane. For the case of rectilinear distances, our models incorporated uncertainty in
both customers’ weights and location coordinates. For the case of Euclidean distances, we
considered only uncertainty in weights. The problems are generalizations of the classical
(without uncertainty) single facility location problems on a plane.

We presented an@2 log? n) algorithm for the minmax regret rectilinear 1-median prob-
lem and an @ log n) algorithm for the minmax regret rectilinear weighted 1-center prob-
lem. We have also discussed possibilities of solving approximately the minmax regret Eu-
clidean 1-median problem, and presented &m?@*™ log? (n)) algorithm for solving the
minmax regret Euclidean weighted 1-center problem.

The algorithms developed in the paper use special geometric properties of the considered
problems and therefore seem unlikely to be easily extendable to other models. However,
we believe that the underlying methodological ideas are sufficiently general to be useful
for other geometric location problems. For example, the approach of Section 3 combined
local optimality and convexity arguments, identification of grids that allowed to simplify the
structure of the problem, and computational geometry techniques to speed up the solution
procedure. Itappears that such a combination of tools is effective for many minisum location
problems with rectilinear distances; e.g., a similar combination of techniques was used in
[18] to compute a 1-median for a continuum of customer points.

It appears that the ideas of Section 3 can be generalized to the case of block3®jrms
although we doubt that this line of research would produce elegant results.

A possible direction for future research is to study minmax regret location problems with
multiple facilities on a plane.
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Proof of Lemma 8. Letanx € R? be fixed. Since Problem MEB)can be solved in Gr)
time (e.g.[26]) for anys € S, it is straightforward to compute all valuéys, x) — F*(s),

s € §*(x) in O(n®) time. This can be done by obtaining scenasitx, y) according to (5),
solving Problem MEDY,(x, y)), and checking whetheris a 1-median for the scenario
sy(x, y), forally e N(G1) anda € A. We will show that the necessary computations can
be performed in @) amortized time per scenario, that is, it®) total time.

A horizontal line of gridG1 will be called arow. The set of nodes af/; that belong to
arowlL is denoted a®/(L). A point zof a rowL is called achange pointorresponding to
v € V (or produced by € V), if d(x, v) = d(z, v). Change points produced by different
v € V are considered different even if they coincide. It follows from (5) that wheroves
along a rowL, scenarios,(x, y) can change only at change points correspondingffo
¢ € C. There are at mosti8change points on each row (at most 2 change points for each
vevV).

The structure of the algorithm is as follows. As a preprocessing, for each. rihe
algorithm computes all the change points on the row (recording the poiratsV that
produced them), and sorts them. We will show that the preprocessing can be implemented
in O(n?) total time. Then the algorithm processes the rows of @tid spending Q)
time per row. For each row, the algorithm processes ngagghe row from left to right,
using the information obtained during the preprocessing to efficiently update scenarios
sq(x,y), « € A and some auxiliary values gschanges and spending() amortized
time per update. The auxiliary values obtained for every noaledo € A include values
F(sy(x,y), x), F(sq(x,y), y), and some values that allow to check ig1ptime whether
y is a 1-median for the scenarig(x, y). If y is a 1-median for the scenarig(x, y), then
F*(sq4(x, ¥)) = F(sq(x, y), ), and valueF (s, (x, y), x) — F*(s,(x, y)) is recorded. When
all nodes of all rows have been processed, values of all funclignsc) — F*(s),s € S*(x)
have been obtained.

Let us discuss the preprocessing. ForaV, let Q(v, x) ={r € R?|d(v, r)=d (v, x)}.
SetQ(v, x) is a “diagonal” square with the center @atand the poinix on its boundary.
Notice that a change point corresponding to& V must belong t@ (v, x). Therefore, the
change points lie on @) diagonal lines that contain sides of the squapés, x), v € V.
Lines that correspond to different squares are considered different even if they coincide. We
break up these lines into two groups with slopes 1 afdrespectively. The lines in each
group are sorted (it takes(@ log n) time). This allows to find in @:) time for any row
L the order of intersection points afwith the lines in the group. The two sorted lists of
intersection points fol (corresponding to the two groups of diagonal lines) can be merged
in O(n) time, producing one sorted list of intersection points efith the lines containing
sides of square@ (v, x), v € V. For each intersection point, the corresponding V is
recorded. Then, the intersection points that are not change points are removed (itthkes O
time to check whether an intersection point is a change point for the correspandiig,
which results in a sorted list of change points for the towgince there are @) rows, the
preprocessing takes(@?) time.

Now we discuss how to process rows spendirig)@me per row. Suppose that a raw
of grid G1 is fixed. Whery is equal to the leftmost node bf scenarios, (x, y), « € A are
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computed in @) time using (5). Whely moves through the nodes bffrom left to right,
scenarias,(x, y) is updated using the scenarig(x, y’) for the previous node’ and the
change points betweeri andy. Since there are @) change points in any row, only(@)
weights will be updated whepntravels along the ro.. Therefore, maintaining scenarios
sy(x, y), x € A wheny moves through a row takes(@ time.

Foranyy € R?and ascenarig let us define the following values. LBty (y, s) (Wa(y, s))
be the sum of weights of all customers located strictly to the left (strictly to the right) of
y under the scenaris, that is, whose first coordinate is strictly smaller (strictly greater)
thanx1(y). Let Wa(y, s) (Wa(y, s)) be the sum of weights of all customers that are located
higher (lower) thaly under the scenar® that is, whose second coordinate is strictly greater
(strictly smaller) thamo(y). Let W (s) be the sum of weights of all customers under scenario
s. It is well known thaty is a 1-median for a scenargif and only if W;(y, s) < %W(s),

i =12, 3,4[26]. Thus, given value® (s), W;(y,s),i =1, 2, 3, 4, it takes @1) time to
check whethey is a 1-median for the scenarso

For every node of row L and everyx € A, we will obtain values¥; (y, s, (x, y)), (i =
1,2 3,4, W(sy(x, y)), F(sq(x, y), x), F(sy4(x, y), ¥), and check whetheris a 1-median
for the scenarioz,(x, y) using the test discussed above. For the leftmost node of row
L, valuesW; (y, sy (x, y)), i = 1,2, 3,4, W(sy(x,y)), F(sq(x,y),x), F(so(x,y),y) are
obtained directly (this takes @) time). For any other nodg of the row, these values
are computed using the corresponding values for the previous node (nodes of a row are
processed from left to right). Given the previous discussion, it is straightforward to see that
these values for all nodes of a row can be computed(ir) @tal time.

If yis a 1-median for scenarig,(x, y), then F*(sy(x, y)) = F(sy(x, y), y), and value
F(sy(x,y), x) — F*(sy(x, y)) is recorded. When all nodes of all rows are processed, values
of all functionsF (s, x) — F*(s), s € $*(x) have been obtained and recorded. Since there
are Qn) rows and processing each row takeatime, the complexity of the algorithm is
On?).

The directional derivatives of functiong(s, x) — F*(s), s € S*(x) atx in a given
direction can be computed in(@) total time in a similar way. O
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