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Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich
layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial
environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in
Lake Superior (Canada) and Carajas (Brazil) have been studied by planetary scientists to trace the evo-
lution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on
Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these
deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposi-
tion is found to be the most supportive mechanism for its secondary iron rich deposits. In the present
study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in
Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine envi-
ronment on Mars. The prominent banding feature of banded iron formations is in the range of few
millimeters to few centimeters in thickness. Fe rich bands are darker (gray) in color compared to the light
reddish jaspilitic chert bands. Thin quartz veins (<4 mm) are occasionally observed in the hand-
specimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region
of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include
0.65, 0.86, 1.4 and 1.9 mm, in which 0.56 and 0.86 mm absorption bands are due to ferric iron and 1.4 and
1.9 mm bands are due to OH/H2O. To validate the mineralogical results obtained from VIS/NIR spectral
radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the
results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum
craton suggests dehydration activity, which has altered the primary iron oxide phases into the secondary
iron oxide phases. The optimum bands identified for the minerals using various spectroscopic techniques
can be used as reference for similar mineral deposits on any remote area on Earth or on other hydrated
planetary surfaces like Mars.

� 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Banded iron formations (hereafter BIFs), reported over all con-
tinents in association with Precambrian greenstone belts, are
defined as chemical sedimentary rocks with alternate layers
(varying thickness) of iron oxides (magnetite and/or hematite) and
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silica (jasper, quartz and chert) (Cloud, 1973; Gross, 1980; Melnik,
1982; Klein, 2005; Polat and Frei, 2005 and references therein).
They are formedmainly by sedimentation processes inwhich water
plays a major role in deposition during the time span of Archean to
Proterozoic epochs (Klein, 2005). The formation processes (sea-
sonal/microbial?) of various layers and the mechanisms for
oxidizing Fe (possibly microbial) are still highly debated (Posth
et al., 2008). Deposition of BIFs in ocean basins are the result of
oxidation of reduced Fe, either generated through continents or by
hydrothermal fluids. BIFs have also found their significance as a
major rock unit to explain related sea water chemistry and the
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evolution of lithosphere-biosphere-atmosphere in terrestrial con-
ditions (Klein and Beukes, 1989; Derry and Jacobsen, 1990;
Kaufman and Knoll, 1995; Rao and Naqvi, 1995; Johnson et al.,
2003, 2008; Trendall and Blockley, 2004). Systematic chemical
studies of representative iron phases from BIFs provide significant
information about thermal regime of host basin, the redox condi-
tions of deep ocean water and the source of Fe and other elements
(Holland, 1973; Klein and Ladeira, 2004; Bhattacharya et al., 2007;
Frei and Polat, 2007; Pecoits et al., 2009). These parameters make
BIFs a good proxy to be considered for planetary studies. Presence
of BIFs has been speculated on Mars based on the identification of
extensive layered hematite and hydrothermal silica rich deposits
(Christensen et al., 2000, 2001; Squyres et al., 2008; Ruff et al.,
2011; Bost et al., 2013). Crowley et al. (2008) studied the diversity
of spectral signatures of terrestrial BIFs in detail and proposed the
implications for the identification of similar type of deposits on
Mars. The well preserved sedimentary structures with least defor-
mation, unmetamorphosed deposit (except few local thermal
metamorphic effects) and extensively mined areas to get samples
devoid of any atmospheric effects are some of the features of BIFs
which make them suitable candidates for terrestrial analogs for the
interpretation of the regional evolution of hematite deposits and
paleoenvironments on Mars (Christensen et al., 2000, 2001; Hynek
et al., 2002; Ormö et al., 2004; Glotch and Christensen, 2005).
Several studies have been carried out with the BIF samples of Lake
Superior (Canada) and Carajas (Brazil) to interpret the formation
conditions of regional hematite deposits on Mars (Christensen
et al., 2000, 2001; Fallacaro and Calvin, 2006; Bridges et al.,
2011). Spectral signatures along with preliminary geochemical re-
sults of these BIFs have been utilized to interpret the sites as po-
tential Martian analog sites. The BIFs of these two areas along with
BIFs from Coppin Gap Greenstone Belt, Pilbara craton, Australia,
were listed in the International Space Analog Rockstore (Bost et al.,
2013).

