Sharpness of Generallzed Gerschgorin Disks*

Z. V. KOVARIK and D. D. OLESKY

University of Victoria, Victoria, British Columbia, Canada

Recommended by Richard S. Varga

ABSTRACT

The generalized Gerschgorin disks of a partitioned matrix A, as introduced by D. G. Feingold and R. S. Varga (Pacif. J. Math. 12 1241-1250 (1962)), are shown to give the smallest region covering all eigenvalues of all matrices from a certain class related to A.

1. INTRODUCTION

Given an arbitrary square matrix A of order n with complex entries, we will call a region of the complex plane containing all of the eigenvalues of A an inclusion region. Many generalizations of the inclusion region of Gerschgorin [3] are known. We shall investigate an inclusion region given in [2] for A partitioned into blocks as follows:

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 N} \tag{1}\\
\vdots & \vdots & & \vdots \\
A_{N 1} & A_{N 2} & \cdots & A_{N N}
\end{array}\right]
$$

Here $A_{i j}$ is an $n_{i} \times n_{i}$ matrix ($n_{i} \geqslant 1$ for $1 \leqslant i \leqslant N, n_{1}+n_{2}+\cdots+n_{N}=n$), regarded also as a linear mapping of $V_{i} \rightarrow V_{i}$, where each V_{i} is the n_{i}-dimensional space of

[^0]complex column vectors. Thus A may be viewed as a linear transformation of $V_{1} \oplus V_{2} \oplus \cdots \oplus V_{N}$.

We suppose throughout this paper that a vector norm $\|\cdot\|_{i}$ is defined on each V_{i}. With respect to these norms, a linear mapping $T: V_{i} \rightarrow V_{i}$ has the induced operator norm

$$
\|T\| \equiv \sup _{\|x\|_{i}=1}\|T \mathbf{x}\|_{i}
$$

and the greatest lower bound

$$
m(T) \equiv \inf _{\|x\|_{I}=1}\|T \mathbf{x}\|_{i}
$$

We note that the supremum and infimum are actually attained because of compactness of the unit ball in V_{i}.

If $\sigma(A)$ denotes the set of all eigenvalues of A, it is known [2] that

$$
\begin{equation*}
\sigma(A) \subseteq G \equiv \bigcup_{i=1}^{N}\left\{z: m\left(z I-A_{i i}\right) \leqslant \sum_{1<i<N, j \neq i}\left\|A_{i j}\right\|\right\} \tag{2}
\end{equation*}
$$

In Sec. 3 we exhibit a class \mathscr{B} of matrices, related in a certain way to A, for which G is the minimal inclusion region, i.e.,

$$
G=\bigcup_{B \in \mathscr{B}} \sigma(B) .
$$

When $N=n$, the region G is simply the classical inclusion region of Gerschgorin, and consequently, we also obtain a precise characterization of the Gerschgorin circles.

2. PRELIMINARY RESULTS

For any fixed integer $n \geqslant 1$, let δ denote the set of all singular square matrices of order n. Let $\|\cdot\|$ denote an arbitrary vector norm. In this section, $\|\cdot\|$ will also denote the associated induced operator norm and the associated dual vector norm. It is well known that if B is nonsingular, then

$$
m(B)=\left\|B^{-1}\right\|^{-1}
$$

Another representation of the greatest lower bound is given in the following lemma.

Lemma For an arbitrary square matrix B of order n,

$$
m(B)=\operatorname{dist}(B ; \mathcal{S})
$$

where

$$
\operatorname{dist}(B ; \delta) \equiv \inf _{\mathcal{S} \in \mathcal{S}}\|B-S\| \equiv \inf _{(B+H) \in \mathcal{S}}\|H\|
$$

(Note: By a simple compactness argument,

$$
\left.\operatorname{dist}(B ; \mathfrak{S})=\min _{\mathcal{S} \in \mathcal{S}}\|B-S\| .\right)
$$

Proof. Since the lemma is clearly true if $B \in \delta$, we consider the case $B \notin \Phi$. If

$$
\|H\|<\left\|B^{-1}\right\|^{-1}
$$

then

$$
\left\|B^{-1} H\right\| \leqslant\left\|B^{-1}\right\|\|H\|<1
$$

and consequently

$$
B+H=B\left(I+B^{-1} H\right) \notin \mathcal{S} .
$$

Therefore, we have

$$
\left\|B^{-1}\right\|^{-1} \leqslant \operatorname{dist}(B ; \mathcal{S})
$$

To prove the reverse inequality, let \mathbf{x} be such that $\|\mathbf{x}\|=1$ and $m(B)=\|B \mathbf{x}\|$, and let \mathbf{v}^{\prime} be such that $\left\|\mathbf{v}^{\prime}\right\|=1=\mathbf{v}^{\prime} \mathbf{x}$. Defining

$$
H=-B \mathbf{x} \mathbf{v}^{\prime},
$$

we have

$$
(B+H) \mathbf{x}=B \mathbf{x}-B \mathbf{x v}^{\prime} \mathbf{x}=0,
$$

and thus $(B+H) \in \delta$. Moreover,
so that

$$
\|H\|=\|B \mathbf{x}\|\left\|\mathbf{v}^{\prime}\right\|=m(B)
$$

so

$$
\left\|B^{-1}\right\|^{-1} \geqslant \operatorname{dist}(B ; \delta)
$$

Q.E.D.

