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Abstract

We perform a finite energy sum rule analysis of the flavorud two-point V–A current correlator,�Π(Q2). The analysis, which
is performed using both the ALEPH and OPAL databases for the V–A spectral function,�ρ, allows us to extract the dimension
six V–A OPE coefficient,a6, which is related to the matrix element of the electroweak penguin operator,Q8, by chiral symmetry.
The result fora6 leads directly to the improved (chiral limit) determinationε′/ε = (−15.0 ± 2.7)× 10−4. Determination of
higher dimension OPE contributions also allows us to perform an independent test using a low-scale constrained dispersive
analysis, which provides a highly nontrivial consistency check of the results.
 2003 Elsevier Science B.V.

1. Introduction

Intense effort carried out over many years to mea-
sureε′/ε has yielded the precise determination [1]

(1)[ε′/ε]EXPT = (16.6± 1.6)× 10−4.

In the Standard Model, the primary dependence of
ε′/ε lies with theK-to-2π matrix elements of the
QCD penguin (Q6) and EW penguin (Q8) opera-
tors [2]. For example, in theMS-NDR scheme at scale
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µ= 2 GeV one has [3]

ε′

ε
= 20× 10−4

( Imλt
1.3× 10−3

)

(2)
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]
,

where the factorΩIB accounts for effects of isospin
breaking. The electroweak penguin (EWP) operator,
the subject of our attention in this Letter, is given by

(3)
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ūbΓ

R
µ ua − 1

2
d̄bΓ

R
µ da − 1

2
s̄bΓ

R
µ sa

)
,

0370-2693/03  2003 Elsevier Science B.V.
doi:10.1016/S0370-2693(03)00010-8

Open access under CC BY license.

Open access under CC BY license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82660107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/npe
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


72 V. Cirigliano et al. / Physics Letters B 555 (2003) 71–82

whereΓ µL,R ≡ γ µ(1± γ5) anda, b are color indices.
In a previous paper [4], we worked in the SU(3)

chiral limit (mu =md =ms = 0) and obtained for the
EWP contribution toε′/ε,

(4)[ε′/ε]EWP= (−22± 7)× 10−4.

The 32% uncertainty in this determination is small
enough to allow the conclusion that the chiral value
for [ε′/ε]EWP is negative and rather large (roughly
the magnitude of the experimental signal forε′/ε).
Moreover, we understand the source of the uncertainty.
Chiral sum rules used in Ref. [4] to obtain the result in
Eq. (4) require knowledge of V–A spectral functions
over all energy. However, data1 provides input only
up to the scales = m2

τ . We overcame this problem
in Ref. [4] by employing the chiral sum rules of
Weinberg [5] and others [6] as constraints. In all,
our procedure was subject to errors coming from
the spectral function data set [7,8] as well as those
associated with quantities (the pion decay constant and
the pion electromagnetic mass splitting) whose values
must be estimated in the chiral limit [9].

It is our purpose in this Letter to report on an
improved chiral determination of[ε′/ε]EWP (i.e., one
with reduced uncertainty) which uses finite energy
sum rules (FESR) as the main theoretical technique
[10]. However, it is necessary to summarize briefly
aspects of Ref. [4] since this new approach relies
upon a number of details derived there. We do this in
Section 2, then go on to describe the FESR analysis in
Section 3, discuss the implications for the electroweak
matrix elements in Section 4, and summarize our
findings in Section 5. A more detailed discussion
of the FESR analysis is presented in a companion
paper [11].

2. Chiral properties of 〈(ππ)I=2|Q7,8|K0〉

In the chiral limit the matrix elements〈(ππ)I=2
|Q8|K0〉µ and also〈(ππ)I=2|Q7|K0〉µ become ex-
pressible in terms of vacuum matrix elements〈O1〉µ

1 In this Letter we work with the ALEPH and OPAL spectral
functions displayed in Fig. 1(a), (b). This normalization for�ρ
corresponds to the flavorud two-point V–A current correlator and
hastwice the magnitude employed in Ref. [4].

(a)

(b)

Fig. 1. (a) ALEPH data; (b) OPAL data.

and〈O8〉µ, [4,12]
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,

whereF (0)π is the pion decay constant evaluated in
the chiral limit.2 The sum rule analysis of Ref. [4]

2 The operatorsO1,8 are defined as

O1 ≡ q̄γµ τ32 qq̄γ
µ τ3

2
q − q̄γµγ5

τ3

2
qq̄γ µγ5

τ3

2
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τ3

2
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a τ3

2
qq̄γ µγ5λ

a τ3

2
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implies that the numerical effect of〈O1〉2 GeV on
limp=0〈(ππ)I=2|Q8|K0〉2 GeV is just 2.5% that of
〈O8〉2 GeV. This means that at the level of accuracy we
can realistically hope to achieve for limp=0〈(ππ)I=2
|Q8|K0〉2 GeV, it is sufficient to ignore the contribu-
tion from 〈O1〉2 GeV and focus on just the quantity
〈O8〉2 GeV. We return to this point at the end of this
section.