Mars surface has been marked with the widespread layered
hematite deposits and other FeO-OH polymorphs (Fe-oxides and
Fe-(oxy-)-hydroxides), mainly in Meridiani Planum, Aram Chaos,
and Valles Marineris regions (Christensen et al., 2000, 2001, 2004).
Layered hematite deposits of Meridiani Planum on Mars are pro-
posed to be of sedimentary origin due to absence of any volcano-
genic geomorphic features such as lava flows and fissures. Many
authors have discussed the formation mechanism of the layered
hematite deposits, but climatic conditions during their formation
are yet to be studied in detail. Bridges et al. (2008) proposed that
Carajas BIFs, formed as a supracrustal sequence at lower tempera-
ture (Dalstra and Guedes, 2004) are suitable to interpret the ancient
marine environments on Mars and the spectral data in VIS-NIR-
SWIR-TIR region would aid in identifying similar deposits on
Mars. Therefore, detailed characterization of different BIFs in
terrestrial environments will sequentially improve the superiority
of our understanding for identifying mineralogical composition of
the planet and its evolutionary history. Though, there are several
occurrences of banded iron formations in India (Radhakrishna and
Naqvi, 1986), studies considering them as analog sites are not yet
initiated (Singh et al., 2015). Banded iron formation of Singhbhum
craton in eastern India has long been discussed as geochemically
similar to Lake Superior type BIFs. These BIFs are comparable to
those BIFs in Carajas (Brazil), Finland and Australia (Majumder
et al., 1982). This study provides the results from VIS/NIR radiom-
etry, back scattered image interpretation, laser Raman and ATR-
FTIR (Attenuated total reflectance-Fourier transform infrared)
spectroscopy which helped constrain spectral aspects of BIF of
Singhbuhm craton and it will add the information to our under-
standing about the regions with similar mineralogy in extra-
terrestrial conditions. Laboratory VIS/NIR radiometry and laser
Raman measurements of these rocks will contribute in better
detection of similar rock types on Mars. On this context, the study
of Precambrian BIFs in relation to Martian hematite deposits could
be significant to have a better understanding on the paleo-
environmental conditions. The optimum bands identified for he-
matite and goethite can be used as a reference for unidentified
similar mineral deposits for future extraterrestrial missions.

2. Regional geology, sample description and analytical
methods

The Singhbhum-Odisha craton forms a triangular crustal block,
bounded by Chotanagpur gneissic complex to the North, eastern
Ghat Granulite belt to the South and the Bastar craton to the West
and by recent alluvium to the East (Saha and Ray, 1984, 1994;
Mahadevan, 2002; Misra, 2006). This craton consists mainly of
granitoid rocks, metasedimentary (Iron Ore Group), meta-volcanic
schists and granites (Mahalik, 1987; Saha, 1994; Mazumder, 2005;
Misra, 2006; Mukhopadhyay et al., 2006). The BIFs of north Orissa
are extensively developed supracrustals encircling the Singhbhum
granite complex and various views have been proposed on the
evolution of these supracrustals and their relation to the granite
intrusives (Fig. 1). Jones (1934), Dunn (1940) and Saha (1994)
believed that all the BIFs were formed as a single assemblage
during the Archean underlain and/or intruded by the different
phases of Singhbhum granites. According to Saha (1994), the age of
formation could be between 3.3 and 3.1 Ga. Iyengar and Banerjee
(1971), Banerji (1974, 1975, 1980) and Iyengar and Murthy (1982)
classified BIFs into two distinct age groups; older (Gorumahisani
group) and younger (Noamundi group). Prasad Rao et al. (1964) and
Acharya (1976, 1984) has categorized the BIFs into three distinct
stratigraphic formations, the oldest around Pallahara and Gor-
umahisani, the intermediate at Daitari and the youngest at the
Joda-Koida region. The youngest one contains rich deposits of iron
and manganese ores and forms a horse-shoe shaped synclinal
structure (Jones, 1934). Relatively younger metasedimentary de-
posits of banded iron formations of Joda and Daitari region have
two types of mineral assemblages: first, banded hematite jasper
and second, banded hematite quartzite. These BIFs are conspicuous
by the presence of alternate bands composed predominantly of iron
oxide and silica. Secondary hematite formed after metamorphism,
is generally found in the form of bladed crystals, specular variety
called specularite whereas silica is of cryptocrystalline type,
admixed with iron oxide dust and granules in jasper to mega
quartz. The extensive volcano-sedimentary sequences in the Sim-
lipal and Keonjhar plateaus are considered equivalent to the
Dhanjoris and younger to BIFs by Saha and his associates, while
others (Prasad Rao et al., 1964; Iyengar and Banerjee, 1971; Banerji,
1974) found them sandwiched between BIFs. The extensive lava
flows designated as Malangtoli Lava, occur betweenMalangtoli and
Pallahara, and underlie the undeformed Kolhan sequence of the
area (Saha, 1994). The age of volcanics and the volcano-
sedimentary sequences in the North Odisha craton is early Prote-
rozoic (Saha, 1994). The age of the sequence volca-
niceBIFeultramafic in Singhbhum craton is estimated to be 3.51 Ga
(Mukhopadhyay et al., 2008).

