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Abstract

We consider single facility location problems (1-median and weighted 1-center) on a plane with
uncertain weights and coordinates of customers (demand points). Specifically, for each customer, only
interval estimates for its weight and coordinates are known. It is required to find a “minmax regret”
location, i.e. tominimize theworst-case loss in the objective function value thatmay occur because the
decision is madewithout knowing the exact values of customers’weights and coordinates that will get
realized.Wepresent anO(n2 log2 n)algorithm for the interval dataminmax regret rectilinear 1-median
problemand anO(n log n) algorithm for the interval dataminmax regret rectilinearweighted 1-center
problem. For the case of Euclidean distances, we consider uncertainty only in customers’weights.We
discuss possibilities of solving approximately the minmax regret Euclidean 1-median problem, and
present an O(n22�(n) log2 n) algorithm for solving the minmax regret Euclidean weighted 1-center
problem, where�(n) is the inverse Ackermann function.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Significant research efforts have been devoted to optimization problems with uncertainty
in input data because of their importance for practice. Two ways of modeling uncertainty
are usually used: the stochastic approach and worst-case analysis.
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In the stochastic approach, uncertainty is modelled by means of assuming some prob-
ability distribution over the space of all possible scenarios (where a scenario is a specific
realization of all parameters of the problem), and the objective is to find a solutionwith good
probabilistic performance. Models of this type are handled using stochastic programming
techniques[21,12].
In theworst-caseapproach, theset of possible scenarios isdescribeddeterministically, and

one is looking for a solution that performs reasonably well for all scenarios, i.e. that has the
best “worst-case” performance and hedges against the most hostile scenario. Specifically,
theminmax regretversion of the worst-case approach seeks to minimize the worst-case
loss in the objective function value that may occur because the solution is chosen without
knowingwhich scenariowill takeplace. In otherwords, theminmax regret approach seeks to
find a solution that is�-optimal for any possible realization of parameters, with� as small as
possible.Minmax regret solutions are sometimes calledrobustsolutions[24], although there
are several different robustness concepts in the literature (see, e.g.,[30,10,11]). Minmax
regret optimization (MRO) has received increasing attention over the last decade, and by
now it is a well-established area of research. A comprehensive treatment of the state of art
in minmax regret discrete optimization up to 1997 and extensive references can be found in
the book[24]. We also refer the reader to the book[24] for a comprehensive discussion of
themotivation for theminmax regret approach in various types of application environments.
There are two natural ways to define the set of possible scenarios for MRO problems that

have been used in the literature. First, when the set of scenarios is finite, all data instances
from the set can be listed explicitly; suchMRO problems are calleddiscrete-scenarioMRO
problems.Second, the set of scenarios canbedefinedby specifyingan interval of uncertainty
for every numerical parameter, with the assumption that the parameter can take on any
value within its interval of uncertainty regardless of the values taken by other numerical
parameters; such MRO problems are calledinterval dataMRO problems. Averbakh[4]
gave examples of MRO problems that are polynomially solvable in the interval data version
but are NP-hard in the discrete-scenario version.
Theminmax regret approach was first applied to a location model by Kouvelis et al.[23],

although location problems with deterministically modelled uncertainty in data had been
considered earlier (e.g.[33]). Kouvelis et al.[23] presented polynomial algorithms for the
minmax regret 1-median problem on a tree; for the interval data case, the complexity of
their algorithm is O(n4), wheren is the number of nodes. Chen and Lin[14] presented an
alternative algorithm for the same problem on a tree with the order of complexity O(n3).
For the same problem on a tree, Averbakh and Berman[7] further improved the order
of complexity—they presented a simple algorithm with complexity O(n2). Averbakh and
BermanhavealsodevelopedamorecomplicatedalgorithmwithcomplexityO(n log2 n). For
the same problem on a general network, Averbakh and Berman[7] presented a polynomial
algorithm with the order of complexity O(mn2 log n), wherem is the number of edges, for
the case where only node weights are uncertain. Averbakh[5] proved that if edge lengths
are uncertain, then the problem is strongly NP-hard on general networks, even if there is
no uncertainty in node weights. Vairaktarakis and Kouvelis[34] studied the minmax regret
1-median problem on a tree that combines dynamically evolving and uncertain parameters.
An approach that combines the Pareto-optimality concept and the minmax regret criterion
was considered in Fernandez et al.[19].
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Minmax regret center location problems on networks have also been studied in the lit-
erature. Averbakh and Berman[8] showed that the interval data minmax regret weighted
1-center problem ispolynomially solvableon treeswhenbothnodeweights andedge lengths
are uncertain. General results on MRO problems with a minimax type of objective func-
tion [3] imply that when only node weights are uncertain, the interval data minmax regret
weightedp-center problem and the multicenter problem with mutual communication are
polynomially solvable on any type of a network where their classical versions (i.e. without
uncertainty) are polynomially solvable. Complexity orders of the corresponding algorithms
can be found in[3]. However, Averbakh[5] proved that if edge lengths are uncertain, the
minmax regret 1-center problem is strongly NP-hard on general networks.
In this paper, we study the interval data minmax regret single-facility location problems

(the 1-median and the weighted 1-center problems) on a plane. Our main results correspond
to the caseof rectilinear distances,whereweconsider uncertainty both in theweights and the
coordinates of customers. For the minmax regret rectilinear 1-median problem, which can
be formulated as a linear programming problem with O(n) variables and O(n3) constraints,
we present an O(n2 log2 n) algorithm. For the minmax regret rectilinear weighted 1-center
problem, we present an O(n log n) algorithm. We also consider the problems for the case
of Euclidean distances with uncertainty only in node weights. We discuss possibilities of
solving approximately the minmax regret Euclidean 1-median problem, and present an
O(n22�(n) log2 n) algorithm for solving the minmax regret Euclidean weighted 1-center
problem, where�(n) is the inverse Ackermann function.

2. Definitions and problem statement

Let C be a set ofn customers located on the planeR2. The location of each customer
c ∈ C is a pointvc = (ac, bc) ∈ R2. Each customerc ∈ C has an associated positive
weightwc. Weightswc and coordinatesac, bc are not known; instead, for any customer
c ∈ C valuesw−

c , w
+
c , a

−
c , a

+
c , b

−
c , b

+
c such thata−

c �a+
c , b

−
c �b+

c , 0<w−
c �w+

c are
known, and it is known thatw−

c �wc�w+
c , a

−
c �ac�a+

c , b
−
c �bc�b+

c . We can assume
thatwc, ac, bc are random variables with unknown distributions and can take on any values
in the corresponding intervals of uncertainty[w−

c , w
+
c ], [a−

c , a
+
c ], [b−

c , b
+
c ]. The location

vc of a customerc ∈ C belongs to the “rectangle of uncertainty” �c with cornerpoints
(a−

c , b
−
c ), (a

−
c , b

+
c ), (a

+
c , b

+
c ), (a

+
c , b

−
c ).

A natural motivation for modeling uncertain customers’ locations by means of rectangles
of uncertainty in the case of rectilinear distances is as follows. Rectilinear metric is usually
used for modeling transportation in urban environment (“Manhattan metric”). At the time
of choosing a location for the facility, the only available information about locations of
customers may be that they belong to some specific districts (say, between certain streets
and certain avenues). Or, the whole districts may be considered as (global) customers in a
multi-level supply chain, with the assumption that there will be local distribution centers
(e.g., retailers) in the district that will serve the (local) customers from the districts; the
(upper-level) facility to be located (e.g., a warehouse) would be used to supply goods to
the local distribution centers. If the locations of the local distribution centers have not been
specifiedby the timewhena location for theupper-level facility shouldbechosen, it is natural
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to model them by means of rectangles of uncertainty. In the case of the Euclidean metric, it
is more difficult to find a natural way to model uncertain locations of customers; therefore,
for the Euclidean case (considered in Sections 5 and 6), we consider only uncertainty in
customers’ weights.
Let us introduce the following notation:vSWc = (a−

c , b
−
c ), v

NW
c = (a−

c , b
+
c ), v

NE
c =

(a+
c , b

+
c ), v

SE
c = (a+

c , b
−
c ) (SW, NW, NE, andSE stand for South–West, North–West,

North–East, and South–East, respectively). LetS be the Cartesian product of intervals
[w−

c , w
+
c ], [a−

c , a
+
c ], [b−

c , b
+
c ], c ∈ C. Any s ∈ S is called ascenarioand represents a pos-

sible assignment of weights and location coordinates to customers,s={w(s)
c , a

(s)
c , b

(s)
c | c ∈

C}; then v(s)c = (a
(s)
c , b

(s)
c ) is the location of customerc under scenarios. For an� ∈

{NW,NE, SE, SW }, letS� denote the set of scenarios{s ∈ S | v(s)c =v�
c for all c ∈ C}. In

the remainder of the paper, we use the notationA={NW,NE, SE, SW }. LetVdenote the
set{v�

c | � ∈ A, c ∈ C} (i.e.V is the set of cornerpoints of the rectangles of uncertainty).
For any� ∈ A, let V � = {v�

c | c ∈ C}. For any pointsx, y ∈ R2, let d(x, y) denote the
distance betweenx andy; in this paper, we consider Euclidean and rectilinear distances.
For any pointg ∈ R2, x1(g) andx2(g) will denote the first and the second coordinates of
g, respectively. A straight line inR2 with slope 1 (with slope−1) will be called apositive
(negative) diagonal line.
For any pointx ∈ R2, the vertical and horizontal straight lines that go throughxdivide the

plane into four quadrants (points of the boundary of a quadrant also belong to the quadrant,
so there are points that belong to more than one quadrant). We will call them North–West
(NW), North–East (NE), South–East (SE), and South–West (SW) quadrants forx, with the
natural correspondence between the names and the quadrants (e.g., the quadrant above and
to the right ofx is the NE-quadrant forx).
For a scenarios ∈ S, s = {w(s)

c , a
(s)
c , b

(s)
c | c ∈ C} and a pointx ∈ R2, let us define

F1(s, x)=
∑
c∈C

w(s)
c d(v(s)c , x), F2(s, x)=max

c∈C w(s)
c d(v(s)c , x).

That is,F1(s, x) (F2(s, x)) is the sum (maximum) of weighted distances betweenx and
the customers fromC with weightsw(s)

c , c ∈ C and locationsv(s)c , c ∈ C defined by the
scenarios. Suppose that we want to choose a locationx for a facility using the objective of
minimizing a functionF(s, x). In this paper, we consider only the casesF(s, x)=F1(s, x)

andF(s, x)= F2(s, x). If we know the real scenarios, then we have the problem

Problem OPT(s). Minimize {F(s, x)|x ∈ R2}.

In the caseF(s, x)=F1(s, x), ProblemOPT(s) is the classical 1-median problemandwill
be called Problem MED(s); in the caseF(s, x)=F2(s, x), Problem OPT(s) is the classical
weighted 1-center problem and will be called Problem CEN(s). An optimal solution to
Problem MED(s) (Problem CEN(s)) is called a 1-median (1-center) for scenarios. Let
F ∗(s) denote the optimal objective function value for Problem OPT(s).
If the real scenario is unknown but only the boundsw−

c ,w
+
c , a

−
c , a

+
c , b

−
c , b

+
c for weights

and coordinates of customers are available, different solution criteria for choosing a location
for the facility are possible. The criterion used in this paper is to minimize the worst-case
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regret associated with the chosen location. Here, regret is the difference between the objec-
tive function value that corresponds to the chosen location and theoptimal objective function
value (under the realized scenario); the worst-case regret corresponds to the scenario that
achieves the maximum regret for the chosen location.
Specifically, the worst-case regret associated with a locationx ∈ R2 is given by the

following subproblem:

Subproblem MAXREGR(x).