2.1. Getting〈O8〉µ from the OPE of�Π

Much about〈O8〉µ (and also about〈O1〉µ) can be
learned from the flavorud V–A correlator. Defining
�Π ≡Π(0+1)

V −Π(0+1)
A , where the superscript(0+1)

indicates the sum of the spin 0 and 1 parts of the
relevant correlator, the dispersive representation of
�Π is

(6)�Π
(
Q2) = − 2F 2

π

m2
π +Q2 +

∞∫
sthr

ds
�ρ(s)

s +Q2 .

Here,Q2 ≡ −q2 is the variable for space-like mo-
menta and�ρ ≡ ρ

(0+1)
V − ρ(0+1)

A is the spectral func-
tion of �Π . For large space-like momentaQ2 �
�2

QCD and throughO(α2
s ) in QCD counting,�Π(Q2)

can be represented via the operator product expansion
(OPE)

�Π
(
Q2) ∼

∑
d

1

Qd

[
ad(µ)+ bd(µ) lnQ

2

µ2

]

(7)(d = 2,4,6,8,10, . . .),

wheread(µ) andbd(µ) are combinations of vacuum
expectation values of local operators of dimensiond .
In the chiral limit, the contributions from dimensions
d = 2,4 are absent and the above sum begins with
dimensiond = 6.

The d = 6 OPE coefficientsa6, b6 are of special
interest because they are related to the vacuum matrix
elements〈O8〉µ and 〈O1〉µ. Since the relations are
renormalization scheme dependent we consider for
definitenessMS renormalization with NDR and HV
prescriptions forγ5 and the evanescent operator basis
used in Refs. [13,14]. IncludingO(α2

s ) terms this leads

In the above,q = u,d, s, τ3 is a Pauli (flavor) matrix,{λa} are the
Gell-Mann color matrices and the subscripts onO1, O8 refer to the
color carried by their currents.

to

a6(µ)= 2
[
2π〈αsO8〉µ +A8

〈
α2
sO8

〉
µ

+A1
〈
α2
sO1

〉
µ

]
,

(8)b6(µ)= 2
[
B8

〈
α2
sO8

〉
µ

+B1
〈
α2
sO1

〉
µ

]
.

In terms of their dependence on the NDR or HV
renormalization scheme, the coefficientsA1,A8 and
B1,B8 are given by

(9)

NDR HV
A1 2 −10/3
A8 205/36 169/36
B1 8/3 8/3
B8 −2/3 −2/3

where we work with three colors (Nc = 3) and four
active flavors (nf = 4).

Given our earlier discussion following Eq. (5)
about the dominance of〈O8〉2 GeV relative to
〈O1〉2 GeV, it follows from Eq. (8) that an attractive
alternative to the sum rule procedure of Ref. [4] for
finding limp=0〈(ππ)I=2|Q8|K0〉µ is to determine the
OPE coefficienta6(µ). The FESR approach is natu-
rally structured to do just that. Moreover, since only
knowledge of�ρ in the data region is required, the
prospect of an improved determination is well moti-
vated.

2.2. The sum rule approach revisited

Independently from the method described in the
preceding section, knowledge gained from the FESR
analysis of the higher-dimensional OPE coefficients
{ad�8} allows us to return to the sum rule method
of Ref. [4] and perform an improved determination
of 〈O8〉µ and 〈O1〉µ. This hybrid method provides
a nontrivial consistency check on the FESR results
of this Letter. We summarize this approach in the
following.

The two sum rules derived in Ref. [4] are

〈O1〉µ − 3C8

8π
〈αsO8〉µ = 3

(4π)2
[
I1(µ)+H1(µ)

]
,

2π〈αsO8〉µ +A1
〈
α2
sO1

〉
µ

+A8
〈
α2
sO8

〉
µ

(10)= I8(µ)−H8(µ),
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where

I1 = 1

2

∞∫
0

ds s2 ln

(
s +µ2

s

)
�ρ(s),

(11)I8 = 1

2

∞∫
0

ds s2
µ2

s +µ2�ρ(s)

and

(12)

H1 = 1

2

∑
d�8

2

d − 6

ad(µ)

µd−6 , H8 = 1

2

∑
d�8

ad(µ)

µd−6 .