The spatial view of the study areas, Joda from Noamundi-Jamda
belt and Daitari from Tumka-Daitari belt is clear from Fig. 2a,b. The
field observations confirm the presence of BIF (Fig. 3a), conglom-
erate (Fig. 3b) and massive chert (Fig. 3c) occurrences in the areas.
Systematic sampling was done during the field work for further
laboratory analyses. The samples collected from the study areas,
Joda and Daitari, in Odisha have been characterized by VIS/NIR,
Raman and FTIR techniques. Freshly cut surfaces were used for VIS/
NIR spectra acquisition. Hyper spectral signatures (VIS/NIR) of the



Figure 1. (a) Generalized tectonic map of India (modified after French et al., 2008). (b) Generalized geological map of iron ore deposits, Singhbhum Craton, Odisha, India (modified
after Roy and Venkatesh, 2009).
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BIF samples (hand-specimen and powders of 500 mm) were
collected using ASD FieldSpec� 3 spectroradiometer in the wave-
length range of 350 to 2500 nm. The fiber optic cable along with the
gun holding it was mounted on the tripod at nadir position. Spec-
tral signatures were collected in a controlled laboratory dark room
environment. In another tripod, a tungsten filament halogen lamp
with the wavelength range of 400 to 2500 nmwas used as artificial
light source for spectral data collection. Spectralon�, the standard
white reference panel was used for measurement of irradiance for
Figure 2. (a, b) Stepped landscape feature exposed on the surface, and developed
each set of measurement. The collected spectra were processed and
then matched with the reference spectra available in USGS (United
States Geological Survey) spectral library to confirm the minerals
present in the samples. Spectral Feature Fitting (SFF) and Spectral
Angle Mapper (SAM) techniques have been used to match the
unknown spectra from the Joda and Daitari region of Odisha to the
standard reference from USGS spectral library.

The polished thin sections were studied for petrography and
further analyzed using SX-100 Electron Microprobe Analysis
due to mining in Joda and Daitari respectively as obtained from Google Earth.



Figure 3. Field photographs illustrating (a) gray hematite and reddish jaspilitic chert,
typical in banded iron formation, (b) conglomerate having iron rich matrix and
boulders of chert/jasper and (c) black massive chert.

Figure 4. (a) VIS/NIR laboratory spectra of the samples Hem_J011 and Goe_J017 of
Odisha BIFs along with the USGS spectral library spectra with the sample names
Hem_FE2602 and GWS220 (Source: http://speclab.cr.usgs.gov/spectral). (b) VIS/NIR
laboratory spectra of BIF samples Hem_J011 and Goe_J017 along with the CRISM
spectral library spectra (with the sample names Hem_F1CC17B, Hem_CAGR04,
Goe_C1GO01 and Goe_C1JB047).
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housed in Physical Research Laboratory, Ahmedabad, India. The
analytical conditions were: current of 30 nA and voltage of 15 kV for
hematite, magnetite, specularite and jaspilitic chert, and a current
of 10 nA and voltage of 12 kV for chamosite. Silicate and oxide
standards were used for calibration of the samples.

Laser Raman Spectroscopic analysis of BIF samples was con-
ducted on a Laser Raman spectrometer at Indian Institute of Science
(IISc), Bangalore, India. Laser Raman spectrometer at IISc equipped
with a SPEX double monochromator, an intensified CCD and 2 ns
pulsed ND-YAG lasers with frequency doubled output was used for
analysis.

The infrared spectroscopic data was obtained by means of a
Fourier Transform Infrared spectrometer with an attenuated total
reflectance accessory (FTIR-ATR) housed at Indian Institute of Space
Science and Technology (IIST), Thiruvananthapuram, India. The
spectra were collected with the PerkinElmer’s Infrared (FTIR & IR)
spectrometer using fine powders of samples. The powders were
pressed at 55 to 60 kb. The infrared (IR) spectra were recorded
immediately after the separation of the sample powder from the
bulk sample. Spectra were collected in 700 to 4000 cm�1 range
with an optical resolution of 0.5 cm�1 and wavelength precision of
0.01 cm�1 at 220 V, 50 Hz power supply. A baseline correction was
made before interpretation of the data.