We now prove

Theorem 1. Let B be an arbitrary square matrix of order n, let $\kappa \geqslant 0$, and let \mathcal{C} denote the set of all square matrices of order n such that $C \in \mathcal{C}$ if and only if

$$
\|C-B\| \leqslant \kappa,
$$

relative to a fixed, but arbitrary, operator norm. Then, denoting

$$
\bigcup_{C \in e} \sigma(C) \text { by } \sigma(C)
$$

we luve

$$
\sigma(\mathcal{C})=\{z: m(z I-B) \leqslant \kappa\} .
$$

Proof. Let $C \in \mathcal{C}$ and $\lambda \in \sigma(C)$, so that $m(\lambda I-C)=0$. Using the property [4] that

$$
m(X+Y) \leqslant m(X)+\|Y\|,
$$

we have

$$
\begin{aligned}
m(\lambda I-B) & \leqslant m(\lambda I-C)+\|C-B\| \\
& \leqslant \kappa,
\end{aligned}
$$

and thus

$$
\sigma(\mathcal{C}) \subseteq\{z: m(z I-B) \leqslant \kappa\} .
$$

To prove the reverse inclusion, let ξ be such that $m(\xi I-B) \leqslant \kappa$. Using the above lemma, there exists a matrix $S \in \mathcal{S}$ such that $\|\xi I-B-S\| \leqslant \kappa$. Then, $(\xi I-S) \in \mathcal{C}$ and $\xi \in \sigma(\xi I-S)$. Thus

$$
\{z: m(z I-B) \leqslant \kappa\} \subseteq \sigma(\mathcal{C})
$$

Q.E.D.

We note that the statement

$$
\sigma(\varrho)=\{z: m(z I-B) \leqslant \kappa\}
$$

can be rewritten as

$$
\sigma(\mathscr{D})=\sigma(B) \cup\left\{z: z \notin \sigma(B) \text { and }\left\|(z I-B)^{-1}\right\| \kappa \geqslant 1\right\},
$$

where $D \in \mathscr{D}$ if and only if $D=B+H$ and $\|H\| \leqslant \kappa$. Thus, Theorem 1 includes a result of Bauer and Fike [1, Theorem II], viz.

$$
\sigma(C) \subseteq \sigma(B) \cup\left\{z: z \notin \sigma(B) \text { and }\left\|(z I-B)^{-1}\right\|^{-1} \leqslant\|C-B\|\right\} .
$$

3. MAIN RESULT

We state our main result as the following theorem.

Theonem 2. Let A be partitioned as in (1) and let \mathfrak{B} denote the set of all square matrices of order n, partitioned conformally with A, such that $B \in \mathscr{B}$ if and only if

$$
\left\|B_{i i}-A_{i i}\right\|+\sum_{1<j \leqslant N, j \neq i}\left\|B_{i j}\right\| \leqslant \sum_{1<j<N, j \neq i}\left\|A_{i j}\right\|, \quad 1 \leqslant i \leqslant N .
$$

Then

$$
\sigma(\mathscr{B})=G .
$$

Proof. Let $B \in \mathscr{B}$ and $\lambda \in \sigma(B)$. Then, from (2), there exists $i, l \leqslant i \leqslant N$, such that

$$
m\left(\lambda I-B_{i i}\right) \leqslant \sum_{1 \leqslant j<N, j \neq i}\left\|B_{i j}\right\| .
$$

Therefore,

$$
\begin{aligned}
m\left(\lambda I-A_{i i}\right) & \leqslant m\left(\lambda I-B_{i i}\right)+\left\|B_{i i}-A_{i i}\right\| \\
& \leqslant \sum_{1 \leqslant j<N, i \neq i}\left\|A_{i j}\right\|,
\end{aligned}
$$

and thus

$$
\sigma(\mathscr{B}) \subseteq G .
$$

To prove the reverse inclusion, suppose $m\left(\xi I-A_{i i}\right) \leqslant \Sigma_{1 \leqslant j \leqslant N, j \neq i}\left\|A_{i j}\right\|$ for some $i, 1 \leqslant i \leqslant N$. By Theorem 1 , there exists a matrix C_{i} of order n_{i} such that

$$
\left\|C_{i}-A_{i i}\right\| \leqslant \sum_{1<j<N, j \neq i}\left\|A_{i j}\right\|
$$

and $\xi \in \sigma\left(C_{i}\right)$. Form a block-diagonal matrix B of order n, partitioned conformally with A, as follows:

Then $B \in \mathscr{B}$ and $\xi \in \sigma(B)$. Thus $G \subseteq \sigma(\mathscr{B})$.
Q.E.D.

As a special case of Theorem 2, we obtain the following characterization of Gerschgorin's inclusion region.

Corollaky If $N=n$, then $B \in B$ if and only if
and

$$
\left|b_{i i}-a_{i i}\right|+\sum_{1<i<n, i \neq i}\left|b_{i j}\right| \leqslant \sum_{1<j<n, i \neq i}\left|a_{i j}\right|, \quad 1 \leqslant i \leqslant n,
$$

$$
\sigma(\mathscr{B})=\bigcup_{i=1}^{n}\left\{z:\left|z-a_{i i}\right| \leqslant \sum_{1<j<n, j \neq i}\left|a_{i j}\right|\right\} .
$$

REFERENCES

1 F. L. Bauer and C. T. Fike, Norms and exclusions theorems, Num. Math. 2 (1960), 137-141.
2 D. G. Feingold and R. S. Varga, Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem, Pac. J. Math. 12 (1962), 1241-1250.
3 S. Gerschgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR, Ser. Mat. 7 (1931), 749-754.
4 A. M. Ostrowski, On Some Metrical Properties of Operator Matrices and Matrices Partitioned into Blocks, J. Math. Anal. Appl. 2 (1961), 161-209.

[^0]: *This research was supported in part by the National Research Council of Canada, grants A8201 and A8214.
 © American Elsevier Publishing Company, Inc., 1974