The above definitions ofI1,8 andH1,8 coincide with
the ones given in Ref. [4]—the prefactors of 1/2
simply account for the different normalization of�ρ
used in this work. The scheme dependent quantities
A1,A8 of Eq. (10) are given in Eq. (9) andC8 appears
in Table 1 of Ref. [4]. Observe that even if the higher
dimension OPE coefficients inH1,8 are not known, the
sum rules can nonetheless be successfully evaluated.
One simply chooses a sufficiently large scaleµ, e.g., at
µ= 4 GeV, to suppress contributions from the{ad�8}
and then uses the renormalization group equations to
evolve down to the scaleµ = 2 GeV. This was the
procedure adopted in Ref. [4]. However, it turns out
that the uncertainty in evaluating the spectral integrals
in Eq. (10)growswith increasingµ and this source
of error is ultimately communicated to the sum rule

prediction for〈(ππ)I=2|Q7,8|K0〉MS
µ=2 GeV. Our FESR

determination of the{ad�8} allows us to avoid this
difficulty by allowing evaluation of the sum rules
directly at µ = 2 GeV and thus leads to reduced
uncertainties in the matrix element values. Results of
this hybrid approach are presented in Section 4.

We now turn to a discussion of our FESR analysis.

3. FESR analysis

We begin with the following exact consequence
of Cauchy’s theorem (plus the rigorous statement of
analytic structure for�Π ),

s0∫
sth

ds w(s)�ρ(s)− 2F 2
πw

(
m2
π

)

(13)= − 1

2πi

∮
|s|=s0

ds w(s)�Π(s),

where the contour of integration for�Π is a circle of
radiuss0 (cf. Fig. 2) andw(s) is analytic on and within
the given contour. The additive term proportional to
F 2
π on the left-hand side of Eq. (13) arises from the

pion pole. The object of FESRs is to replace�Π on
the circle by the asymptotic OPE form�ΠOPE (see
Eq. (7)) and thereby obtain constraints on the OPE
coefficients in terms of data from knowledge of the
spectral function�ρ.

Implementing this procedure but making no addi-
tional assumptions, we can then write compactly

s0∫
sth

ds w(s)�ρ(s)− 2F 2
πw

(
m2
π

)

(14)= − 1

2πi

∮
|s|=s0

ds w(s)�ΠOPE(s)−R[s0,w],

where the quantityR[s0,w] is defined as

R[s0,w]
(15)≡ − 1

2πi

∮
|s|=s0

ds w(s)
[
�ΠOPE(s)−�Π(s)

]
.

While Eqs. (14), (15) are valid for any weightw(s)
analytic in a region including the contour of Fig. 2,
the presence of the a priori unknown additive term
R[s0,w] generates a systematic uncertainty in the
extraction of the OPE coefficientsad via Eq. (14).
Therefore it is highly desirable to work with a range

Fig. 2. FESR contour.
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of s0 values and with weight functionsw(s) such that
the remainder termR[s0,w] is small compared to the
spectral integral itself. To accomplish this, we rely on
the observation that for|s| large enough (s0 ��2

QCD),
the OPE provides a good representation of the full
correlator along the whole circle except in a region
localized around the time-like axis. The physics of this
breakdown is given by the arguments of Poggio, Quinn
and Weinberg [15]. As a consequence one expects that
weights with a zero ats = s0, de-emphasizing the
region where the OPE fails, are good candidates to
generate a small-sizedR[s0,w] even for the relatively
low s0 values, between 2 GeV2 andm2

τ , as used in our
FESR analysis. Arguments which justify the choice of
this range are given in Section 3.2 following Eq. (21).

Supporting evidence for the procedure outlined
above is provided by one of us in previous studies of
the V and A correlators [10,16]. Internal consistency
checks of the V–A analysis are also possible (see Sec-
tion 3.2 for a further discussion of this point). More-
over, a study of models with pole contributions which
violate duality shows that the method succeeds in ex-
tracting the asymptotic values of the correspondingad
coefficients, even in the presence of such duality vio-
lation [11].

3.1. Choice of FESR weights

To complete preparations for performing our FESR
study, the highly nontrivial procedure of constructing
appropriate weightsw(s) must be addressed. Three
basic considerations govern our choice of weights:

(1) Because the OPE is known to fail along the
Res � 0 axis [15], we employ only ‘pinched’
weightsw(s0) = 0. In particular, recall that the
kinematic weight (w(yτ ) = (1 − yτ )

2(1 + 2yτ )
with yτ ≡ s/m2

τ ), which must be unfolded from
the experimental decay distribution in order to
obtain �ρ, contains a double zero ats = m2

τ .
To avoid enhancements of contributions from the
endpoint region, where experimental errors are
large, we therefore employ weightsw(y) = (1 −
y)2p(y) (y ≡ s/s0 and p(y) is a polynomial)
which also have a double zero ats = s0. An earlier
study [16] has demonstrated that the suppression
thus produced suffices to circumvent the OPE
breakdown.