3. Results

3.1. VIS/NIR Spectra

The spectral characteristics of the samples were studied to
specify the characteristic absorption bands for different minerals
in BIFs. It has been observed that the spectra of the samples
(Hem_J011 and Goe_J017) from Joda and Daitari, Odisha are found
to match with the spectra of hematite and goethite minerals of
USGS spectral library (mineral ID Hem_FE2602 and GWS220)
(Fig. 4a). The spectra of the sample Hem_J011 shows the charac-
teristic absorption features at 0.65 (weak) and 0.86 mm (strong)
which are basically due to strong iron-oxygen charge transfer
absorption and electronic band related to crystal field transitions
in ferric iron respectively (Thangavelu et al., 2011). The repre-
sentative spectrum of hematite is devoid of any absorption after 1
to 2.5 mm, but has a moderate increase in the reflectance in the
region. Sample Goe_J017 has shown the spectral signature with
typical absorption bands at 0.65 (weak), 0.86 (strong), 1.4 (strong)
and 1.9 mm (strong), in which 0.65 and 0.86 mm are due to strong
iron-oxygen charge transfer absorption and electronic band
related to crystal field transitions in ferric iron, and 1.4 and 1.9 mm
are due H2O and OH/H2O respectively. Presence of hydrous ab-
sorption bands in VIS-NIR spectra confirms the existence of
goethite in these samples.

The spectra of samples Hem_J011 and Goe_J017 have been
compared with the CRISM (Compact Reconnaissance Imaging
Spectrometer for Mars) spectral library spectra of 4 samples
(Hem_F1CC17B, Hem_CAGR04, Goe_C1GO01 and Goe_C1JB047)
for the assessment of the differences/similarities in the spectral
signatures (Fig. 4b). A careful investigation on the spectral sig-
natures of hematite from present study (Hem_J011) and spectral
library spectrum (Hem_F1CC17B and Hem_CAGR04) revealed that
the spectral signatures of Hem_J011 and Hem_CAGR04 are similar
with a minor variation in the absorption pattern in 0.5e0.8 mm
wavelength regions. This difference in the absorption pattern can

http://speclab.cr.usgs.gov/spectral
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be attributed to the compositional variations of iron oxides in the
samples. Apart from this variation in the spectrum in this region,
there are no other visible differences in both the spectra. CRISM
spectral library spectrum of the sample Hem_F1CC17B shows
similar absorption pattern to the sample Hem_J011 spectrum in
the 0.5 to 1 mm wavelength region whereas a prominent differ-
ence is being observed in 1 to 2.5 mm region. The difference is a
huge sag centered at around 1.6 mm in the spectral library spec-
trum Hem_F1CC17B, whereas no such feature is observed in the
spectrum of hematite present in the sample Hem-J011 from the
study area. Spectral signature of Goe_C1GO01 and Goe_C1JB047
from CRISM spectral library are found to be matching well with
the spectrum of Goe_J017 from the study area. The representative
spectra show absorption bands at 0.65 (weak), 0.86 (strong), 1.4
(weak for CRISM spectral library spectra and strong for samples
from present study) and 1.9 mm (weak for CRISM spectral library
spectra and strong for samples from present study), and these
absorption bands assignment is same as in the earlier described
text. Additionally, CRISM spectral library spectra of Goe_C1GO01
and Goe_C1JB047 show weak and narrow absorption at 2.4 mm,
which is typical to the OH bond in water. Summary of the ab-
sorption bands detected in the samples from present study, USGS
mineral spectral library and CRISM spectral library are given in
Table 1.
Figure 5. (a) Photomicrographs of finely laminated BIFs where iron-‘rich’ microbands
are defined by hematite and/magnetite, interbedded with occasional pure chert micro
layers and (b) prominent microbands of hematite and interbedded light colored chert
along with the micro-intrusion of quartz vein.
3.2. Petrographic studies

Mineralogical studies of Joda and Daitari BIFs revealed that they
consist of hematite, magnetite, specularite and jaspilitic chert.
Alternate bands of hematite and jaspilitic chert have been observed
(Fig. 5). Contacts between the microbands of hematite and jaspilitic
chert are usually sharp, with more transition towards low hematite
(Fig. 5a,b). Hematite microbands are comparatively thick, mainly
consist of hematite grains (in high proportion), and large grains of
magnetite and specularite. Jaspilitic chert band comprises mainly
quartz grains with some large distorted grains of hematite. Quartz
veins of varying thickness are present intruding alternate bands of
hematite and jaspilitic quartz (Fig. 5b). Chamosite, a hydrous
aluminum silicate of iron, is also present in very small amounts.