Z(x)=max
s∈S max

y∈R2
{F(s, x)− F(s, y)}. (1)

For anyx, y ∈ R2, let us define value

REGR(x, y)=max
s∈S (F (s, x)− F(s, y)). (2)

Alternative ways to representZ(x) are

Z(x)=max
s∈S (F (s, x)− F ∗(s)), (3)

Z(x)= max
y∈R2

REGR(x, y). (4)

An optimal solution to the right-hand side of (3) is called aworst-case scenariofor x. An
optimal solution to the right-hand side of (4) is called aworst-case alternativefor x.
The following problem is considered in the paper:

Problem ROB. Findx ∈ R2 that minimizesZ(x).

LetX∗ denote the set of optimal solutions for Problem ROB. IfF(s, x) is convex for all
s ∈ S (as is the case for all problems considered in the paper, see, e.g.,[26]), thenZ(x) is
a convex function andX∗ is a convex set.
In the caseF(s, x) = F1(s, x) (F(s, x) = F2(s, x)), Problem ROB will be referred to

as Problem ROBMED (Problem ROBCEN). An optimal solution to Problem ROBMED
(Problem ROBCEN) is called arobust1-median(robust1-center).
Notice that ProblemOPT(s) is a special case of Problem ROB (corresponding to the case

whereSconsists of a single scenario, i.e.a−
c =a+

c , b
−
c =b+

c ,w
−
c =w+

c for all c ∈ C). To get
a better intuition about the minmax regret problem, the following interpretation is useful.
For an�>0 and a scenarios, anx ∈ R2 is called an�-optimal solution to ProblemOPT(s) if
F(s, x)−F ∗(s)��. LetX�(s) denote the set of all�-optimal solutions to Problem OPT(s).
One can look for a solution that is�-optimal (for a given�>0) for all possible scenarios,
that is, to look for anx ∈ ⋂

s∈SX�(s). For some values of� such a solution exists, but for
some (smaller) values of� such a solution may not exist, because solutions good for one
scenario may be bad for some other scenarios. Then, the solutionx∗ obtained by solving
Problem ROB will be�-optimal for all scenarioss ∈ S for any ��Z(x∗); also, for any
�<Z(x∗) we have

⋂
s∈SX�(s)= ∅. So, valueZ(x∗) has the interpretation of the minimum

possible� such that there exists a solution which is�-optimal for Problem OPT(s) for all
scenarioss ∈ S; this value can be used as a measure of degree of uncertainty.
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A setS′ ⊂ S of scenarios is calledlocally sufficient forx ∈ R2 if valueZ(x) does not
change if we replace in (3) maximization overSwith maximization overS′. A setS′ ⊂ S

of scenarios is calledglobally sufficientif it is locally sufficient for allx ∈ R2.

Observation. If a set of scenariosS′ contains a worst-case scenario forx ∈ R2, thenS′ is
locally sufficient forx.

3. Rectilinear median

Suppose that distancesare rectilinear (i.e. for anyx=(x1, x2) ∈ R2 andy=(y1, y2) ∈ R2,
d(x, y)=|x1− y1|+ |x2− y2|) andF(s, x)=F1(s, x). In Section 3.1, we study properties
of ProblemROBMED that allow us to consider only a relatively small number of “efficient”
scenarios; namely, we show that O(n3) scenarios define completely the objective function
Z(x) for all x, and O(n2) scenarios define the value ofZ(x) for a specificx. Based on these
properties, in Section 3.2 we develop a linear programming formulation of the problemwith
O(n) variables andO(n3) constraints. This formulation is not attractive computationally for
large values ofn, so in Section 3.3 we develop a specialized algorithm for solving Problem
ROBMED with complexity O(n2 log2 n). The general idea of the algorithm is as follows.
We identify two rectangular grids (one grid consists of lines parallel to the coordinate axes,
the other grid consists of positive and negative diagonal lines) with the following property:
Problem ROBMED restricted to the intersection of a cell of the first grid with a cell of the
second grid can be solved in O(n2) time. Then, using convexity of the objective function,
we perform binary search on the lines of the grids to identify optimal cells (i.e. cells that
contain an optimal solution). The nontrivial part is to perform the binary search in almost
quadratic time given that there are O(n3) lines in the grids. Using special properties of
the problem and the “search using sorted matrices” technique from theoretical computer
science, we perform the binary search in O(n2 log2 n) time.

3.1. General properties

LetH be the convex hull of the setV.

Lemma 1. There is an optimal solution to Problem ROBMED that belongs to H.

Proof. Consider an optimal solutionx to ProblemROBMED. Supposex /∈H . Let lv (lh) be
the vertical (horizontal) straight line throughx. The linelv must have common points with
H (otherwise,x could be shifted horizontally towardsH so thatF1(s, x)would decrease for
anys ∈ S, which would contradict optimality ofx for Problem ROBMED). Using the same
argument, we can show that the linelh must have common points withH. To be specific,
suppose thatlh intersectsH to the left ofx, andlv intersectsH abovex (other possible cases
can be considered in an exactly similar way), seeFig. 1. Let ld be the negative diagonal line
throughx, and letxH be the point ofld ∩H closest tox. It follows from convexity ofH that
there are no points ofH in the interior of the SE quadrant forxH . Therefore, movingx to
xH will not increase valueF(s, x) for anys ∈ S, and, therefore, will not destroy optimality
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Fig. 1. Illustration for the proof of Lemma 1.

of x for Problem ROBMED. Thus,xH is also an optimal solution for Problem ROBMED.
This proves the lemma.�

The following observation will be used later to identify a relatively small globally suffi-
cient set of scenarios.

Lemma 2. For anyx ∈ R2, there exists a worst-case scenario s for x such thats ∈ S� for
some� ∈ A.

Proof. Let x ∈ R2 be fixed, and suppose thats′ ∈ S is a worst-case scenario forx.
(Existence of a worst-case scenario follows from compactness ofSandH.) Let y ∈ R2

be a 1-median for the scenarios′. Theny is a worst-case alternative forx, andZ(x) =
REGR(x, y)= F(s′, x)− F(s′, y).
Suppose thatybelongs to the�-quadrant forx for some� ∈ A. If we change the scenario

s′ by moving the location of each customerc ∈ C to v�
c without changing the weight of the

customer, valueF(s′, x)−F(s′, y)will not decrease. Then, for the scenarios′′ ∈ S� that we
obtain in this way,F(s′′, x)−F ∗(s′′)�F(s′′, x)−F(s′′, y)�F(s′, x)−F(s′, y)=Z(x).
SinceF(s′′, x)− F ∗(s′′)�Z(x), we have thatF(s′′, x)− F ∗(s′′)= Z(x) ands′′ is also a
worst-case scenario forx. The lemma is proven.�

For any� ∈ A and anyx, y ∈ R2, let s�(x, y) denote the scenarios ∈ S� such that for
anyc ∈ C

w(s)
c =

{
w−
c if d(x, v�

c )�d(y, v�
c ),

w+
c if d(x, v�

c )> d(y, v�
c ).

(5)

Let S�
1 = {s ∈ S� | there existx, y ∈ R2 such thats = s�(x, y)}, S1 = ⋃

�∈AS�
1.

Lemma 3. For anyx ∈ R2, there exists a worst-case scenario s for x such thats ∈ S1.

Proof. Let x ∈ R2 be fixed. Then, according to Lemma 2, for some� ∈ A there exists
s′ ∈ S� such thats′ is a worst-case scenario forx. Lety ∈ R2 be a 1-median for the scenario
s′. ThenZ(x) = REGR(x, y) = F(s′, x) − F(s′, y). ValueF(s′, x) − F(s′, y) will not
decrease ifs′ is replaced withs�(x, y). Therefore,s�(x, y) is also a worst-case scenario
for x. �
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Corollary 1. SetS1 is globally sufficient.

Proof. The statement follows immediately from the definition of a globally sufficient set
and Lemma 3. �

Lemma 4. |S1| =O(n3).

Proof. To prove the lemma, it is sufficient to prove that|S�
1 | = O(n3) for any � ∈ A.

Suppose that an� ∈ A is fixed. For anyx, y ∈ R2, let us define the setR2(x, y) = {g ∈
R2 | d(x, g)> d(y, g)}. The boundary of the open setR2(x, y) consists of segments of
at most three straight lines. Each of these lines is either parallel to a coordinate axis, or
is a (positive or negative) diagonal line. These lines will be calledboundary linesfor
R2(x, y). For each boundary linel for R2(x, y), its normal vectoris defined as the unit
vector orthogonal tol and pointing outside ofR2(x, y). Notice that the boundary lines
along with their normal vectors uniquely define the setR2(x, y). Notice also that the set
V � ∩ R2(x, y) will not change ifR2(x, y) is extended by shifting each boundary line that
does not contain points ofV � in the direction of its normal vector until it hits a point from
V �. Thus, each possible setV � ∩R2(x, y) is uniquely defined by a choice of at most three
lines going through points ofV � andmaking angles of(�/4)i, i=0,1,2,3with coordinate
axis, and a choice of one of the two possible normal vectors for each of these lines. The
statement of the lemma follows immediately.�

LetG1 be the grid obtained by drawing all possible vertical and horizontal lines through
pointsv ∈ V , and letN(G1) be the set of nodes of that grid. Clearly|N(G1)| =O(n2). Let
G1v (G1h) denote the set of vertical (horizontal) lines of gridG1.
For any� ∈ A, let S�

2 be the set of scenarioss ∈ S such thats = s�(x, y) for some
x ∈ R2 andy ∈ N(G1); let S2 = ⋃

�∈AS�
2. ClearlyS

�
2 ⊂ S�

1, � ∈ A andS2 ⊂ S1, therefore
|S2| =O(n3).

Lemma 5. SetS2 is globally sufficient.

Proof. The proof is similar to the proof of Lemma3, taking into account that for anys ∈ S�,
� ∈ A, there is a 1-median for the scenarios that belongs toN(G1) [26]. �

For anyx ∈ R2 and� ∈ A, let us defineS�
2(x) = {s�(x, y) | y ∈ N(G1)}, S2(x) =⋃

�∈AS�
2(x). For any� ∈ A, let S∗

�(x) = {s�(x, y) | y ∈ N(G1), y is a 1-median for the
scenarios�(x, y)}. Let S∗(x)= ⋃

�∈AS∗
�(x). The following result is obvious:

Lemma 6. For anyx ∈ R2, the set of scenariosS∗(x) is locally sufficient for x.

Observe that the setS∗(x) has cardinality O(n2) (because|S2(x)| =O(n2) andS∗(x) ⊂
S2(x)).

3.2. Linear programming formulation

Let us show how to formulate Problem ROBMED as a linear programming problem if
some finite globally sufficient setS′ ⊂ S1 of scenarios is known. The linear program will
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haveO(n) variables andO(|S′|+n) constraints; also, to write down the linear programming
problem, one would have to obtain valuesF ∗(s) for all s ∈ S′.
Suppose thatS′ ⊂ S1 is a finite globally sufficient set of scenarios. Then for any specific

scenarios ∈ S′,F(s, x) is a convex piecewise linear function (as a two-variable function of
the two coordinates ofx), and according to (3)Z(x) is a convex piecewise linear function
as well. For anyx = (x1, x2) ∈ R2 and anys ∈ S, valueF(s, x) can be written as

F(s, x)=min

{∑
c∈C

ysc | ysc �w(s)
c d(v(s)c , x), c ∈ C

}
,

whereysc ,c ∈ C are real variables. (Observe that in anoptimal solution to theaboveproblem,
the inequalities inside the brackets of the minimization operator will hold as equalities.)
Thus, taking into account (3), we have the following optimization problem to computeZ(x):

Z(x)=min

{
z|z�

∑
c∈C

ysc −F ∗(s), s ∈ S′; ysc �w(s)
c d(v(s)c , x), c ∈ C, s ∈ S′

}
.