(2) In order to maximize the statistical signal, the
weights should be such that large cancellations
in the difference between the separate V and A
spectral integrals are avoided.

(3) The separation of contributions with different di-
mension in a given pinch-weighted FESR
(pFESR) relies on the fact that the integrated
OPE contributions with differentd scale differ-
ently with s0. When one works in a limited win-
dow ofs0 values, the accuracy with which one can
perform this separation decreases as the number
of contributingad terms increases. We, therefore,
work with weights such that the minimum num-
ber (two) ofad contributions occurs in any of our
sum rules.

The above points are elaborated upon in Ref. [11].
The FESR equations for a set of weights,{wn}, are

of the general form

(16)Jn(s0)= fn(ad, ad ′, bd, bd ′ ; s0).
The quantityJn(s0) is defined as

(17)

Jn(s0)≡
s0∫

0

ds wn(y)�ρ(s)− 2F 2
πwn

(
m2
π

) − c(4)n ,

wherey ≡ s/s0 andc(4)n is the contribution from the
dimension-four part of the OPE.3

The functionsfn represent the OPE terms with
d � 6 integrated on the|s| = s0 circle. Polynomial
weights of increasing degree allow one to extract
condensatesad of increasing dimension. We use as
starting point for our analysis the sum rules based
on the weights of the lowest degree satisfying the
above criteria. We have also explored generalizations
to higher degree polynomials, and report details of this
analysis elsewhere [11].

The lowest degree weights satisfying our criteria
turn out to have degree three. The one which produces
the smallest relative errors on the spectral integrals is

(18)w1(y)= (1− y)2(1− 3y).

3 All the c(4)n terms (n= 1,2) are known explicitly up toO(α2
s )

and are numerically small, being proportional to the pion mass [11].
The 2F2

πwn(m
2
π ) terms are likewise small in our analysis, except

for the case of the weightw1, given in Eq. (18).
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An independent choice, also giving small relative
errors, is

(19)w2(y)= (1− y)2y.
These weights produce OPE integrals involvinga6 and
a8:

f1(a6, a8; s0)
≡ 7

s20

a6

[
1+ r6 log

(
s0

µ2

)
+ 3

14
r6

]
+ 3

a8

s30

,

(20)

f2(a6, a8; s0)≡ − 2

s20

a6

[
1+ r6 log

(
s0

µ2

)]
− a8

s30

.

In Eq. (20) r6 ≡ b6/a6, and we neglect all the
other {bn} OPE coefficients since they are QCD
suppressed (bn ∼ anαs/π ), and are accompanied by
small numerical coefficients in the FESR relations.
For the ratior6 we rely on the explicit NLO QCD
expressions of Eq. (8) and on the numerical estimates
of 〈O1〉 and〈O8〉 given in Ref. [4].

3.2. FESR analysis: fit and results

The FESR relations of Eqs. (16), (17), (20) for the
casesn = 1,2 allow us to impose constraints on the
coefficientsa6 anda8, as we knowJ1,2(s0) from data
for s0 �m2

τ . The treatment of Eq. (17) requires some
care due to the presence of strongly correlated errors
in the experimental spectral function�ρ. Using the
covariance matrix for the spectral function data, we
calculate the covariance matrix for the set of spectral
integralsJn(s0): Cov(Jn(s0), Jm(s′0)) ≡ V(n,m)

s0,s
′
0

. Thus

we form the weighted least-square function

χ2 =
∑
s0

∑
n=1,2

(
Jn(s0)− fn(s0)

)[
V(n,n)s0,s0

]−1

(21)× (
Jn(s0)− fn(s0)

)
,

which sums over the set ofs0 values and the two FESR
relations (n= 1,2).

We determine the ‘window’ ofs0 values used in
our analysis as follows, considering for definiteness
the ALEPH data sample. The largests0 value (upper
edge of the window) is taken ass0 = 3.15 GeV2 �
m2
τ simply because it is there that the ALEPH data

sample for�ρ runs out. The smallests0 value, taken
ass0 = 1.95 GeV2, is established by trying ever lower

s0 values until the extracteda6(s0) (which is the
most accurately determined OPE coefficient) ceases
to be consistent with the previous values obtained
from smaller analysis windows. In the final analysis
seven equally-spaced values, froms0 = 1.95 to s0 =
3.15 in the ALEPH case, were adopted [11]. We
use the ‘diagonal’ least-square function as defined in
Eq. (21) to avoid known problems of fits to strongly
correlated data [17]. Minimization ofχ2 with respect
to variations in a6 and a8 yields best fit values
for these quantities. With this procedure, as is well
known, the one-sigma errors and rms errors do not
coincide. The former are smaller, and underestimate
the variation of the fittedad produced by fluctuations
in the input experimental data. All the errors quoted
below are the rms errors, i.e., the square roots of the
diagonal elements of the covariance matrix for the
a6, a8 solution set. We thereby arrive at the following
results withrenormalization scale set atµ= 2 GeV.