The iron-rich layer is mainly composed of hematite grains with
different textures. Massive anhedral aggregates of hematite and
xenomorphic hematite crystals are common (Fig. 6a,b). Sporadic
distribution of relatively larger hematite grains is conspicuous.
Quartz veins are alsomarkedwith the presence of hematite crystals
(Fig. 6c). Mostly, platy specularite aggregates are found associated
with the jaspilitic chert microbands rather than hematite rich layer
(Fig. 6d). Chamosite is found associated with platy specularites.
Specularite, also called gray hematite, is mainly found in the form of
platy crystals in the groundmass of fine grained hematite. A very
small amount of magnetite is present in the hematite rich layers.
Jaspilitic chert occurs inter-bedded with Fe-rich microbands.
Table 1
Summary of the absorption bands identified in the samples from BIFs in Singhbhum crat
absorption bands were observed in the spectral signature.

Identity Study area USGS spectral library CRISM

Sample name Hem_J011 Goe_J017 Hem_FE2602 GWS220 Hem_F

0.65 mm X X X X X
0.86 mm X X X X X
1.4 mm X X
1.9 mm X X
2 mm X
2.4 mm
3.3. Laser Raman spectra

Laser Raman spectra of characteristic minerals are presented in
Fig. 7. The main phases identified using laser Raman spectroscopic
technique include quartz and hematite; observed Raman peaks at
142, 209, 353, 469 and 1160 cm�1 correspond to quartz (Fig. 7aec)
and 224, 291 and 1315 cm�1 correspond to hematite (Fig. 7d,e) in
accordancewith the literature (Shebanova and Lazor, 2003). Raman
spectral quality depends mainly on grain size; therefore it is
necessary to take into consideration the crystallinity/grain size of
the samples. Hematite, the main crystalline mineral in oxide group
is considered as a strong Raman scatterer, gives strong peaks in
210e294 cm�1 region, mainly due to translational movements of
Fe. Apart from these Raman peaks of hematite, one moderate peak
has also been observed at 1315 cm�1 (Fig. 7f). Presence of goethite is
clear in the samples with the VIS-NIR analysis, but no prominent
peaks are observed in the Raman spectra, a broad peak is observed
in the form of a doublet at 386e412 cm�1 in which 386 cm�1 peak
corresponds to goethite (Fig. 7c,d). Magnetite is recognized as a
minor phase and identified by the typical Raman peak at 670 cm�1

(Fig. 7f).
on, USGS mineral spectral library and CRISM spectral library. X indicates that these

spectral library Assignments

1CC17B Hem_CAGR04 Goe_C1GO01 Goe_C1JB047

X X X Ferric ion
X X X Ferric ion

X H2O
X X OH/H2O

Pyroxenes
X X OH/H2O



Figure 6. Back scattered electron images illustrating various textures of studied BIFs: (a) finely crystallized laths of hematite, (b) cryptocrystalline specularite, (c) quartz vein with
hematitic inclusions and (d) a single large grain of specularite.

M. Singh et al. / Geoscience Frontiers 7 (2016) 927e936932
3.4. ATR-FTIR spectra

The average of 6 collected spectra using ATR-FTIR analyses is
presented in Fig. 8 where most intense vibrations fall in the
wavelength region 700 to 1800 cm�1. The most intense vibrations
in the wavelength range 900e1130 cm�1 are attributed to hematite
and quartz (Brinatti et al., 2010). Relatively mild vibrations in the
region of 1200 of 1800 cm�1 are due to hydroxyl bending in the
sample (Ruan et al., 2002). Apart from these intense vibrations, the
wavelength region 2800 to 3000 cm�1 is marked bymild vibrations
which are attributed to hydroxyl stretching. The problem observed
here is that minor mineral phases (goethite, quartz) are masked by
the major mineral phase (hematite) when the sample is crushed
and mixed, and hence these phases cannot be detected in the
spectra due to a relatively high detection threshold inherent to this
kind of technique. However, ATR-FTIR analysis is a very sensitive
technique to the hydrogen bonding and water vibrations (Rull et al.,
2007; Nakamoto, 2009), thus being used for the determination of
hydrous phases in natural mineral/rock samples. The water vibra-
tion has been confirmed by the observed 3600 cm�1 vibration in
the spectra. The results point to the hydration of outcrops by
percolating water in the aerial to sub-aerial environment.