Since for anys ∈ S1 and anyc ∈ C, weightw(s)
c is equal to eitherw+

c orw−
c andv(s)c = v�

c

for some� ∈ A, it is sufficient to use only 8n y-variablesy�+
c , y�−

c , � ∈ A, c ∈ C and to
write Problem ROBMED as

minimize z, (6)

z�
∑
c∈C

ysc − F ∗(s), s ∈ S′, (7)

y�+
c �w+

c d(v
�
c , x), y

�−
c �w−

c d(v
�
c , x), c ∈ C, � ∈ A, (8)

x ∈ R2; z, y�+
c , y�−

c —real variables, c ∈ C, � ∈ A, (9)

whereysc=y�+
c (ysc=y�−

c ) if w(s)
c =w+

c (w(s)
c =w−

c ) andv
(s)
c =v�

c . Since for anyx=(x1, x2) ∈
R2 and anyv = (av, bv) ∈ R2, d(v, x) = |x1 − av| + |x2 − bv| = max{x1 − av + x2 −
bv, x1−av −x2+bv,−x1+av +x2−bv,−x1+av −x2+bv}, each of constraints (8) can
be written as four linear constraints; for example, instead ofySW+

c �w+
c d(v

SW
c , x) we will

writeySW+
c �w+

c (x1−a−
c +x2−b−

c ), y
SW+
c �w+

c (x1−a−
c −x2+b−

c ), y
SW+
c �w+

c (−x1+
a−
c + x2 − b−

c ), y
SW+
c �w+

c (−x1 + a−
c − x2 + b−

c ). Then, (6)–(9) will become a linear
programming problem with|S′| + 32n constraints and 8n + 3 variablesy�+

c , y�−
c , c ∈

C, � ∈ A, x1, x2, z.
Solving Problem ROBMED via the linear programming formulation (6)–(9) does not

seem to be computationally attractive for large values ofn because of the size of the linear
programming problem: ifS1 orS2 is used asS′, then (6)–(9) hasO(n3) constraints andO(n)
variables. In the remainder of the section, we develop an algorithm that solves Problem
ROBMED in O(n2 log2 n) time.
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Fig. 2. An illustration forQ(v, g).

3.3. AnO(n2 log2n) algorithm

For anyv ∈ V andg ∈ N(G1), consider the setQ(v, g)= {x ∈ R2 | d(v, x)= d(v, g)}.
SetQ(v, g) is the boundary of the “diagonal” square with the center atv, point g on its
boundary, and sides making angles+�/4 or −�/4 with the coordinate axes, seeFig. 2.
Consider the setG2 of all straight lines that contain sides of squaresQ(v, g), v ∈ V ,
g ∈ N(G1);G2 forms a diagonal rectangular grid with|G2|=O(n3) lines and O(n6) cells.
LetG2+ (G2−) denote the set of positive (negative) diagonal lines of the gridG2.

Lemma 7. If two pointsx′ andx′′ can be connected by a continuous curve in the plane
that does not have common points with sides of squaresQ(v, g), v ∈ V , g ∈ N(G1), then
S∗(x′)= S∗(x′′).

Proof. Observe that for anyy ∈ N(G1) and any� ∈ A, when x is moving along a
continuous curve, scenarios�(x, y) can change only whenx is crossing a side of the square
Q(v�

c , y) for somec ∈ C. (This follows directly from the definitions.) The statement of the
lemma follows immediately. �

Corollary 2. For any cell of gridG2, setS∗(x) is the same for all interior points x of
the cell.

Notice also that for any cell of gridG1, functionF(s, x) is linear inside the cell for any
s ∈ S2.

Lemma 8. For anyx ∈ R2, values of all functionsF(s, x) − F ∗(s), s ∈ S∗(x), and their
directional derivatives at x in a given direction can be computed inO(n2) total time.

Proof. See the appendix.�

Lemma 9. ProblemROBMED restricted to the intersection of a cell of gridG1 with a cell
of gridG2 can be solved inO(n2) time.
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Proof. LetA be the intersection of a cell of gridG1 with a cell of gridG2. If A does not
have interior points, thenA is a point (A cannot be a line segment because no line of grid
G1 is parallel to any line of gridG2), and the statement of the lemma is trivial. Suppose that
A has interior points. Letx′ be an interior point ofA. Then for any other interior pointx
ofA,

Z(x)= max
s∈S∗(x′)

(F (s, x)− F ∗(s)) (10)

(according to Corollary 2 and Lemma 6). Eq. (10) holds also for any pointxon the boundary
of A (because of continuity ofZ(x)). Therefore, Problem ROBMED restricted toA can
be formulated as

minimize
z∈R, x∈A

{z | z�F(s, x)− F ∗(s), s ∈ S∗(x′)}. (11)

SinceA is a subset of a cell of gridG1, functionsF(s, x) − F ∗(s), s ∈ S∗(x′) are linear
functions ofx onA, and according to Lemma 8 coefficients of these linear functions can
be obtained in O(n2) time. Eq. (11) is a linear programming problem with 3 variables and
O(n2) constraints; therefore, it can be solved in O(n2) time [28]. �

Finding the valueZ(x) at a pointx ∈ R2 and the directional derivative ofZ(x) at x in
some specified direction (or in a fixed number of specified directions) will be called apoint
testatx.

Theorem 1 (Complexity of the point test). For anyx ∈ R2, valueZ(x) and the directional
derivatives ofZ(x) at x in a fixed number of directions can be computed inO(n2) time.

Proof. ValueZ(x) can be obtained by taking the maximum of valuesF(s, x) − F ∗(s),
s ∈ S∗(x), that can be computed in O(n2) time according to Lemma 8.
Suppose a directionr ∈ R2 is fixed. According to Lemma 8, directional derivatives of

functionsF(s, x) − F ∗(x), s ∈ S∗(x) at x in the directionr can be computed in O(n2)
time. If none of the points ofN(G1) is a change point (the definition of a change point
was given in the proof of Lemma 8), then the setS∗(x) does not change for sufficiently
small variations ofx, and the directional derivative ofZ(x) at x in the directionr is the
maximum of directional derivatives of functionsF(s, x) − F ∗(s) at x in the directionr,
where the maximum is taken overs ∈ S∗(x) such thatF(s, x) − F ∗(s) = Z(x), and thus
can be computed in O(n2) time. If some points ofN(G1) are change points, the situation
is slightly more complicated because the setS∗(x) may change for small variations ofx.
However, this difficulty can easily be avoided if we modify (5) as follows:

w(s)
c =

{
w+
c if d(x+�r, v�

c )> d(y, v�
c ) for all sufficiently small positive values of�,

w−
c otherwise,

keeping all other definitions as before. Clearly, all previous results will still hold after this
change; but now setS∗(x) does not change after sufficiently small shifts ofx in the direction
r, and therefore the directional derivative ofZ(x) in the directionr can be obtained from the
directional derivatives of functionsF(s, x)− F ∗(s), s ∈ S∗(x), as described above.�
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We will also use aline testwhich for a straight lineL checks whether or notL contains
an optimal solution to Problem ROBMED. In the former case, the line test finds an optimal
solution to Problem ROBMED that belongs toL; in the latter case, the line test finds on
which side fromL the setX∗ of optimal solutions to Problem ROBMED is. The details and
the complexity of the line test will be discussed later.
The gridsG1 andG2 are composed of four groups of parallel linesG1h,G1v,G2−,G2+.

As follows from Lemma 1 and from convexity of the setX∗, for each of the four groups of
parallel linesG1h,G1v,G2−,G2+ either there is a line of the group that contains a point
from X∗, or all points ofX∗ lie in the strip between some two consecutive lines of the
group. (Two lines of a group are calledconsecutiveif there are no other lines of the group
between them.)
Our approach to solving Problem ROBMED will be as follows. For each one of the four

groups of parallel linesG1h,G1v,G2−,G2+, we perform agroup searchthat either finds
a line of the group that contains an optimal solution to Problem ROBMED, or finds two
consecutive lines of the group such that the set of optimal solutionsX∗ is in the strip between
them. The group search is performed using binary search on the lines of the group based
on the line test. If at least one of the lines of gridsG1,G2 has common points withX∗, an
optimal solution to Problem ROBMED will be found at this stage; otherwise, the optimal
cells (containingX∗) of gridsG1 andG2 will be found at this stage. Given the optimal
cells, an optimal solution to Problem ROBMED can be found in O(n2) time according to
Lemma 9.
From this description, we see that we need to conduct the line test only for lines of grids

G1 andG2. We will see that the line test for lines of gridsG1 andG2 can be performed
in O(n2 log n) time, and using the line test, the binary search over the lines of each of the
groupsG1h,G1v,G2−,G2+ can be performed in O(n2 log2 n) time, which will result in
the overall complexity of O(n2 log2 n) for Problem ROBMED.
Now let us discuss how to perform the line test for lines of gridsG1 andG2. Consider a

lineL fromoneof thegrids. LetProblemROBMED(L) denoteProblemROBMED restricted
to the lineL (that is, in Problem ROBMED(L) it is required to minimize functionZ(x) over
the lineL). LetX∗(L) be the set of optimal solutions to Problem ROBMED(L). Function
Z(x) is convex; if we solve Problem ROBMED(L) and find a pointx∗

L ∈ L that minimizes
functionZ(x) overL, then the point test atx∗

L will either discover thatx∗
L is an optimal

solution to (unrestricted) Problem ROBMED, or will discover on which side fromL the set
X∗ of optimal solutions to Problem ROBMED is. Thus, the line test has been reduced to
solving Problem ROBMED(L).
SetX∗(L) is convex because of convexity ofZ(x). An open interval ofL that contains

all points ofX∗(L) is called alocalization interval. (Below, all intervals are assumed to be
open unless stated otherwise.) Notice that there are O(n3) intersection points of the lineL
with other lines of gridsG1 andG2 (further calledcritical points).

Lemma 10. Given a localization interval that does not contain any critical points,Problem
ROBMED(L) can be solved inO(n2) time.

Proof. If a localization interval does not contain any critical points, then the localization
interval belongs to the intersection of a cell of gridG1 with a cell of gridG2, and therefore
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according to the proof of Lemma 9 Problem ROBMED(L) can be formulated as a linear
programming problemwithO(n2) constraints and 3 variables, which can be solved inO(n2)

time [28]. �

A straightforward way to solve Problem ROBMED(L) is as follows. Obtain all O(n3)
critical points and sort them; this takesO(n3 log n) time. SinceZ(x) is convex, the point test
at a pointxof the lineL allows to determine whetherx is optimal for ProblemROBMED(L),
and if not, onwhich side fromx the setX∗(L) of optimal solutions to ProblemROBMED(L)
is. Using binary search over the critical points and applying the point test atO( log n) critical
points, we can find in O(n2 log n) time a localization interval that does not contain critical
points (or find an optimal solution to Problem ROBMED(L) if there is a critical point in
X∗(L)). Then an optimal solution to Problem ROBMED(L) can be found in O(n2) time
according to Lemma 10.
The straightforward approach described above conducts the line test in O(n3 log n) total

time; the bottleneck of complexity is finding explicitly and sorting the critical points. It
is possible to improve the order of complexity of the line test to O(n2 log n) (instead of
O(n3 log n)) by exploiting special structure of the set of critical points, which allows to
avoid obtaining explicitly and sorting this set. To reduce the order of complexity, we need
to be able to do binary search over the critical points without explicitly generating all of
them. Let us discuss the corresponding modification of the line test. We will need some
auxiliary lemmas.
The following lemma is obvious (given the previous discussion) but we state it explicitly

for reference purposes.

Lemma 11. For any given set M of points of L with cardinalityO(n2), it is possible to
find inO(n2 log n) time a localization interval that does not contain any points of M if
M does not have common points withX∗(L), or to find an optimal solution to Problem
ROBMED(L) if M ∩X∗(L) is not empty.

The following lemma is the main tool for our algorithm.

Lemma 12. Suppose that there is a real matrixM = ‖mij‖ with k1 rows andk2 columns
such that the entries in each row are nondecreasing from left to right and the entries in each
column are nonincreasing from top to bottom.(Such a matrix will be calledsorted.)The
entries of M may be unknown, but we assume that given a row index i and a column index
j, the entrymij can be found inO(1) time. For any two real numbersa, b, a�b, let r(a, b)
denote the number of entries of M that are contained in the open interval(a, b). Suppose
that two numbersq−, q+, q− <q+ are given. Then it is possible to find inO(k1 + k2) time
a numberq̂ such thatq− � q̂�q+ andr(q−, q̂)� 3

4r(q−, q+), r(q̂, q+)� 3
4r(q−, q+).