3.2.1. Fit to ALEPH data

a6 = (−44.5± 6.3± 3.4)× 10−4 GeV6,

(22)a8 = (−61.6± 28.9± 13.8)× 10−4 GeV8.

The first error is associated with the ALEPH covari-
ance matrix. The second is obtained by adding in
quadrature uncertainties from parameters which enter
the ALEPH normalization of the spectral function and
from parameters occurring on the ‘theoretical’ side of
the FESR. The correlation coefficient for the fitted pa-
rameters is found to bec(a6, a8)= −0.995, so the out-
put is highly correlated.

By extending the set of weights employed in our
analysis, it is possible to construct sum rules which
receive contributions from thead with d > 8.4 In this
manner we have successfully determined thead up
to d = 16 and thus have evaluated the quantitiesH1
and H8 defined earlier in Eq. (12). We find at the
renormalization scaleµ= 2 GeV,

H1 = (−2.7± 3.6± 0.5)× 10−4 GeV6,

(23)H8 = (−1.3± 3.0± 2.0)× 10−4 GeV6.

4 The process of choosing weights in such a way as to optimize
the determination of the higher dimension condensate combinations,
ad , is discussed in more detail in Ref. [11].
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Table 1
Summary of FESR results

a6 (GeV6) a8 (GeV8)

ALEPH (−44.5± 7.2)× 10−4 (−61.6± 32.0)× 10−4

OPAL (−54.3± 7.8)× 10−4 (−13.5± 35.3)× 10−4

The first error inH1,8 comes from the correlated un-
certainties in the OPE coefficients{ad}. The second
represents our estimate of the error incurred in trun-
cating the OPE sum atd = 16. We have obtained this
estimate by extending our extraction out tod = 24. Al-
though the sums forH1,8(2 GeV) are found to be well
converged byd = 24, the extractions of thead with
d = 18→ 24 are, however, less certain. We therefore
use the difference of thed = 16 andd = 24 sums as a
means of estimating the error associated with employ-
ing only the better-determinedd � 16 terms [11].

3.2.2. Fit to OPAL data

a6 = (−54.3± 7.2± 3.1)× 10−4 GeV6,

(24)a8 = (−13.5± 33.3± 11.7)× 10−4 GeV8.

The first error is associated with the OPAL covari-
ance matrix, and the second is obtained by adding
in quadrature the uncertainties associated with para-
meters entering both the normalization of the spectral
function as well as those from the ‘theoretical’ side
of the FESR. The correlation coefficient for the fitted
parameters is found to bec(a6, a8) = −0.989, again
corresponding to a highly correlated output.

In like manner to the ALEPH-based determinations
of H1 andH8, we have results from OPAL data:

H1 = (−0.4± 3.7± 0.1)× 10−4 GeV6,

(25)H8 = (0.6± 3.0± 1.0)× 10−4 GeV6.

The errors are treated analogously as in Eq. (23).
Upon adding in quadrature the uncertainties dis-

played above, we obtain the determinations gathered
in Table 1.

3.3. Testing for duality violation

The errors reported above are essentially of an
experimental nature. In order to address potential
systematic effects due toR[s0,w] (duality violation),
we have repeated the fit procedure in differents0

Fig. 3. Variation of f1 (continuous curve) andJ1 (data) with
s0 (GeV2).

Fig. 4. Variation of f2 (continuous curve) andJ2 (data) with
s0 (GeV2).

windows (nested sub-windows and nonoverlapping
sub-windows). We find that the new values for the
fitted parameters are very consistent with each other,
thereby confirming that the effect ofR[s0,w] is
suppressed in this case. A more explicit and revealing
portrait of the FESR machinery is obtained by plotting
Jn(s0) and fn(a6, a8; s0) as a function ofs0, as in
Figs. 3, 4. In each case, an excellent match of the
OPE curve versus data is achieved, showing no sign
of duality violation within the present experimental
uncertainty.