A summary of various mineral phases detected by different
techniques is listed in Table 2.

4. Discussion

Most significant aspect of iron phases is that, they occur in a
variety of geological settings, beginning from modern iron rich
environments such as Rio Tinto to older ones such as BIFs and their
comparison may help in generating the feasible models for the
early formation of primary iron phases and the initiation of
hematite formation on Mars. Joda and Daitari iron ore mines
consist of stratigraphic layering or bands of hematite and quartz
(mainly jasper and/or chert) of sedimentary nature. VIS/NIR results
show characteristic spectral signatures of BIFs with absorption
bands at 0.65, 0.86, 1.4 and 1.9 mm by which the presence of he-
matite and goethite can be easily confirmed (Fig. 4a,b). Apart from
these Fe-oxide spectral signatures in terrestrial BIFs, silicate min-
erals (mainly quartz polymorphs) could also be identified in ther-
mal infrared region (8e14 mm) of electromagnetic spectrum
(Bridges et al., 2011). The reflectance maxima caused by silicon-
oxygen stretching vibrations in quartz is a distinctive sharply
pointed shape related to the polycrystalline grain fabrics and thin
iron oxide coating (Crowley et al., 2008). Specularite in Singhbhum
craton BIFs is the secondary mineral phase similar to goethite, and
has been generated from magnetite (Beura and Satpathy, 2012).
Initiatives to use laser Raman spectroscopy for planetary studies
has already been taken up as it has several advantages over other
types of spectroscopic techniques (Hirschfeld, 1974; Wang et al.,
1995; Sharma et al., 2002). Raman analysis provides sharp spec-
tral features forminerals and/mixtures. Hence, it is most likely to be
employed in interplanetary missions to detect spectral features of
various minerals in a particular region. The laser Raman and ATR-
FTIR spectra obtained for the BIF samples of Singhbhum craton
demonstrates the presence of oxide and silicate minerals such as
hematite and quartz (Figs. 7 and 8). Based on the ATR-FTIR spectral
results (moderate peak at 3600 cm�1), it is clear that hydrated
phases of iron oxide are present. VIS/NIR spectra also confirm the
hydrous phase of iron oxide, i.e. goethite, based on the identified
absorption bands at 1.4 and 1.9 mm. Mössbauer spectroscopic re-
sults are also reported for the native iron samples collected from
the Precambrian Chaibasa shales, Singhbhum craton, eastern India
(Chandra et al., 2010).



Table 2
Summary of the minerals detected in the samples using different techniques.
X indicates that these species were uniquely identified with the technique, while
O indicates that there is a weak and inconclusive, though compatible, feature.
I indicates that no feature was observed.

Detected mineral species Odisha BIF

VIS-NIR BSE Raman ATR-FTIR

Hematite X X X X
Goethite X O X X
Specularite I X O O
Magnetite I X X O
Quartz I X X X
Chamosite I X I I

Figure 7. Raman spectra of the major mineral phases in BIFs: (a) and (b) the charac-
teristic peaks of quartz, (c) a minor peak of hematite, (d) and (e) characteristic peaks
for hematite and quartz, and (f) the characteristic peak for hematite as a major
component and magnetite and quartz as minor components.
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Iron being sensitive to environmental conditions due to variable
oxidation states could form different minerals in response to the
existing environmental conditions such as Eh, pH and concentra-
tions of certain active species like CO2, SiO2, S etc. In terrestrial
conditions, hematite occupies a wider field of stability with high Eh
(>0.6) and high pH (>4) in Precambrian BIFs (including Odisha
Figure 8. ATR-FTIR Infrared Spectra from studied BIFs (average spectra of 6 analyses
performed with BIFs sample powders).
BIFs) and its formation is subjected to the activity of CO2, S and SiO2
and therefore, always associated with silicates, carbonates and
sulphides (Garrels and Christ, 1965; Stanton, 1972). The common
belief on the formation of BIFs in terrestrial conditions is through
direct precipitation from low temperature aqueous solutions in
response to changes in environmental conditions (Eh/pH) or
different diagenetic alterations of precipitated ferric-hydroxides,
but it has also been reported that the BIFmineralogy is the outcome
of metamorphic processes (Mücke and Annor, 1993). On Mars,
lepidocrocite in addition to goethite is possibly precipitated from
low temperature aqueous solutions in basaltic regolith (Posey-
Dowty et al., 1986; King and McSween, 2005). After the formation
of iron phases in conditions of a warmer and H2O-CO2 rich
atmospheres, hematite was formed from these previously formed
Fe-oxide phases (Gooding, 1978; Burns and Fisher, 1990, 1993).
Therefore, the mechanisms for the formation of hematite from
other iron phases on both planetary surfaces are proposed to be
similar (Burns, 1988; King and McSween, 2005).