Proof. The result of the lemma can be obtained using the standard “search using sorted
matrices” technique[1,20]; details can be found in[6]. �

Lemma 13. Suppose that a matrix M is as in the statement of the previous lemma with
k1 = O(n2) and k2 = O(n2). If L is considered as a number line, and if the entries of M
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represent points on the line L(i.e., each entrymij of M represents the point of L that ismij

units away from the origin in the positive direction), then it is possible to find inO(n2 log n)
time a localization interval that does not contain any entries of M(or to find an optimal
solution to ProblemROBMED(L) if the intersection of M andX∗(L) is not empty).

Proof. Using the result of the previous lemma and the point test, we can organize binary
search so that at every iteration the number of entries ofM that are contained in the current
localization interval is reduced at least by factor3

4, and each iteration takes O(n
2) time. The

statement of the lemma follows immediately.�

To solve Problem ROBMED(L) in O(n2 log n) time, we will use the following idea.We
will identify several finite sets of points of the lineL (calledcovering sets) that have the
following properties:

(1) Together, they “cover” the set of critical points, that is, each critical point belongs to at
least one of the covering sets.

(2) Each covering set either has cardinality O(n2), or it can be represented as a sortedmatrix
M with O(n2) rows and columns.

Then, according to Lemmas 11 and 13, for each covering set we can find in O(n2 log n)
time a localization interval that does not contain elements of the covering set (or to find an
optimal solution toProblemROBMED(L) if there isone in thecoveringset).The intersection
of the localization intervals corresponding to the covering sets will give us a localization
interval that does not contain any critical points; then, we can apply Lemma 10.
For any pointg ∈ N(G1), let l′(g) (l′′(g)) denote the positive (negative) diagonal line

that goes throughg. LetKL denote the set of critical points. In the following, a common
point of two straight lines is called theirpoint of intersectionif the lines arenonparallel;
that is, two lines that coincide are not considered to have points of intersection.
Consider the following sets of points of the lineL. SetJ1 (J2, J3, J4, respectively) is the

set of points of intersection ofL with the lines symmetrical to the linesl′(g), g ∈ N(G1)

about the vertical (horizontal, positive diagonal, negative diagonal, respectively) lines that
go through pointsv ∈ V , seeFig. 3. SetJ5 (J6, J7, J8, respectively) is the set of points
of intersection ofL with the lines symmetrical to the linesl′′(g), g ∈ N(G1), about the
vertical (horizontal, positive diagonal, negative diagonal, respectively) lines that go through
pointsv ∈ V . Observe thatJ4 (J7) is the set of points of intersection of the lineL with the
lines l′(g), g ∈ N(G1) (with the linesl′′(g), g ∈ N(G1)). SetJ9 is the set of points of
intersection ofL with the lines of gridG1.
Observe thatKL ⊂ ⋃9

i=1Ji , because any line of gridG2 is symmetrical to eitherl′(g)
or l′′(g) for someg ∈ N(G1) about either vertical, or horizontal, or positive diagonal, or
negative diagonal line going through somev ∈ V . We consider separately the cases where
L belongs to gridG1 and where it belongs to gridG2.
Case1: Line L belongs to gridG1. Suppose thatL is horizontal (the case of a vertical

lineL is analogous).We will considerL as a number line with the positive direction defined
by vector (1,0). Observe that|J9| = O(n), |J4| = O(n2), |J7| = O(n2), |Ji | = O(n3), i =
1,2,3,5,6,8. SinceJ4, J7, andJ9 satisfy the condition of Lemma 11, we can obtain
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Fig. 3. An illustration for the setJ1.

in O(n2 log n) time localization intervals that do not contain any points ofJ4, J7, J9.
According to the previous discussion, it remains to show that each one of the setsJi, i =
1,2,3,5,6,8 can be represented as a matrixM satisfying the conditions of Lemma 13.
Consider setJ1. For anyv ∈ V andg ∈ N(G1) let y′

vg denote the point of intersection
of L with the line symmetrical to linel′(g) about the vertical line going throughv. Then
J1 = {y′

vg, v ∈ V, g ∈ N(G1)}. Sort the pointsg ∈ N(G1) in the order of nonincreasing
values ofx1(g) − x2(g), and sort the pointsv ∈ V in the order of nonincreasing values
of their first coordinatesx1(v) (this can be done in O(n2 log n) time because|C| = n and
|N(G1)| =O(n2)). Then the matrixM = ‖y′

vg‖ satisfies the conditions of Lemma 13.
Consider setJ2. For anyv ∈ V andg ∈ N(G1), let y′′

vg denote the point of intersection
of L with the line symmetrical to linel′(g) about the horizontal line going throughv. Then
J2 = {y′′

vg, v ∈ V, g ∈ N(G1)}. Sort the pointsg ∈ N(G1) in the order of nondecreasing
values ofx1(g) − x2(g), and sort the pointsv ∈ V in the order of nonincreasing values
of their second coordinatesx2(v). Then the matrixM = ‖y′′

vg‖ satisfies the conditions of
Lemma 13.
Consider setJ3. Foranyv ∈ V andg ∈ N(G1), lety′′′

vg denote thepoint of intersectionofL
with the line symmetrical to linel′(g) about the positive diagonal line going throughv. Then
J3 = {y′′′

vg, v ∈ V, g ∈ N(G1)}. Sort the pointsg ∈ N(G1) in the order of nonincreasing
values ofx1(g) − x2(g), and sort the pointsv ∈ V in the order of nonincreasing values of
x1(v)− x2(v). Then the matrixM = ‖y′′′

vg‖ satisfies the conditions of Lemma 13.
The cases of setsJ5, J6, andJ8 are clearly similar.
Thus, setsJi , i = 1, . . . ,9 are covering sets for the set of critical pointsKL, and the line

test forL can be conducted in O(n2 log n) time.
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Case2: LineL belongs to gridG2. Suppose that lineL is positive diagonal (the casewhere
L is a negative diagonal line is analogous). We will considerL as a number line with the
positive direction defined by vector (1,1). Observe that|J9| =O(n), J3= J4= J5= J6=∅,
|J7| =O(n2). According to the previous discussion, it remains to show that each one of the
setsJ1, J2, J8 can be represented as a matrixM satisfying the conditions of Lemma 13.
For anyv ∈ V andg ∈ N(G1), let y′

vg andy
′′
vg be defined as in Case 1.

Consider setJ1, J1 = {y′
vg, v ∈ V, g ∈ N(G1)}. Sort the pointsg ∈ N(G1) in the

order of nonincreasing values ofx1(g) − x2(g) and sort the pointsv ∈ V in the order of
nonincreasing values of their first coordinatesx1(v). Then the matrixM = ‖y′

vg‖ satisfies
the conditions of Lemma 13.
Consider setJ2, J2 = {y′′

vg, v ∈ V, g ∈ N(G1)}. Sort the pointsg ∈ N(G1) in the
order of nondecreasing values ofx1(g) − x2(g), and sort the pointsv ∈ V in the order of
nonincreasing values of their second coordinatesx2(v). Then thematrixM=‖y′′

vg‖ satisfies
the conditions of Lemma 13.
Consider setJ8. For anyv ∈ V andg ∈ N(G1), let y′′′′

vg denote the point of intersection
of Lwith the line symmetrical to linel′′(g) about the negative diagonal line throughv. Then
J8 = {y′′′′

vg , v ∈ V, g ∈ N(G1)}. Sort the pointsg ∈ N(G1) in the order of nonincreasing
values ofx1(g) + x2(g), and sort the pointsv ∈ V in the order of nonincreasing values of
x1(v)+ x2(v). Then the matrixM = ‖y′′′′

vg ‖ satisfies the conditions of Lemma 13.
Thus, setsJi, i = 1, . . . ,9 are covering sets for the set of critical pointsKL, and the line

test forL can be conducted in O(n2 log n) time.
We have proven

Theorem 2. The line test for a line fromgridG1orgridG2 canbeperformed inO(n2 log n)
time.

To obtain an algorithm for Problem ROBMEDwith the time complexity of O(n2 log2 n),
it remains to show that for each one of the groupsG1v,G1h,G2+,G2− it is possible to
perform the group search in O(n2 log2 n) time using the line test. This is clear for the
groupsG1v,G1h, because|G1h| = O(n), |G1v| = O(n), and the lines ofG1v (of G1h) can
be sorted in O(n log n) time; subsequent application of the standard binary search uses
O( log n) line tests and, therefore, takes O(n2 log2 n) time. The situation with the groups
G2+ andG2− is somewhatmorecomplicatedbecause|G2+|=O(n3), |G2−|=O(n3), andwe
cannot afford to obtain explicitly and sort the lines in the groups in order to perform binary
search. However, special structure of these groups allows us to avoid generating explicitly
and sorting all the lines of these groups. We use the same ideas (based on Lemmas 12 and
13) that allowed us to reduce complexity for the line test.
Consider, for example, groupG2+. LetG′

2+ be the set of positive diagonal lines that go
through the points ofN(G1), and letG′′

2+ be the set of lines symmetrical to the lines ofG′
2+

about the positive diagonal lines that go through the pointsv ∈ V . Clearly|G′
2+| =O(n2),

|G′′
2+| =O(n3),G2+ ⊂ (G′

2+ ∪G′′
2+).

The area between two parallel lines (not including the lines themselves) is called a
localization stripif it contains all points ofX∗. To perform the group search forG2+, we
need to either find a line that has a common point withX∗, or to find a localization strip
that does not contain any lines ofG2+.
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The lines ofG′
2+ can be ordered in O(n2 log n) time; then, applying the regular binary

search based on the line test, we can perform in O(n2 log2 n) time the group search forG′
2+,

that is, to find in O(n2 log2 n) time a localization strip that does not contain any lines of
G′
2+ (or to find a line ofG′

2+ that has common points withX∗).
It remains to perform the group search forG′′

2+ in O(n2 log2 n) time; then, either a line of
G2+ that contains a point ofX∗ will be found, or two localization strips that do not contain
lines fromG′

2+ andG′′
2+, respectively, will be found, and the intersection of these strips

will give a localization strip that does not contain lines fromG2+.
For anyv ∈ V andg ∈ N(G1), let lvg denote the line symmetrical to the positive

diagonal line that goes throughg about the positive diagonal line that goes throughv.
Then,G′′

2+ = {lvg | v ∈ V, g ∈ N(G1)}. Any positive diagonal line is uniquely defined
by the valuex1 − x2 for the points of the line (which is the same for all points of any
positive diagonal line). Therefore, lineslvg, v ∈ V, g ∈ N(G1) can be considered as real
numbers (equal to the corresponding values ofx1 − x2). Sort the pointsg ∈ N(G1) in the
order of nonincreasing values ofx1(g) − x2(g), and sort the pointsv ∈ V in the order of
nonincreasing values ofx1(v) − x2(v) (this can be done in O(n2 log n) time); then, the
matrixM = ‖lvg‖ satisfies the condition of Lemma 12 withk1 =O(n) andk2 =O(n2). So,
the group search forG′′

2+ can be performed in O(n2 log2 n) time using the binary search
technique discussed in the proof of Lemma 13 (where instead of the point test we use the
line test, which accounts for the additional logarithm in the order of complexity). Thus, the
group search forG2+ can be performed in O(n2 log2 n) time.
The case of groupG2− is completely analogous. We obtain

Theorem 3. ProblemROBMEDcan be solved inO(n2 log2 n) time.