Given the relatively low values ofs0 used in the
analysis, a legitimate worry is that the FESR analysis,
despite the excellent match displayed in Figs. 3, 4,
might just be extracting the coefficients relevant to
the Laurant expansion of the correlator in a sub-
asymptotic regime, and not the condensates relevant
to the truly asymptotic region. A way to test whether
or not we are in such a scenario is to use the
condensates extracted in the FESR analysis as input in
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a dispersive analysis relevant to the asymptotic regime,
and observe the quality of the match there. Such a class
of tests is readily possible within explicit models [18,
19] of a given correlator, and shows a very mild
pattern of duality violation. Any attempt to perform
such tests in the real world is limited by incomplete
knowledge of the spectral function. Nonetheless, in
our case, with the help of classical sum rules it is
possible to construct relevant asymptotic tests, which
are described in Ref. [11]. All indications coming from
these tests point to negligible duality violation, within
the present errors.

4. The electroweak matrix elements
〈(ππ)I=2|Q7,8|K0〉

In the previous section, we have used the FESR
machinery to obtain numerical determinations of OPE
coefficients through orderd = 16. These can be used
to obtain the matrix elementsM7,8,

(26)M7,8 ≡ 〈(ππ)I=2|Q7,8|K0〉MS-NDR
µ=2 GeV

1 GeV3
.

Note in this definition thatM7,8 are simply dimen-
sionless numbers. We apply our FESR results via two
distinct procedures:

(1) FESR: insertion ofa6 into Eqs. (5), (8) leads
directly toM8, up to a small contribution (at the
5% level) due to〈O1〉. In the numerical evaluation
we use〈O1〉 from Ref. [4].

(2) HYBRID: insertion of the FESR-derived quanti-
ties H1,8 in the sum rules of Eq. (10), together
with Eq. (5), leads to bothM7 andM8. This ‘hy-
brid’ approach requires as input the integrals

I1 = −(39.7± 3.1)× 10−4 GeV6,

(27)I8 = −(26.2± 3.0)× 10−4 GeV6,

each evaluated at scaleµ= 2 GeV [4].

In Eqs. (8), (10) we use thenf = 4 matching
coefficients, appropriate for the renormalization scale
µ= 2 GeV. Moreover, in relatingM7,8 to 〈O1,8〉 (see
Eq. (5)) we useF (0)π = 87.2±2.6 MeV. We collect our
results in Table 2, and for the sake of completeness

Table 2
Matrix element results

Method M7 M8

RWM 0.16± 0.10 2.22± 0.67

FESR (ALEPH) 1.40± 0.28
FESR (OPAL) 1.68± 0.32

HYBRID (ALEPH) 0.225± 0.046 1.55± 0.52
HYBRID (OPAL) 0.210± 0.044 1.66± 0.46

include our previous sum rule determination (the
‘RWM’ approach of Ref. [4]) as well.

4.1. Comments

The content of Table 2 naturally gives rise to two
issues which require further discussion: (i) whether the
RWM, FESR and HYBRID results can be combined
into a single value, and (ii) whether the ALEPH and
OPAL values can be combined into a single value. We
consider each in turn.

The FESR method described at length in this Letter
utilizes a rather different evaluation procedure from
the RWM of Ref. [4]. The HYBRID method is at
first glance a consistency check between RWM and
FESR which uses the FESR estimations ofH1,8 (i.e.,
higher-dimension effects) in evaluating the RWM sum
rules at the low scaleµ = 2 GeV. However, it should
be understood that, in the low-scale RWM evaluation
of the integralsI1 and I8, about 60% of the full
contribution comes from the input values of the chiral
constraint integrals, and only about 40% from the
integrals over theτ data. Thus the pFESR and hybrid
evaluations are to a significant extent independent, and
the agreement between the two represents a highly
nontrivial mutual check. We note that since the error
bars for the FESR results are rather smaller than
those for RWM, they would dominate any averaging
procedure. As a practical matter, we choose to simply
point out that the FESR approach yields our best
determination ofM8, while the HYBRID approach
leads to our best determination ofM7, and leave it at
that.

Let us hereafter accept the FESR determination as
our ‘official’ result. We discuss next the procedure
for combining the ALEPH and OPAL evaluations of
a6 anda8, beginning with the second uncertainties in
Eqs. (22), (24). Since these arise in both ALEPH and
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OPAL analyses from the same sources (SEW, Be , Bπ ,
Vud ; OPE coefficientsa4 andb6), they are common
to both analyses and cannot be reduced by averag-
ing. For definiteness, we adopt for this common un-
certainty the midpoint between the ALEPH and OPAL
values. As for the first uncertainties in Eqs. (22), (24),
they could be treated as ordinary independent errors
if the ALEPH and OPAL covariance matrices were
fully independent. However, the covariance matrices
have a common component since the two experiments
share uncertainties due to common normalization in-
put (i.e., OPAL used the 96/97 PDG results for the tau
branching ratios and these were dominated by ALEPH
measurements). We do not have the detailed knowl-
edge to determine exactly the degree of correlation in-
duced in the output of our ALEPH and OPAL analy-
ses. Therefore, we have performed the averaging as-
suming a generic correlation coefficientc between the
ALEPH and OPAL results. The following combined
results correspond to the conservative valuec= 0.5:

(28)a6 = (−48.1± 5.8± 3.1)× 10−4 GeV6,

(29)a8 = (−44.3± 26.6± 12.8)× 10−4 GeV8.