The geomorphological and mineralogical evidences revealed
early Mars has hosted diverse environments dominated by water
masses (Carr, 1981, 1996; Banin et al., 1992; Longhi et al., 1992;
Morris et al., 2006) and these circumstances has raised the possi-
bility of occurrence of BIFs on Mars, which is not yet confirmed.
Analysis of thermal emissivity spectrometer (TES) data has proved
the occurrences of coarse-grained crystalline hematite
(Christensen et al., 2000, 2001), with no evidences of cherty silica in
Meridiani region on Mars. Considering the absence of any cherty
silica deposit in association with hematite deposits, the Rio Tinto
system deposits have been studied in detail as an analog to ancient
environment on Mars in a regional scale. The Tinto River Basin, an
extreme acidic environment, has water enriched in ferric iron and
sulphates and these acidic waters produce sediments rich in ferric
iron dominated by sulfate and oxyhydroxide associations, in which
silicates are absent (Fernández-Remolar et al., 2004). Further, the
mineralogical assemblage identified includes hematite deposits
along with other silicate minerals and sulfate salts (Squyres et al.,
2004, 2008; Clark et al., 2005). Identification of silicate phases in
hematite rich regions increases the possibility for the detection of
deposits comparable to terrestrial BIFs. Infra-red analyses of
terrestrial platy gray hematites support an aqueous origin for iron
oxides on Mars surface (Lane et al., 2002). Genesis of layered he-
matite in Meridiani region has been proposed to be formed though
the precipitation of insoluble hydrous ferric oxide during the
oxygenation of the upper layers of the sea, and further through
burial metamorphism (Christensen et al., 2000; Lane et al., 2000,
2002; Fernández Remolar et al., 2002, 2004). Considering the
extent of hematite outcrops in Mars, the environment that hosted
BIFs have been proposed to be analog to the environments inwhich
Martian hematite could have been formed (Catling and Moore,
2000, 2003). From the analog point of view, the mineralogy



Table 3
Comparative account of the different features of BIFs in Singhbhum craton to that of earlier studied Martian analog sites like Lake Superior and Carajas (Brazil) and Mars.

Features BIF Lake Superior BIF Carajas BIF (Brazil)

Hyperspectral
characterization

Absorption band at 650e850 nm
corresponding to Fe content in hematite

Absorption band at 650e850 nm
corresponding to Fe content in hematite

Deep absorption band at 880 nm

Metamorphism/
deformation

Unmetamorphosed except for localized thermal
metamorphism effect (Majumder et al., 1982)

More metamorphosed state as a whole deposit Supracrustals sequence with little
deformation (Bridges et al., 2011)

Research as
analog to Mars

Early environments of different regions and implications
to formation of specularite on Mars (present study)

Spectral observations to locate the BIFs on
Mars (Fallacaro and Calvin, 2003)

Ancient water processes
(Bridges et al., 2011)
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detected in Odisha BIFs show similarities to those obtained from
Mars, especially hematite rich Meridiani region on Mars. Miner-
alogy of Singhbhum craton BIFs detected by several techniques
includes Fe oxide phases (hematite, goethite, magnetite and spec-
ularite) and silicate phases (chert/jasper/quartz). The optimum
absorption bands identified by VIS-NIR radiometry for hematite
and goethite could be used as a reference for future interplanetary
mineralogical orbital explorations along with the USGS and CRISM
spectral libraries. In the Martian scenario, the reflectance spectra
could be used to locate BIFs/a similar deposit, as it is very much
likely that they would be present at regional scale (Bridges et al.,
2008). Specularite, a secondary iron oxide in the study area was
formed from the earlier iron phases (possibly from magnetite). We
envisage a similar mechanism for the formation of extensive
specularite/platy hematite deposits onMars. Therefore, Singhbhum
craton BIFs provide planetary geoscientists with an excellent analog
for water driven processes that resulted in the generation of
specularite on Earth andMars. A comparative account of the results
from Singhbhum craton BIFs to other proposed analog BIFs sites
namely Lake Superior BIFs and Brazilian Carajas BIFs is given in
Table 3.