4. Rectilinear center

In this section, we consider the case ofF(s, x) = F2(s, x) and rectilinear distances. In
Section 4.1, we consider the case where uncertainty is only in weights of customers (but not
in locations). First, we observe that it is sufficient to consider onlyn “efficient” scenarios.
Next, we observe that the problem decomposes into two one-dimensional problems, which
can be solved in linear time if all valuesF ∗(s) for then “efficient” scenarios are known.
Last, using computational geometry, we show that alln valuesF ∗(s) for the “efficient”
scenariosscan be computed in O(n log n) time, which results in O(n log n) algorithm for
Problem ROBCEN.
In Section 4.2, we consider the case of uncertainty in both weights and locations of

customers. The general logic in this case is rather similar to that of the previous case,
but details are much more complicated. First, we introduce an auxiliary problem without
uncertainty that is an extension of the standard weighted 1-center problem and can be
solved in O(n) time. Next, we show that if we have optimal objective values of 4n auxiliary
problems, then Problem ROBCEN can be formulated as a linear programming problem
with 3 variables and 16n constraints, and therefore can be solved in linear time. Last, using
computational geometry arguments and techniques, we show that the optimal objective
values of the 4n auxiliary problems can be obtained in O(n log n) total time, which results
in O(n log n) algorithm for Problem ROBCEN.
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4.1. Uncertain weights, certain locations

First, let us consider the case of uncertainty in weights without uncertainty in locations,
that is,a−

c = a+
c = ac, b−

c = b+
c = bc, vc = (ac, bc), c ∈ C, because this case will provide

useful insights, and the algorithm in this case is much simpler.
Let sc be the scenario that assigns weightw+

c to customerc and weightw−
c′ to any other

customerc′, and letS3 = {sc, c ∈ C}.

Lemma 14. (a) SetS3 is globally sufficient.
(b)Z(x)=maxc∈C{w+

c d(vc, x)− F ∗(sc)}.

Proof. Consider anx ∈ R2. Let {w′
c, c ∈ C} be the weights corresponding to a worst-

case scenarios′ for x, and lety′ ∈ R2 be an optimal solution to Problem CEN(s′). Let
c′ ∈ argmaxc∈C w′

cd(vc, x) (i.e. w
′
c′d(vc′ , x)�w′

cd(vc, x) for any c ∈ C). Observe that
d(vc′ , x)�d(vc′ , y′) (sincew′

c′d(vc′ , x) = F(s′, x)�F(s′, y′) = F ∗(s′)�w′
c′d(vc′ , y

′)).
Therefore, valueF(s′, x)−F(s′, y′) cannot decrease if we replace scenarios′ with scenario
sc′ . It cannot increase either, andy′ must be an optimal solution to Problem CEN(sc′ )
(otherwises′ cannot be a worst-case scenario forx). Therefore,sc′ is also a worst-case
scenario forx, which proves part (a). Now,Z(x) = F(sc′ , x) − F ∗(sc′) = w+

c′ d(vc′ , x) −
F ∗(sc′). Sincew+

c d(vc, x)− F ∗(sc)�Z(x) for anyc ∈ C, we have part (b) as well.�

Remark. The lemma is a direct corollary of the general results on MRO problems with a
minimax type of objective function from[3].

For convenience of presentation we will considerl∞ distances instead ofl1 distances, i.e.
we assume that for anyx = (x1, x2) andy = (y1, y2), d(x, y)=max{|x1 − y1|, |x2 − y2|}.
(We notice that if there is no uncertainty in locations, the case ofl1 distancesd(x, y) =
|x1−y1|+|x2−y2| can be reduced to the case ofl∞ distances by the change of coordinates
x′
1 = x1 + x2, x′

2 = x1 − x2.)
For anyx=(x1, x2), according toLemma14wehaveZ(x)=max{Z1(x1), Z2(x2)}, where

Z1(x1)=maxc∈C {w+
c (|x1− ac|)−F ∗(sc)}, Z2(x2)=maxc∈C{w+

c (|x2− bc|)−F ∗(sc)}.
If valuesF ∗(sc), c ∈ C are known, then Problem ROBCEN decomposes into two one-
dimensional problems: sinceZ1(x1) depends only onx1 andZ2(x2) depends only onx2, it
is sufficient to findx∗

1 that minimizesZ1(x1) andx∗
2 that minimizesZ2(x2), and the point

x∗ =(x∗
1, x

∗
2)will be an optimal solution to ProblemROBCEN. The problem ofminimizing

functionZi(xi), i=1,2, is the problemof finding aminmaxof 2n linear functionswhich can
be solved in O(n) time [28]. Therefore, having valuesF ∗(sc), c ∈ C, Problem ROBCEN
can be solved in O(n) time. Now it remains to find valuesF ∗(sc), c ∈ C efficiently.
Next, we show that all these values can be found in O(n log n) total time, which results in
O(n log n) time complexity for solving Problem ROBCEN in the case of no uncertainty in
locations.
We have that for anyx = (x1, x2) ∈ R2 ands ∈ S, F(s, x)=max{F ′(s, x1), F ′′(s, x2)},

whereF ′(s, x1)=maxc∈C {w(s)
c (|x1−ac|)}, F ′′(s, x2)=maxc∈C{w(s)

c (|x2−bc|)}. There-
fore, Problem CEN(s) decomposes into two one-dimensional problems;
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F ∗(s)=max{F ′(s), F ′′(s)}, where
F ′(s)= min

x1∈R
max
c∈C {w(s)

c (|x1 − ac|)}, F ′′(s)= min
x2∈R

max
c∈C {w(s)

c (|x2 − bc|)}. (12)

According to (12), each one ofF ′(s) andF ′′(s) is a minmax of 2n linear functions and
therefore can be found in O(n) time; however, we have to solve these problems forn
scenarios fromS3. We show that all valuesF ′(s), F ′′(s), s ∈ S3 can be obtained in
O(n log n) total time.
To be specific, consider obtaining valuesF ′(s), s ∈ S3 (the case of valuesF ′′(s), s ∈ S3

is completely similar). Consider scenarios− ={w−
c , c ∈ C} that sets all weights to be equal

to the corresponding lower bounds. Consider functionF−(x1)=maxc∈C {w−
c (|x1 − ac|)}.

The piecewise-linear nonnegative convex functionF−(x1) is the upper envelope of 2n linear
functions and therefore can be obtained in O(n log n) time [31] (it can be represented by
means of listing all its O(n) corner points in increasing order, along with the values of the
function at the corner points and the slopes of linear pieces). Letx−

1 be the point where
F−(x1) has its minimum value. Notice thatF ′(sc)=minx1∈R max{F−(x1), w+

c (|x1−ac|)}
becausew+

c (|x1 − ac|)�w−
c (|x1 − ac|) for anyx1.

Having obtained functionF−(x1), valueF ′(sc) can be found as follows. Findr− =
max{x1 |F−(x1)=w+

c (|x1−ac|), x1�ac}, r+=min{x1 |F−(x1)=w+
c (|x1−ac|), x1�ac}

(notice that it is possible thatr− = −∞ or r+ = +∞, if the corresponding equation has
no solutions). Valuesr− andr+ can be found in O( log n) time using binary search on the
corner points ofF−(x1). Now, if x−

1 ∈ [r−, r+], thenF ′(sc) = F−(x−
1 ); if x

−
1 /∈ [r−, r+],

thenF ′(sc) = min{F−(r−), F−(r+)}. So, having obtained functionF−(x1), valueF ′(sc)
can be found in O( log n) time for anyc ∈ C; therefore, all valuesF ′(sc), c ∈ C can be
found in O(n log n) time.
Wehave shown that ProblemROBCEN in the case of rectilinear distances and uncertainty

only in weights can be solved in O(n log n) time.

4.2. Uncertain weights and uncertain locations

Consider now the case of uncertainty in both weights and locations,a−
c �a+

c , b
−
c �b+

c ,

c ∈ C.We again considerl1 distancesd(x, y)=|x1−y1|+|x2−y2| for anyx=(x1, x2), y=
(y1, y2). (When locations of customers are uncertain, it is no longer true that the case ofl1
distances is equivalent to the case ofl∞ distances.) For any compact setU ⊂ R2 and any
point x ∈ R2, let us defined(x, U) = min{d(x, y) | y ∈ U}. Suppose that for eachc ∈ C,
a rectangleTc ⊂ R2 with sides parallel to the coordinate axes is fixed (in the following,
these rectangles will be either the rectangles of uncertainty�c or single points), and let
T = {Tc, c ∈ C}. For any pointx ∈ R2 and a vector of weightsW = {wc, c ∈ C}, let us
define

F̃ (x,W, T )=max
c∈C wcd(x, Tc)

That is,F̃ (x,W, T ) is the maximum of weighted distances fromx to the corresponding
rectanglesTc. Consider the following auxiliary problem
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Problem CEN1(W,T ). Findx ∈ R2 so as to minimizeF̃ (x,W, T ).
Problem CEN1(W,T ) is an extension of the standard weighted 1-center problem to the

case where customers are represented by rectanglesTc rather than points.
Since for anyc ∈ C, functiond(x, Tc) is the upper envelope of at most 9 linear functions

of x = (x1, x2), F̃ (x,W, T ) as a function ofx1, x2 is the upper envelope of at most 9n
linear functions of two variablesx1, x2; so, Problem CEN1(W,T ) can be written as a linear
programming problem with 3 variables and at most 9n constraints and solved in O(n) time
according to[28].

For any� ∈ A and c ∈ C, let us define valueF̃ ∗(�, c) as follows: F̃ ∗(�, c) is the
optimal objective function value for Problem CEN1(W,T ), where in the vector of weights
W customerc has weightw+

c and any other customerc′ ∈ C has weightw−
c′ , Tc is the

point v�
c , and for any otherc′ ∈ C, Tc′ is the corresponding rectangle of uncertainty�c′ .

TheseW andT will be denotedW(c) andT (�, c), respectively, and the corresponding
Problem CEN1(W,T ) will be referred to as Problem CEN1(W(c), T (�, c)); therefore,
F̃ ∗(�, c)=minx∈R2F̃ (x,W(c), T (�, c)).

Lemma 15. For anyx ∈ R2, Z(x)=max�∈A, c∈C(w+
c d(v

�
c , x)− F̃ ∗(�, c)).

Proof. For any� ∈ A andc ∈ C, let us definey�,c ∈ R2 ands�,c ∈ S as follows:
y�,c is the optimal solution to Problem CEN1(W(c), T (�, c)) (if this problem has more

than one optimal solution, an arbitrary rule, e.g. lexicographic, can be used to choose one
of them);
s�,c is the scenario where customerc is located atv�

c and has weightw+
c , and for any

c′ ∈ C, c′ �= c, customerc′ has weightw−
c′ and is located at the point of�c′ closest toy�,c.

Let us fix an arbitraryx ∈ R2. First, observe that for any� ∈ A andc ∈ C,w+
c d(v

�
c , x)−

F̃ ∗(�, c)�Z(x) (becausew+
c d(v

�
c , x)�F(s�,c, x), F̃ ∗(�, c)=F(s�,c, y�,c), and therefore

w+
c d(v

�
c , x)−F̃ ∗(�, c)�F(s�,c, x)−F(s�,c, y�,c)�Z(x)). To prove the lemma, it remains

to show that there exist� ∈ A andc ∈ C such thatw+
c d(v

�
c , x)− F̃ ∗(�, c)= Z(x).

A pair (s′, y′), s′ ∈ S, y′ ∈ R2, is called aworst-case pair for x, if Z(x) = F(s′, x) −
F(s′, y′). Let (s′, y′) be a worst-case pair forx. Let c′ ∈ arg maxc∈C {w(s′)

c d(x, v
(s′)
c )}.

Then,Z(x)=F(s′, x)−F(s′, y′)=w
(s′)
c′ d(x, v

(s′)
c′ )−F(s′, y′). Suppose thatv(s

′)
c belongs

to the�′-quadrant forx for some�′ ∈ A (for the definition of an�′-quadrant forx, seeSection
2). Then, valueF(s′, x) − F(s′, y′) will not decrease if in the scenarios′ we replacev(s

′)
c′

with v�′
c′ , w

(s′)
c′ with w+

c′ , andw
(s′)
c with w−

c for any c �= c′ (this can be shown using an
argument similar to that used in the proof of Lemma 14). It cannot increase either because
(s′, y′) is a worst-case pair forx. The scenario obtained after this modification ofs′ will be
calleds′′. We see that(s′′, y′) is also a worst-case pair forx andF(s′′, x) = w+

c′ d(x, v
�′
c′ ).