Dependence on the correlation parameterc is modest
(e.g., for c = 0 we obtain a6 = (−48.8 ± 4.7 ±
3.1)× 10−4 GeV6 anda8 = (−40.9± 21.8± 12.8)×
10−4 GeV8). Combining the above uncertainties in
quadrature yields

a6 = (−48.1± 6.6)× 10−4 GeV6,

(30)a8 = (−44.3± 29.5)× 10−4 GeV8.

Our final combined numbers forM7,8 in the chiral
limit are:

(31)
Mchiral

7 = 0.22± 0.05, Mchiral
8 = 1.50± 0.27.

4.2. Chiral corrections

The above numbers represent our determination of
the electroweak penguin matrix elements in the chiral
limit, where a data-driven evaluation has been possi-
ble. However, to make contact with phenomenology,
an estimate of the chiral corrections is mandatory. This
issue has been studied by two of us in Ref. [20] within
NLO Chiral Perturbation Theory. At this order there
are two contributions to the chiral corrections: one

is given by the chiral loops and comes with no un-
certainty, while the other is due to local couplings in
the effective theory, not known accurately at present.
A conservative estimate of these couplings, based on
naive dimensional analysis (and supported by an ex-
plicit calculation in leading 1/Nc [21]), gives

(32)Mphysical
7,8 =Mchiral

7,8 × Fχ ,
where Fχ represents the dispersive and absorptive
corrections (generated at NLO) to the matrix ele-
ments [20],

(33)Fχ = (0.7± 0.2)− i0.21.

That the determination ofFχ is less firm than that of
Mchiral

7,8 is reflected in its relatively larger uncertainty.
Adopting the result of Eq. (33), we are led to quote
∣∣Mphysical

7

∣∣ = 0.16± 0.035χ-lim ± 0.044χ-corr

(34)= 0.16± 0.06,∣∣Mphysical
8

∣∣ = 1.10± 0.20χ-lim ± 0.30χ-corr

(35)= 1.10± 0.36.

We shall useMphysical
8 to estimate the electroweak

penguin contribution toε′/ε.

4.3. Comparison with other analyses

We observe that other analyses of the V–A corre-
lator exist in the literature [22–25] which give gener-
ally different values of the OPE coefficients from those
found here (especially for thead with d > 6). The re-
lation between our analysis and these others will be
discussed in a companion paper [11].

Here we focus on the comparison with other deter-
minations ofM7,8 in the chiral limit, based on alter-
nate nonperturbative methods. The analytic methods
of Refs. [24,26,27] work directly in the chiral limit,
while the lattice results refer to chiral limit extrapola-
tions, explicitly reported in Refs. [28–30]. When nec-
essary, we have converted the lattice results to theMS-
NDR scheme atµ = 2 GeV. Moreover, lattice results
are obtained in the quenched approximation and the
quoted error is only statistical. Finally, let us recall that
other determinations of electroweak matrix elements
can be found in Ref. [31].

Our value for M8 is slightly higher than the
lattice determinations. However, the agreement is
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Table 3

M7 M8

This work 0.22± 0.05 1.50± 0.27
Bijnens et al. [26] 0.24± 0.03 1.2± 0.7
Knecht et al. [27] 0.11± 0.03 2.34± 0.73
Narison [24] 0.21± 0.05 1.4± 0.35
RBC (DWF) [28] 0.28± 0.04 1.1± 0.2
CP-PACS (DWF) [29] 0.24± 0.03 1.0± 0.2
SPQcdR (Wilson) [30] 0.24± 0.02 1.05± 0.10
Vacuum Saturation 0.32 0.94

better than previous work had indicated. The present
lattice results are larger than earlier lattice estimates
while our new result is about one standard deviation
below our previous central value. Given that the lattice
results are in the quenched limit, the present level of
agreement is satisfactory. Lattice estimates ofM7 are
also in agreement with our results. Finally, the results
of Refs. [24,26,27] also seem in reasonable agreement
with ours, with the possible exception of the smaller
M7 result of Ref. [27].