BIFs are chemical sediments, typically thinly bedded or lami-
nated, whose principal chemistry comprises anonymously high
content of Fe, commonly but not inevitably containing silica rich
layers, mainly chert (Klein and Beukes, 1992, 1989). The very first
evidence of ancient life on Earth has been found associatedwith the
Gunflint Iron Formation, which contains a variety of filamentous to
coccoidal forms of microorganisms (Barghoorn and Tyler, 1965;
Awramik and Barghoorn, 1977; Strother and Tobin, 1987). Fila-
mentous and coccoidal microorganisms of Gunflint Iron Formation
has been investigated by many scientists and has been found that
some of the filamentous microfossils were mineralized by hematite
(Allen et al., 2001; Schelble et al., 2004; De Gregorio and Sharp,
2006). Several microfossils have been detected in chert, including
Gunflint Chert (Barghoorn and Tyler, 1965), Dressler Formation
(Van Kranendonk, 2006) and Apex Chert (Schopf, 1993). The pre-
cipitation of silica forms an ideal environment for the preservation
of microfossils in geologically significant periods (Preston and
Genge, 2010), because it provides a harder substrate which is less
prone to reworking and removal of biomolecules. Rhyne chert has
been studied for its silicified microorganisms by Preston and Genge
(2010) and proposed that if life had ever existed on Mars, micro-
organisms would have likely been silicified by Martian hot spring
deposit with regards to the similar early evolution of Earth and
Mars. Black chert deposits of iron ore group of Singhbhum craton
can also add valuable information and help in identifying similar
characters. Black chert that is associated with BIFs in Singhbhum
craton has been proved as a potential host revealing several clues
on the palaeobiogical evolution of our early Earth (Barghoorn and
Tyler, 1965; Schopf, 1993; Van Kranendonk, 2006).

Bridges et al. (2011) proposed that where spectra indicate bands
of hematite and jaspilitic quartz, without discernable clays, and
where this pattern extends from the millimeter to meter scale and
is laterally continuous, it is highly likely BIFs are present. On Mars,
these signatures should be observable at the regional scale from
orbiters and at outcrop scale from rovers (Bridges et al., 2011).
Other important aspect to be analyzed is that BIFs have a strong
magnetic signature. NASA’s Mars Global Surveyor (MGS) mission
found strong magnetic lineations in the planet’s ancient crust that
exceed terrestrial values by an order of magnitude, indicating the
presence of an intense ancient Martian magnetic field (Connerney
et al., 1999). The magnetized material might be ancient lava flows
or magmatic intrusions, although a contribution from Martian BIFs
cannot be discounted (Bridges et al., 2011). The search for the
banded iron formation on Mars would be an outstanding break-
through to get the insights into the geological past of the planet.
The hematite deposits therefore, could be treated as potential
target rocks for probing ancient microbial and hydration processes.
The terrestrial BIFs have recorded primitive aqueous habitable
environments where early forms of life such as stromatolites have
been reported (Cloud, 1965, 1972; Hartmann, 1984; Konhauser
et al., 2002, 2003). The planetary geosciences community
consider BIFs as potential Martian analogs for hematite deposition
(Fallacaro and Calvin, 2003; Bridges et al., 2011).

5. Conclusions

This study on geological and spectral characteristics of BIFs in
Singhbhum craton will help to have a better understanding on the
paleo-environmental conditions of formation of iron deposits on
Mars. Spectroscopic studies could aid in differentiating the iron ore
deposits on Mars and also help in the relative enrichment of Fe
content in different deposits. Laser Raman and ATR-FTIR spectro-
scopic techniques are proved to be very significant in analyzing
different mineral mixtures, whereas it is difficult to identify each
mineral species in a mixture through VIS/NIR radiometry. Chert/
quartz, an integral part of BIFs could not be identified in VIS/NIR
analysis, but it is easily distinguishable by laser Raman and ATR-
FTIR spectroscopic techniques. We hope that this geologic and
spectral study of BIFs will help during the testing and calibration
phase of the on-going and future missions to Mars.
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