Now, observe that

F(s′′, y′)� F̃ ∗(�′, c′)= F(s�′,c′ , y�′,c′) (13)

and

F(s′′, x)= w+
c′ d(x, v

�′
c′ )�F(s�′,c′ , x). (14)
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Therefore

F(s�′,c′ , x)− F(s�′,c′ , y�′,c′)�F(s′′, x)− F(s′′, y′)= Z(x).

Recalling the definition ofZ(x), we see thatF(s�′,c′ , x) − F(s�′,c′ , y�′,c′) = Z(x) =
F(s′′, x) − F(s′′, y′) and therefore(s�′,c′ , y�′,c′) is a worst-case pair forx. Taking into
account (13) and (14), we see thatF(s�′,c′ , x) = F(s′′, x) = w+

c′ d(x, v
�′
c′ ). UsingF(s�′,c′ ,

y�′,c′)= F̃ ∗(�′, c′), we haveZ(x)= w+
c′ d(x, v

�′
c′ )− F̃ ∗(�′, c′). The lemma is proven.�

Functionw+
c d(v

�
c , x) is the upper envelope of four linear functions ofx = (x1, x2),

and thereforeZ(x) is the upper envelope of 16n linear functions. Thus, if all values
F̃ ∗(�, c), � ∈ A, c ∈ C are known, Problem ROBCEN can be formulated as a linear
programming problem with 3 variables and 16n constraints and solved in O(n) time [28].
(Another way to show that given valuesF̃ ∗(�, c), � ∈ A, c ∈ C ProblemROBCENcan be
solved in O(n) time is to decompose the problem into two one-dimensional problems using
Lemma 15 and an argument similar to that used in the previous subsection). Since Prob-
lem CEN1(W,T ) can be solved in O(n) time (as observed above), all 4n valuesF̃ ∗(�, c)
can be obtained in O(n2) time. Below, we show that in fact all 4n valuesF̃ ∗(�, c) can
be obtained in O(n log n) total time, which will result in O(n log n) time complexity for
Problem ROBCEN.
LetW−={w−

c , c ∈ C} andT̃ ={�c, c ∈ C}. FunctionH(x)=F̃ (x,W−, T̃ ) is the upper
envelope of at most 9n linear functions (because functiond(x,�c) for any c ∈ C is the
upper envelope of at most 9 linear functions).Vertices, edges, and faces of this envelope (we
will refer to them as to vertices, edges, and faces ofH(x)) along with all “vertex-face” and
“face-vertex” incidence lists can be found in O(n log n) time using convex hull algorithms
[17,32]. The total number of vertices, edges, and faces is O(n) [31]. We will refer to values
of functionH(x) as toz-coordinates of the corresponding points of the upper envelope.
Wesay that a functionf (x)definedonR2 satisfies the8-gon propertyif for anyz ∈ R, the

set{x ∈ R2 |f (x)�z} is a convexk-gonwithk�8 such that the angles between the sides of
thisk-gon and the coordinate axes are multiples of�/4 (k= 0 if the set{x ∈ R2 |f (x)�z}
is empty or consists of a single point). For anyc ∈ C, functiond(x,�c) satisfies the 8-gon
property; so does functionH(x) as it inherits the 8-gon property from functionsd(x,�c),
c ∈ C.
Let z1, z2, . . . , zq be the distinctz-coordinates of the vertices ofH(x) in the increasing

order (q = O(n)). We will refer to valuesz1, z2, . . . , zq as to “levels”. LetHi denote the
polygon{x |H(x)�zi}. Having obtainedH(x) with its vertex-faces incidence structure,
all polygonsHi , i ∈ {1,2, . . . , q} can be obtained in O(n) time as follows. For each face
of H(x) we find the levels of its lowest and highest vertices, sayzi andzj , respectively,
and assign the face to levelszi, zi+1, . . . , zj−1. (If a face is unbounded and does not have
a highest vertex, then the face is assigned to levelszi, zi+1, . . . , zq , wherezi is the level of
the lowest vertex of the face. IfH(x) has a horizontal face, then this face is at the bottom
of H(x) and is not assigned to any level.) The lowest and highest vertices of all faces can
be found in O(n) total time because there are O(n) pairs of incident vertices and faces[31].
BecauseH(x) satisfies the 8-gon property, no more than 8 faces can be assigned to each
level zi , i = 1,2, . . . , q. The faces assigned to a levelzi define the polygonHi .
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We need to show that all values̃F ∗(�, c), � ∈ A, c ∈ C can be obtained in O(n log n)
time. Let us fix some� ∈ A andc ∈ C. Notice thatF̃ (x,W(c), T (�, c)) = max{H(x),

w+
c d(v

�
c , x)} and thatF̃ ∗(�, c) = minx∈R2F̃ (x,W(c), T (�, c)) is the smallest valuez ∈

R such that the polygon{x |H(x)�z} (which is a k-gon with k�8) and the square
{x |w+

c d(v
�
c , x)�z} have nonempty intersection. For anyi ∈ {1,2, . . . , q}, the intersection

of Hi and the square{x |w+
c d(v

�
c , x)�zi} can be found in O(1) time. This intersection is

nonempty if and only ifF̃ ∗(�, c)�zi .Thus, for anyi ∈ {1,2, . . . , q} it takes O(1) time to
check whether̃F ∗(�, c)�zi ;notice also thatz1� F̃ ∗(�, c)<+ ∞. Applying binary search
on z1, z2, . . . , zq , in O( log n) time we either discover that̃F ∗(�, c) = z1, or we find the
largesti ∈ {1,2, . . . , q} such thatF̃ ∗(�, c)> zi ;let it bei∗. In the latter case valuẽF ∗(�, c)
is defined by the faces ofH(x) assigned to levelzi∗ (no more than 8 faces) and the four
faces of functionw+

c d(v
�
c , x) (which is the upper envelope of four linear functions), and

can be found in O(1) time using a linear programming problemwith 3 variables and at most
12 constraints. Therefore, all valuesF̃ ∗(�, c), � ∈ A, c ∈ C can be obtained in O(n log n)
time. We have proven

Theorem 4. ProblemROBCENin thecaseof rectilineardistancescanbesolved inO(n log n)
time.

5. Euclidean median

Suppose that distances are Euclidean, that is, for anyx=(x1, x2) ∈ R2 andy=(y1, y2) ∈
R2, d(x, y) =

√
(x1 − y1)

2 + (x2 − y2)
2, and suppose thatF(s, x) = F1(s, x). For the

Euclidean case, we assume that there is no uncertainty in locations (i.e.a−
c = a+

c = ac,
b−
c = b+

c = bc, vc = (ac, bc), c ∈ C), and all uncertainty is in weights. Therefore, a scenario
corresponds to assigning weights to customers. The reasons for this assumption were stated
in Section 2.
For anyx, y ∈ R2, let us define scenarios∗(x, y)= {w∗

c (x, y), c ∈ C} as follows:

w∗
c (x, y)=

{
w−
c if d(x, vc)�d(y, vc),

w+
c if d(x, vc)> d(y, vc).

Then, it is clear thatREGR(x, y) = F(s∗(x, y), x) − F(s∗(x, y), y). Let Ŝ1 be the set
of scenarioss ∈ S such thats = s∗(x, y) for somex, y ∈ R2. It is well-known that
|Ŝ1|=O(n2) (e.g.[17, Theorem 3.1, p. 47]; different scenarios of̂S1 correspond to different
ways to partitionn points on the plane into two disjoint sets by a straight line).

Lemma 16. SetŜ1 is globally sufficient.

Proof. For anyx ∈ R2, there exists a worst-case scenarios for x such thats ∈ Ŝ1; this is
straightforward to show using an argument similar to that used in the proof of Lemma 3.
The statement of the lemma follows immediately.�
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In the case of Euclidean distances, we will be interested in solving Problem ROBMED
only approximately, because even Problem MED(s) for a specific scenarios, which is the
classicalWeber problem[36] and a special case of ProblemROBMED, is not well-solvable
exactly, and available methods find only approximate solutions to Problem MED(s) (see.,
e.g.,[9,13,22,25]). For an�>0, a feasible solutionx for an optimization problem is called
an�-optimal solutionfor the problem, if the objective function value atx differs from the
optimal objective function value by no more than�.
A natural approach to solving Problem ROBMED is as follows:

(1) Obtain the set̂S1.
(2) For eachs ∈ Ŝ1, solve Problem MED(s) approximately with a precision�1>0; that is,

obtain valuesF̂ ∗(s), s ∈ Ŝ1 such that 0� F̂ ∗(s)− F ∗(s)��1.
(3) Solve the following problem with a precision�2>0:

minimize
x∈R2

Ẑ(x), (15)

where

Ẑ(x)=max
s∈Ŝ1

(F (s, x)− F̂ ∗(s)). (16)

It is clear thatẐ(x)�Z(x) andZ(x) − Ẑ(x)��1 for anyx ∈ R2; therefore, we have the
following

Lemma 17. An �2-optimal solutionx∗ to (15) will be an (�1 + �2)-optimal solution to
ProblemROBMED.

Ẑ(x) is a convex function, and (15) can be solved approximately by iterative methods of
convex optimization. Each iteration of such methods typically consists of computing value
of Ẑ(x) and its subgradient at some specificx ∈ R2.

Lemma 18. For anyx ∈ R2, all O(n2) valuesF(s, x), s ∈ Ŝ1 can be obtained inO(n2)
total time.

Proof. Clearly, eachs ∈ Ŝ1 corresponds to a partition of the set of customers by a straight
line passing through the location of a customer. Rotating this straight line about the customer
location on the line generates O(n) scenarios from̂S1, and valuesF(s, x) for these O(n)
scenarios (for a fixedx ∈ R2) are obtained in O(n) total time by updating dynamically
the valueF(s, x) for the current scenario during such a rotation (for details, see[6]). Since
there aren customers, all valuesF(s, x), s ∈ Ŝ1 are generated in O(n2) time. �

If values F̂ ∗(s), s ∈ Ŝ1 have already been obtained, then according to Lemma 18 the
maximizer in (16) can be obtained in O(n2) time. If a scenarios′ is a maximizer in (16),
then a subgradient ofF(s′, x) at x will also be a subgradient of̂Z(x) at x. Therefore,
we have
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Lemma 19.When valuesF̂ ∗(s), s ∈ Ŝ1 have been obtained, the value of function̂Z(x)
and its subgradient at any pointx ∈ R2 can be obtained inO(n2) time.

Thus, finding an(�1 + �2)-optimal solution to Problem ROBMED has been reduced to
solving O(n2) regular Weber problems (Problems MED(s), s ∈ S′) with precision�1 and
minimizing convex function̂Z(x) with precision�2; the value and a subgradient ofẐ(x) at
any pointx ∈ R2 can be obtained in O(n2) time.

6. Euclidean center

As in the previous section, suppose that distances are Euclidean and uncertainty is only in
weights. Suppose thatF(s, x)= F2(s, x). Let scenariossc, c ∈ C be as defined in Section
4.1.

Lemma 20. Z(x)=maxc∈C {w+
c d(vc, x)− F ∗(sc)}.