5. Conclusion

This Letter has described an improved chiral deter-
mination of the electroweak penguin contribution to
ε′/ε. Let us summarize the nature of the improvement
over our previous result. Recall that our determina-
tions are not calculations in the usual sense of con-
structing an approximation to QCD which is then used
to calculate the operator matrix element. Rather, our
methods start from the observation that the matrix el-
ements of the electroweak penguin operatorsQ7,8 be-
come related in the chiral limit to the vacuum matrix
elements of two other operators, and that these vac-
uum matrix elements can be determined from existing
experimental data. Our previous determinations and
those of the present Letter are based on different ap-
proaches to extracting these vacuum matrix elements.
Much of our work has been devoted to minimizing the
impact on our final uncertainties of both the absence of
spectral data aboves = m2

τ and the presence of large
experimental errors near the upper end of the kine-
matically accessible range. A detailed understanding
of these uncertainties has also been obtained.

Our earlier chiral determination of[ε′/ε]EWP (cf.
Eq. (4)) was based on the use of other rigorous

chiral sum rules in order to minimize the effect
where the data were poor or nonexistent. This is a
very direct approach, and we found that it carried
a 32% uncertainty. The error bar was partially due
to the residual experimental uncertainty from the
tau decay data. However the error bar also had a
large component due to uncertainties in the inputs
to the other chiral sum rules which were used as
constraints, the largest of which involved the pion’s
electromagnetic mass difference in the chiral limit. For
example, atµ = 4 GeV (where it is safe to neglect
higher-dimensional contributions) the result was a
determination ofM8 with 32% uncertainty. Roughly
80% of the error on the dispersive integralI8(4 GeV)
is due to uncertainties in the inputs to the chiral sum
rule constraints, the dominant contribution being the
above-mentioned uncertainty in the chiral limit value
of the pion electromagnetic mass splitting.

The present evaluation, based on the FESR method,
does not use the chiral sum rules and hence does
not share the same uncertainties. Rather, the FESR
error bars arise primarily from uncertainties in the
tau decay data. We use doubly pinched weights in
the FESR integrals both to minimize the influence
of these data uncertainties and also to suppress OPE
contributions from the vicinity of the timelike real
axis. Presumably, the latter effect serves to improve
the reliability of the OPE representation for�Π . To
perform a highly nontrivial check of this presumption,
we extract each OPE coefficientad with more than one
weight.5 In all cases, excellent consistency is found.
An instructive demonstration is provided by Figs. 3, 4,
which involve the determination ofa6 anda8 using the
weightsw1 andw2. By design,w1 andw2 have very
different profiles and thus probe the spectral function
in very different ways. The spectral integrals for both
the w1,2-weighted FESR’s turn out to scale very
closely with 1/s20 (each case implying that thed = 8
contribution is small) and the consistency between the
a6 values thus extracted turns out to be excellent. Our
procedure has passed a number of additional tests, as
will be described elsewhere [11]. Therefore, once one

5 The motivation behind this strategy is that, if using the OPE
were indeed dangerous (e.g., the integrated OPE therefore gives a
poor representation of the data), then one should expose this flaw by
using both weights simultaneously.
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makes sure that the systematics of the FESR approach
are under control, the FESR analysis leads to a more
precise determination ofM8, because it exploits in an
optimal manner the existing database and (unlike the
RWM) does not rely on other input.

When we translate the measurement of the OPE
coefficient into the electroweak penguin contribution
to ε′, we find

(36)[ε′/ε]EWP,χ-lim = (−15.0± 2.7)× 10−4,

in the chiral limit. This is consistent with our previous
determination, but has about half (at 18%) the uncer-
tainty. When we include the chiral corrections as de-
scribed in Section 4.2, we find

(37)[ε′/ε]EWP,phys= (−11.0± 3.6)× 10−4.

The larger error (about 32%) cited for the ‘physical’
result reflects uncertainties in our estimate for the
chiral corrections. We note that for the Standard
Model to successfully describeε′ will require a rather
large and positive effect from the standard gluonic
penguin operatorQ6. Our approach does not provide
a determination of this matrix element.

In addition to describing the electroweak penguin
contribution toε′, our work is useful in other contexts.
We have a firm determination of theQ8 nonleptonic
matrix element in the chiral limit as well as that
for Q7, and there are few such examples that are
experimentally known. The results are useful for
comparison with models, some of which are included
in the comparisons Table 3 in Section 4.3, or for the
testing of lattice methods. Our methods may also be
adapted rather directly to lattice techniques, because
the correlation functions that we work with are readily
measured with lattice data. We have started work to
make this connection firmer, and will report on the
results in the future.
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