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ABSTRACT 

The generalized Gerschgorin disks of a partitioned matrix A, as introduced by 
D. G. Feingold and R. S. Varga (Pacif. J. Math. 12 1241-1250 (1962)), are shown 
to give the smallest region covering all eigenvalues of all matrices from a certain 
class related to A. 

1. INTRODUCTION 

Given an arbitrary square matrix A of order n with complex entries, we will call 
a region of the complex plane containing all of the eigenvalues of A an inclusion 

region. Many generalizations of the inclusion region of Gerschgorin [3] are known. 
We shall investigate an inclusion region given in [2] for A partitioned into blocks as 

follows: 

All 
A= 

[ 
A Nl 

A,, ... 

(1) 

HereA,iisanqXnimatrix(ni~1for1~i~N,nl+nz+...+nN=n),regarded 

also as a linear mapping of Vi-Vi, where each Vi is the ni-dimensional space of 
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complex column vectors. Thus A may be viewed as a linear transformation of 
V,@Vs@... @V,. 

We suppose throughout this paper that a vector norm (].I1 i is defined on each 
Vc With respect to these norms, a linear mapping T: V+V, has the induced 

operator norm 

II TII = /, ;Pr II WI*, 
x I- 

and the greatest lower bound 

We note that the supremum and infimum are actually attained because of 
compactness of the unit ball in Vi. 

If o(A) denotes the set of all eigenvalues of A, it is known [Z] that 

N 

a(A)LG= lJ z:m(zZ-A,*)< x ]]Aii]] . 
> 

(2) 
i=l l< i<N,j#i 

In Sec. 3 we exhibit a class B of matrices, related in a certain way to A, for which 

G is the minimal inclusion region, i.e., 

G= lJ a(B). 
BE53 

When N= n, the region G is simply the classical inclusion region of Gerschgorin, 
and consequently, we also obtain a precise characterization of the Gerschgorin 

circles. 

2. PRELIMINARY RESULTS 

For any fixed integer n > 1, let S denote the set of all singular square matrices 
of order n. Let I] * 11 denote an arbitrary vector norm. In this section, I]. 11 will also 

denote the associated induced operator norm and the associated dual vector norm. 

It is well known that if B is nonsingular, then 

m(B)=]]B-‘]I-‘. 

Another representation of the greatest lower bound is given in the following 
lemma. 

LEMMA For an arbitrary square matrix B of order n, 

m(B)=dist(B; s), 
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where 

dist(B;S)Qfs llB-SII=(B+in;n5 llfr11. 

(Note: By a simple compactness argument, 

dist(B; S)= smI;“s IIB-Sll.) 

Proof. Since the lemma is clearly true if B E S , we consider the case B $5 . If 

IIf < IV-‘II-‘, 
then 

IIB -‘W < IIB -‘II IIHII < 1, 
and consequently 

B+H=B(I+B-‘H)E~. 
Therefore, we have 

IIB-‘I)-‘<dist(B; S). 

To prove the reverse inequality, let x be such that llxll= 1 and m(B)= IIBxII, 

and let v’ be such that llv’ll = 1 =v’x. Defining 

H = - Bxv’, 
we have 

(B+H)x=Bx-B~v’x=~, 

and thus (B + H) E S . Moreover, 

IIHII = IIWI llv’ll = m(B), 
so that 

We now prove 

IIB-‘II-‘>dist(B; S). 

Q.E.D. 

THEOREM 1. Let B be an arbitrary square matrix of order n, let K > 0, and let 

e denote the set of all square matrices of order n such that C E (2 if and only if 

IIC-BII G K, 

relative to a fixed, but a&tray, operator norm. Then, denoting 

U 4’4 by de), 
CEC? 



480 Z. V. KOVARIK AND D. D. OLESKY 

we have 

U(e)={Z:m(d-B)<K}. 

Z’roof. Let C E e and h E u(C), so that m(XZ - C) = 0. Using the property [4] 
that 

we have 

and thus 
< K, 

U(e)&{Z:?7L(d--)<K}. 

To prove the reverse inclusion, let 5 be such that m(lZ- B) < K. Using the 
above lemma, there exists a matrix S E s such that 11cZ- B- S 11 < K. Then, 

(y-S)Ee and .$Ea(.$Z-S). Thus 

{Z:+-B)<K}C+?) Q.E.D. 

We note that the statement 

can be rewritten as 
u(e)={z:m(zZ-Z3)4 K} 

u(Gi))=u(B)u {z:z$u(B) and II(zZ--B)-~IIK> l}, 

where D E q if and only if D= B+ H and I] H II < K. Thus, Theorem 1 includes a 

result of Bauer and Fike [l,Theorem II], viz. 

u(C)~u(B)u (z:.z$u(B) and II(zZ-B)-~~~-‘< IlC-BII}. 

3. MAIN RESULT 

We state our main result as the following theorem. 

THEOREM 2. Let A be partitioned as in (1) and let 93 denote the set of all 

square matrices of order n, partitioned conformally with A, such that BE 3 if 

and only if 

IIBii-AiiII+ x llBi/ll < 2 IIAijll, 1 <i < N. 
1c j<N,j#i l< j<N,j#i 
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Then 

a(%)=C. 

Proof. Let B E 91 and XEa(B). Then, from (2), there exists i, 1 < i < N, such 

that 

Therefore, 

m(Xz-Bii) G E 114jII 

1C j<N,j#i 

m(hZ - A,J < m(hZ - Bij) + 11 Bji - Aii 11 

and thus 

( 2 IIAiill, 
1C j<hi,jri 

a(%)cG. 

To prove the reverse inclusion, suppose m([Z-Ajj) < ZIG i<N,jfiIIAiilI for some 

i, 1 s i < N. By Theorem 1, there exists a matrix Ci of order n, such that 

IIG- 4Il d 2 IlAiill 
l< f<N,j#i 

and 6~ o( Ci). Form a block-diagonal matrix B of order n, partitioned conformally 

with A, as follows: 

B= 

0 

Ai-l,i-1 

ci 

0 

ThenBE% and.$~o(B).ThusG~o(%3)). 
Q.E.D. 

As a special case of Theorem 2, we obtain the following characterization of 

Gerschgorin’s inclusion region. 



482 Z. V. KOVARIK AND D. D. OLESKY 

COROLLARY lfN=n,thenBEQ ifanddyif 

Ihi-aA+ X Ihjl~ IX laiiL l<i<n, 
l< j<n,jfi I< j<n,jfi 

and 

n 

0(93)= u z:lz-a,il < 

i-=1 
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