Proof. The proof is completely similar to the proof of Lemma 14, part (b).�

Since Problem CEN(s) can be solved in O(n) time [16,29,1], all valuesF ∗(sc), c ∈ C

can be obtained in O(n2) time.
Having obtained valuesF ∗(sc), c ∈ C, Problem ROBCEN is reduced to the problem of

minimizingZ(x). For anyc ∈ C, letZc(x)=w+
c d(vc, x)−F ∗(sc) and letZ̄c={(x, z) | x ∈

R2, z ∈ R, z�Zc(x)}. The graph of functionZ(x) is the upper envelopeEof the functions
Zc(x), c ∈ C. E is the boundary of the intersection of the conesZ̄c, c ∈ C. The problem of
minimizingZ(x) seems very similar to the classical Euclidean weighted 1-center problem
(Problem CEN(s)), with the exception that in Problem CEN(s) vertices of all cones are
at the same height. So, it seems natural to try to extend known efficient algorithms for
Problem CEN(s) to the problem of minimizingZ(x). The fastest algorithms for solving the
classical Euclidean weighted 1-center problem are the linear-time algorithms of Dyer[16]
and Megiddo[29] based on the multidimensional search technique of[28]. Unfortunately,
they do not seem to be applicable to our case; the property that the vertices of the cones
are at the same height in Problem CEN(s) is essential for these algorithms. It appears that
the parametric-search based algorithm of Megiddo[27] can be extended to the problem of
minimizingZ(x)without major modifications in an appropriate model of computation (the
model of computation should allow infinite-precision real arithmetic, finding in constant
time intersection points and tangency points of certain curves, etc.); the complexity of
the algorithm is O(n log3 n( log log n)2). Since O(n2) time has been spent on obtaining
valuesF ∗(sc), c ∈ C, this will result in O(n2) time complexity for Problem ROBCEN.
However, since O(n2) time is already used for obtaining valuesF ∗(sc), c ∈ C, it is not
attractive to use complicated and difficult to implement techniques such as the parametric
search for minimizingZ(x) if Z(x) can be minimized in almost quadratic time using
simpler approaches. Below, we describe a geometric algorithm that minimizesZ(x) in time
O(n22�(n) log2 n), where�(n) is the inverseAckermann function[2] that grows very slowly
and can be considered as a constant for any practical purposes (for any possible “practical”
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values ofn, �(n)<4 and therefore 2�(n) <16). The algorithm uses classical results and
constructions from computational geometry, and its logic is much simpler than that of the
parametric approach. For simplicity of presentation and to avoid tedious consideration of
practically unimportant special cases, we assume that the pointsva, a ∈ C are ingeneral
position, that is, they are all distinct and no three of them belong to the same straight line.
We need the following:

Lemma 21. Suppose a finite setK ⊂ R of distinct“candidate” values is known such that
the optimal objective function valuez∗ = minx∈R2Z(x) for ProblemROBCENbelongs to
K. Then, given the set K and valuesF ∗(sc), c ∈ C, ProblemROBCENcan be solved in
O(n log n log |K| + |K|) time.

Proof. Suppose a finite setK that satisfies the condition of the lemma and the values
F ∗(sc), c ∈ C are given. For any valuez ∈ R, it is possible to check in O(n log n)
time whetherz�z∗. This can be done as follows. Consider the circles�c(z) = {x ∈
R2 |Zc(x)�z}, c ∈ C. The circles�c(z) correspond to horizontal slices of the conesZ̄c at
heightz. Observe thatz�z∗ if and only if the intersection of the circles�c(z), c ∈ C is not
empty. The intersection ofncircles can be computed in O(n log n) time[15]; therefore, for
anyz ∈ R it is possible to check in O(n log n) time whetherz�z∗.
Sincez∗ ∈ K, z∗ can be found now using binary search over the elements ofK. At

each iteration, we find the medianz′ of the current setK and check whetherz′ �z∗ using
the test described above. Ifz′ �z∗, the elements ofK which are greater thanz′ can be
discarded; ifz′ <z∗, the elements ofK which are smaller or equal toz′ can be discarded.
After O( log |K|) iterations, valuez∗ is found. The total time spent on finding medians and
discarding elements is O(|K| + 1

2|K| + 1
4|K| + · · ·) = O(|K|), so the total time spent on

finding z∗ is O(n log n log |K| + |K|). After finding z∗, an optimal solution to Problem
ROBCEN can be found by obtaining the intersection of the circles�c(z

∗), c ∈ C. �

Now it remains to find a reasonably small setK of candidate values that would containz∗.
Below, we discuss how to find such a setK of cardinality O(n22�(n)) in O(n22�(n) log2 n)
time, where�(n) is the inverse Ackermann function. Together with Lemma 21, this will
provide an O(n22�(n) log2 n) algorithm for solving Problem ROBCEN.
The upper envelopeE of functionsZc(x), c ∈ C represents a two-dimensional manifold

andconsists of vertices, edges, and faces. Letx∗=(x∗
1, x

∗
2)beanoptimal solution toProblem

ROBCEN. The pointp∗ = (x∗, z∗) ∈ R3 is a lowest point of the envelopeE (where height
is associated withz-coordinate); it can be a vertex, an interior point of an edge, or an interior
point of a face ofE. Let us consider separately all three cases.
Face: Suppose thatp∗ is an interior point of a face ofE. Thenx∗ is a local minimum

of the functionZc(x) that corresponds to the face. The functionZc(x) has a unique local
(which is also global) minimum atx = vc. So, in this casez∗ = −F ∗(sc) for somec ∈ C.
We include then values−F ∗(sc), c ∈ C in K; this makes sure thatz∗ ∈ K if there is an
optimal solution to Problem ROBCEN that corresponds to an interior point of a face of the
envelopeE.
Edge: Supposep∗ is an interior point of theedgedefinedby functionsZa(x)andZb(x) for

somea, b ∈ C. Then,z∗ =min{z | z=Za(x)=Zb(x), x ∈ R2}. For any particularz0 ∈ R,
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the set of solutions of equationZa(x) = z0 (of equationZb(x) = z0) is the circumference
of the circle�a(z0) (�b(z0)) (defined in the proof of Lemma 21). The minimum value
of z0 such that the two circumferences intersect is achieved when the two circumferences
are tangent. (In the degenerate caseva = vb the two circumferences may coincide, but we
assumed that pointsvc, c ∈ C are in general position, sova �= vb). Thenx∗ lies on the linel
that passes throughva andvb. Letx=x(t) be a parameterization of the linel. Then function
Za(x(t)) (functionZb(x(t)) is a piecewise linear function oft with 2 linear pieces, andx∗
(and, therefore,z∗) can be found in O(1) time by solving the equationZa(x(t))=Zb(x(t))

and choosing the best of the solutions.We conclude that for any pair of customersa, b ∈ C,
it is possible to find in O(1) time a candidate valuez′a,b that is equal toz∗ if there is an
optimal solution to Problem ROBCEN that corresponds to an interior point of the edge
defined by functionsZa(x) andZb(x).We include the O(n2) valuesz′a,b, a ∈ C, b ∈ C into
K; this makes sure thatz∗ ∈ K if there is an optimal solution to Problem ROBCEN that
corresponds to an interior point of an edge of the envelopeE.
Vertex: The case wherep∗ is a vertex ofE is more difficult because a vertex is defined

by a triple of functionsZa(x), Zb(x), Zc(x), a, b, c ∈ C, and there may be�(n3) such
triples. We say that a customera ∈ C is dominated by a customerb ∈ C if Za(x)�Zb(x)

for all x ∈ R2. A customera ∈ C is calleddominatedif it is dominated by at least one
other customer. Notice that customera is dominated by customerb if and only ifw+

a �w+
b

andZa(vb)�Zb(vb) (that is,Za(vb)� − F ∗(sb)). Therefore, it takes O(1) time to check
whether a customera is dominated by a customerb, and therefore it takes O(n2) time to
identify all dominated customers. Notice that deleting all dominated customers fromCdoes
not affect the envelopeE. So, we will assume that there are no dominated customers inC.

Lemma 22. Suppose thatc, a ∈ C andx′ ∈ R2, and suppose thatw+
c �w+

a andZc(x
′)

�Za(x
′). Then for anyt�1,Zc(vc + t (x′ − vc))�Za(vc + t (x′ − vc)).

Proof. For anyt�1, let x′(t) = vc + t (x′ − vc). Let �c = d(vc, x
′(t)) − d(vc, x

′) and
�a = d(va, x

′(t)) − d(va, x
′). It suffices to show thatZc(x

′(t)) − Zc(x
′)�Za(x

′(t)) −
Za(x

′) or w+
c �c�w+

a �a . This inequality follows from�c��a sincew+
c �w+

a >0 and
�c = (t − 1)d(vc, x′)�0. The inequality�c��a is equivalent to the triangle inequality
d(x′(t), x′)+ d(va, x

′)�d(va, x
′(t)). �

Consider a lexicographical order “≺” of customersc ∈ C determined by(w+
c , F

∗(sc)),
c ∈ C. That is, for anya, b ∈ C, we writea ≺ b if eitherw+

a <w+
b or w+

a = w+
b and

−F ∗(sa)> − F ∗(sb). (That is,a ≺ b either if the angle of conēZb is sharper than the
angle of coneZ̄a , or if both cones have equal angles but the vertex of coneZ̄a is higher
than the vertex of conēZb.) Notice that there may be lexicographical ties, that is, customers
a, b ∈ C such thatw+

a = w+
b and−F ∗(sa) = −F ∗(sb). For anya, b ∈ C, we writea � b

(a is lexicographically not greater thanb) if it is not true thatb ≺ a. For any customer
c ∈ C, letCc = {a ∈ C | a � c}, and letEc be the upper envelope of functionsZa(x), a ∈
Cc. Suppose thatp∗ is a vertex ofE defined by functionsZa(x), Zb(x), Zc(x) for some
a, b, c ∈ C (that is,Za(x

∗)=Zb(x
∗)=Zc(x

∗)= z∗), seeFig. 4.Without loss of generality
suppose thata � c andb � c. Sincep∗ ∈ E, we also havep∗ ∈ Ec; thus,p∗ is a vertex
of Ec. By Lemma 22 and taking into account the definition ofCc, all points of the ray
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Fig. 4. The vertexp∗ of the upper envelope of functionsZa(), Zb(), Zc(). The boundary of the shaded region is
the intersection of the upper envelope with a planez = const .

{(x∗(t), Zc(x
∗(t))) | t�1}, wherex∗(t) = vc + t (x∗ − vc) belong toEc. Therefore, the

envelopeEc has an unbounded face defined by functionZc(x). We have the following

Lemma 23. If p∗ is a vertex of E, then for somec ∈ C, p∗ is a vertex of an unbounded
face ofEc that is defined by functionZc(x).

Lemma23 indicates that envelopesEc aremoreconvenient toworkwith than theenvelope
E, as for them it is easier to “catch” a face that may containp∗. The lexicographical order
implies also another important property of the envelopesEc, c ∈ C.

Lemma 24. If the numbersw+
c , c ∈ C are all distinct, then for anyc ∈ C the envelope

Ec has a unique unbounded face, and this face is defined by functionZc(x). If the numbers
w+
c , c ∈ C are not all distinct, then for anyc ∈ C the envelopeEc has at most one

unbounded face defined by functionZc(x) (although in this caseEc may have more than
one unbounded face, and may not have an unbounded face defined byZc(x)).

Proof. Let us fix somec ∈ C. For anyz ∈ R, let	c(z)= ⋂
a∈Cc

�a(z) (where�a(z) was
defined in the proof of Lemma 21). If allw+

a , a ∈ C are distinct, then for anya ∈ Cc\{c},
w+
a <w+

c . Therefore, for all sufficiently largez, 	c(z) = �c(z), which implies the first
statement of the lemma.
Suppose now that not allw+

a , a ∈ C are distinct. LetC′
c={a ∈ Cc : w+

a =w+
c }. Then for

all sufficiently largez,	c(z) is defined only by functionsZa(x), a ∈ C′
c, and the boundary

of 	c(z) consists of arcs of some circles�a(z), a ∈ C′
c. Notice that the lexicographical

order implies that for anya ∈ C′
c, the radius of the circle�a(z) is not larger than the

radius of the circle�c(z). Using this property and induction on the cardinality ofC′
c, it is
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straightforward to see that for all sufficiently largez the boundary of	c(z) has no more
than one arc of the circle�c(z). This implies the second statement of the lemma.�

Lemma 25. For any c ∈ C, it is possible to check inO(n) time whether there exists an
unbounded facefc of the envelopeEc that is defined by functionZc(x). If such a face exists,
it is unique(according to Lemma24)and hasO(n2�(n)) vertices,where�(n) is the inverse
Ackermann function, and all these vertices can be computed inO(n2�(n) log2 n) time.

Proof. Let us fix c ∈ C. For anya ∈ Cc\{c}, let La be the intersection curve of the
boundaries of the cones̄Za andZ̄c. Observe that for anya, b ∈ Cc\{c}, the curvesLa and
Lb can intersect at most four times. Indeed, an intersection point(x, z) ∈ R3 of the curves
La andLb must satisfy the equations{

(z + F ∗(sc))/w+
c + =d(vc, x),

(z + F ∗(sa))/w+
a = d(va, x),

(z + F ∗(sb))/w+
b = d(vb, x).

(17)

Let us square both sides of each equation in (17), and then let us subtract the first equation
from the second and from the third. The left sides of all three new equations are quadratic
functions ofz.Weobtain linear functions of the coordinates of pointx ∈ R2 in the right sides
of the second and the third equations. Then, the second and the third equations represent
a system of two linear equations with two unknowns with respect to the coordinates ofx.
Solving this system for the coordinates ofxwill give their expressions as (at most) quadratic
functions ofz. (It is not difficult to see that since we assumed that the pointsva, a ∈ C are
in general position, the system cannot be degenerate.) Substituting these expressions into
the first equation(z+F ∗(sc))2= (w+

c d(vc, x))
2 we obtain a quartic equation with variable

z, which has at most four solutions.
Since every pair of curvesLa,Lb can intersect at most four times, the unbounded face

fc of the envelopeEc that is defined by functionZc(x) (if it exists) has O(
4(n)) vertices
and edges, where
4(n)=O(n2�(n)) is the maximum size of an(n,4)-Davenport–Schinzel
sequence[2]. (Davenport–Schinzel sequences are powerful combinatorial structures that
play a central role in many geometric problems; see, e.g.,[2] for a comprehensive intro-
duction.) All vertices of the facefc can be computed in O(
4(n) log2 n)=O(n2�(n) log2 n)
time [2] if a point inside the face is known, or if a directionr ∈ R2 is known such that for
all sufficiently larget ∈ R the point(vc + tr, Zc(vc + tr)) belongs to the facefc. Here
we assume a model of computation with infinite precision real arithmetic that allows us to
compute the intersection points of any pair of curvesLa,Lb in O(1) time (this assumption
is common in computational geometry[2]).
To complete the proof, it is sufficient to show that we can check in O(n) time whether

there exists an unbounded facefc of the envelopeEc that is defined by functionZc(x),
and that if such a facefc exists, we can find in O(n) time a directionr ∈ R2 such that for
all sufficiently larget ∈ R the point(vc + tr, Zc(vc + tr)) belongs to the facefc (that is,
Zc(vc + tr)�Za(vc + tr), a ∈ Cc).
Consider the setC′

c={a ∈ Cc : w+
a =w+

c }. If C′
c={c}, then for anya ∈ Cc\{c},w+

a <w+
c ,

and therefore the unbounded facefc exists and any nonzero vector fromR2 can be taken as
r. Suppose thatC′

c �= {c}. Consider anya ∈ C′
c\{c}. Sincew+

a =w+
c andF ∗(sc)�F ∗(sa),
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it is not difficult to see that for any unit vectorr ∈ R2 such that〈va − vc, r〉� F ∗(sc)−F ∗(sa)
w+
c

we haveZc(vc + tr)<Za(vc + tr) for all sufficiently larget ∈ R, and for any unit vector
r ∈ R2 such that〈va − vc, r〉> F ∗(sc)−F ∗(sa)

w+
c

we haveZc(vc + tr)>Za(vc + tr) for all

sufficiently larget ∈ R. (Here〈·, ·〉 is the regular dot product.) Hence, the unbounded face
fc exists if and only if there exists a unit vectorr ∈ R2 such that for alla ∈ C′

c\{c},
〈va − vc, r〉> F ∗(sc)−F ∗(sa)

w+
c

. Clearly in O(n) time we can either find such a vectorr or to

show that it does not exist. If we find such a vectorr, then for anya ∈ Cc and all sufficiently
larget ∈ R, Zc(vc + tr)�Za(vc + tr). The lemma is proven.�

Lemmas 23–25 suggest the following approach. For eachc ∈ C, check in O(n) time
whether there is an unbounded facefc of the envelopeEc defined by functionZc(x). If
such a face exists, obtain all its O(n2�(n)) vertices in O(n2�(n) log2 n) time, and include
their z-coordinates into setK. This makes sure thatz∗ ∈ K if there is an optimal solution
to Problem ROBCEN that corresponds to a vertex of the envelopeE. Combining all the
results, we have

Theorem 5. Thealgorithmdescribed above solvesProblemROBCENinO(n22�(n) log2 n)
time.

7. Conclusion

In this paper, we studied interval data minmax regret single facility location problems
on a plane. For the case of rectilinear distances, our models incorporated uncertainty in
both customers’ weights and location coordinates. For the case of Euclidean distances, we
considered only uncertainty in weights. The problems are generalizations of the classical
(without uncertainty) single facility location problems on a plane.
We presented anO(n2 log2 n) algorithm for theminmax regret rectilinear 1-median prob-

lem and an O(n log n) algorithm for the minmax regret rectilinear weighted 1-center prob-
lem. We have also discussed possibilities of solving approximately the minmax regret Eu-
clidean 1-median problem, and presented an O(n22�(n) log2 (n)) algorithm for solving the
minmax regret Euclidean weighted 1-center problem.
The algorithms developed in the paper use special geometric properties of the considered

problems and therefore seem unlikely to be easily extendable to other models. However,
we believe that the underlying methodological ideas are sufficiently general to be useful
for other geometric location problems. For example, the approach of Section 3 combined
local optimality and convexity arguments, identification of grids that allowed to simplify the
structure of the problem, and computational geometry techniques to speed up the solution
procedure. It appears that such a combination of tools is effective formanyminisum location
problems with rectilinear distances; e.g., a similar combination of techniques was used in
[18] to compute a 1-median for a continuum of customer points.
It appears that the ideas of Section 3 can be generalized to the case of block norms[35],

although we doubt that this line of research would produce elegant results.
A possible direction for future research is to study minmax regret location problems with

multiple facilities on a plane.
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Appendix

Proof of Lemma 8. Let anx ∈ R2 be fixed. Since ProblemMED(s) can be solved in O(n)
time (e.g.,[26]) for anys ∈ S, it is straightforward to compute all valuesF(s, x)− F ∗(s),
s ∈ S∗(x) in O(n3) time. This can be done by obtaining scenarios�(x, y) according to (5),
solving Problem MED(s�(x, y)), and checking whethery is a 1-median for the scenario
s�(x, y), for all y ∈ N(G1) and� ∈ A. We will show that the necessary computations can
be performed in O(1) amortized time per scenario, that is, in O(n2) total time.
A horizontal line of gridG1 will be called arow. The set of nodes ofG1 that belong to

a rowL is denoted asN(L). A point zof a rowL is called achange pointcorresponding to
v ∈ V (or produced byv ∈ V ), if d(x, v) = d(z, v). Change points produced by different
v ∈ V are considered different even if they coincide. It follows from (5) that whenymoves
along a rowL, scenarios�(x, y) can change only at change points corresponding tov�

c ,
c ∈ C. There are at most 8n change points on each row (at most 2 change points for each
v ∈ V ).
The structure of the algorithm is as follows. As a preprocessing, for each rowL the

algorithm computes all the change points on the row (recording the pointsv ∈ V that
produced them), and sorts them. We will show that the preprocessing can be implemented
in O(n2) total time. Then the algorithm processes the rows of gridG1, spending O(n)
time per row. For each row, the algorithm processes nodesy of the row from left to right,
using the information obtained during the preprocessing to efficiently update scenarios
s�(x, y), � ∈ A and some auxiliary values asy changes and spending O(1) amortized
time per update. The auxiliary values obtained for every nodey and� ∈ A include values
F(s�(x, y), x), F(s�(x, y), y), and some values that allow to check in O(1) time whether
y is a 1-median for the scenarios�(x, y). If y is a 1-median for the scenarios�(x, y), then
F ∗(s�(x, y))=F(s�(x, y), y), and valueF(s�(x, y), x)−F ∗(s�(x, y)) is recorded.When
all nodes of all rows have been processed, values of all functionsF(s, x)−F ∗(s), s ∈ S∗(x)
have been obtained.
Let us discuss the preprocessing. For av ∈ V , letQ(v, x)={r ∈ R2 | d(v, r)=d(v, x)}.

SetQ(v, x) is a “diagonal” square with the center atv and the pointx on its boundary.
Notice that a change point corresponding to av ∈ V must belong toQ(v, x). Therefore, the
change points lie on O(n) diagonal lines that contain sides of the squaresQ(v, x), v ∈ V .
Lines that correspond to different squares are considered different even if they coincide.We
break up these lines into two groups with slopes 1 and−1, respectively. The lines in each
group are sorted (it takes O(n log n) time). This allows to find in O(n) time for any row
L the order of intersection points ofL with the lines in the group. The two sorted lists of
intersection points forL (corresponding to the two groups of diagonal lines) can be merged
in O(n) time, producing one sorted list of intersection points ofL with the lines containing
sides of squaresQ(v, x), v ∈ V . For each intersection point, the correspondingv ∈ V is
recorded. Then, the intersection points that are not change points are removed (it takes O(1)
time to check whether an intersection point is a change point for the correspondingv ∈ V ),
which results in a sorted list of change points for the rowL. Since there are O(n) rows, the
preprocessing takes O(n2) time.
Now we discuss how to process rows spending O(n) time per row. Suppose that a rowL

of gridG1 is fixed.Wheny is equal to the leftmost node ofL, scenarioss�(x, y), � ∈ A are
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computed in O(n) time using (5). Whenymoves through the nodes ofL from left to right,
scenarios�(x, y) is updated using the scenarios�(x, y′) for the previous nodey′ and the
change points betweeny′ andy. Since there are O(n) change points in any row, only O(n)
weights will be updated wheny travels along the rowL. Therefore, maintaining scenarios
s�(x, y), � ∈ A whenymoves through a row takes O(n) time.
Foranyy ∈ R2 andascenarios, let usdefine the followingvalues.LetW1(y, s) (W2(y, s))

be the sum of weights of all customers located strictly to the left (strictly to the right) of
y under the scenarios, that is, whose first coordinate is strictly smaller (strictly greater)
thanx1(y). LetW3(y, s) (W4(y, s)) be the sum of weights of all customers that are located
higher (lower) thanyunder the scenarios, that is, whose second coordinate is strictly greater
(strictly smaller) thanx2(y). LetW(s) be the sumofweights of all customers under scenario
s. It is well known thaty is a 1-median for a scenarios if and only ifWi(y, s)� 1

2W(s),
i = 1,2,3,4 [26]. Thus, given valuesW(s),Wi(y, s), i = 1,2,3,4, it takes O(1) time to
check whethery is a 1-median for the scenarios.
For every nodey of row L and every� ∈ A, we will obtain valuesWi(y, s�(x, y)), (i =

1,2,3,4,W(s�(x, y)), F(s�(x, y), x), F(s�(x, y), y), and check whethery is a 1-median
for the scenarios�(x, y) using the test discussed above. For the leftmost node of row
L, valuesWi(y, s�(x, y)), i = 1,2,3,4, W(s�(x, y)), F(s�(x, y), x), F(s�(x, y), y) are
obtained directly (this takes O(n) time). For any other nodey of the row, these values
are computed using the corresponding values for the previous node (nodes of a row are
processed from left to right). Given the previous discussion, it is straightforward to see that
these values for all nodes of a row can be computed in O(n) total time.
If y is a 1-median for scenarios�(x, y), thenF ∗(s�(x, y)) = F(s�(x, y), y), and value

F(s�(x, y), x)−F ∗(s�(x, y)) is recorded.When all nodes of all rows are processed, values
of all functionsF(s, x) − F ∗(s), s ∈ S∗(x) have been obtained and recorded. Since there
are O(n) rows and processing each row takes O(n) time, the complexity of the algorithm is
O(n2).
The directional derivatives of functionsF(s, x) − F ∗(s), s ∈ S∗(x) at x in a given

direction can be computed in O(n2) total time in a similar way. �
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