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We show how to compute the values of h,(p), the first factor of the class number 
of the cyclotomic field I(exp 2i7t/p), for each prime p Q 3000, and determine the set 
of prime divisors for each p < 1000. We confirm, for these values, a number of well 
known conjectures about h,(p). We give some reasons why we believe that Kum- 
mer’s conjectured asymptotic estimate for h,(p) is likely to be wrong. We show how 
an extension of the recent work of Goldfeld, Cross, and Zagier might be used to 

establish that h,(p) is monotone increasing for all p 3 19. 0 1992 k&tic pnss, hc. 

1. INTRODUCTION 

Let p denote any odd prime, let h(p) be the class number of the 
cyclotomic field 2!(&) (where 5, is a primitive pth root of unity), and let 
h,(p) be the class number of the real subfield A!(<, + r;‘). Kummer estab- 
lished that the ratio h,(p)=h(p)/&(p) is an integer which is called the 
“relative class number” or the “first factor of the class number.” He went 
on to show that p divides h(p) if and only if p divides h,(p); and so in 
order to determine whether p is a “regular” prime (i.e., p divides h(p)), one 
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need only investigate whether p divides h,(p). Computationally this result 
is very important as there is no easy way to compute h(p). As Kummer put 
it, “If p is too large then the effective computation of the second factor is 
very tricky as we must first find a system of fundamental units. The com- 
putation of the first factor, . . . . does not offer this difficulty; I have computed 
it for all prime numbers up to 100” [14, p. 4721. 

(Actually Kummer computed h,(p), by hand, for all primes p < 163, only 
making three mistakes.) 

The computational situation has not changed much in that there is still 
no easy way known for finding a system of fundamental units. On the other 
hand, Kummer perhaps underestimated the difficulties involved with com- 
puting h,(p), most of which arise because it grows faster than exponen- 
tially. Actually Kummer did write, “One can see that these numbers are 
growing with extraordinary speed. The asymptotic rule for the growth of 
the first factor of the class numbers h,(p) is given by the formula: 

(P- 1114 

= G(P), (1) 

of which I save the proof and other developments for another occasion” 
[ 14, p. 4731. 

Kummer never did publish a proof of (1 ), and it seems likely that it is 
incorrect-we discuss this further in Section 4. In 1974 LepistS [ 181 gave 
the bounds 

4.66 
+ogp-4loglogp- 12.93-- 

l%P 

4.66 
d log <5loglogp+15.49+- 

lo!3 P 
(2) 

and so one can see that the growth of h,(p) is indeed fast. Previously 
Ankeny and Chowla [l] had established that h,(p) = G(p)p”“’ from 
which one can immediately deduce that h,(p) = 1 for only finitely many 
primes. One can also deduce a considerably stronger result: There exists a 
constant p. such that h,(q)> h,(p) whenever q>p>po. In 1971 
Montgomery (see [29, p. 2041) and Uchida [27] made the first of these 
results effective by showing independently that h,(p) = 1 if and only if 
p < 19 (which was conjectured by Kummer). In 1974 Lepistij made the 
second of these results effective, under the assumption of the generalized 
Riemann Hypothesis (that is, he gave the numerical value p. = 2*10i3): He 
could have actually given a value to p. under the weaker assumption that 
there are no Siegel zeros. It does not yet seem possible to find a value for 
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p0 unconditionally though some recent work of Goldfeld [8] and Gross 
and Zagier [ 111 helps us to come close. In Section 5 we shall prove: 

THEOREM 1. Suppose that we can find an elliptic curve E over d for 
which the associated L-function has a zero of order 26 at s = 1. Then we can 
find an explicit constant p,, for which h,(q) > h,(p) whenever q >p >p,,. 

Presumably, it would then be a matter of computation to show that pO 
can be taken to be 19. 

Our main purpose in this paper is to extend the computations of h,(p) 
as far as possible. We do this by using a method of Fee and Granville [7] 
to compute norms in algebraic number fields. 

2. FORMULAE FOR COMPUTING h,(p) 

Kummer [14] established that 

h,(p) = (3) 

where R(x) = CT:: gjxj with g 
positive residue of gj (mod p). 

Hasse [13] showed that 

a primitive root (modp) and gj the least 

h,(p) = G(P) n L(l; xl (4) 

j  odd 

x odd character (mod p) 

and we also have the formula 

h,(p)= ’ (2p)(P--3)/2 
Xoddchar!er (mndp) ,:I ‘(@l’ 

(5) 

P--l 

Maillet considered the matrix Mp which has the (i, j) th entry equal to 
the least positive residue of i/j (modp) for 1 <i, j< (p - 1)/2. Chowla and 
Weil showed that 

h,(p) =& 1 determinant of M, 1. 

Finally Carlitz and Olson [4] defined the matrix Np which has the 
(i, j) th entry [ij/p] - [(i - 1 )j/p] for 3 < i, j < (p - 1)/2 and showed that 

h,(p) = 1 determinant of N, 1. (7) 
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In fact Kummer [14] and Pajunen [23] used (3) to compute h,(p), 
Newman [22] used (7), whereas Lehmer and Masley [17] used a rather 
more complicated formula (as shall we); 

h,(p)= n k(P)? (f-3) 
e/=p- 1:fodd 

where h,(p), called the relative class number of degree e, is given by 

6 We(P) 
k?(P) =P 4,(2)y’ (9) 

where 6 = 6, = [e/(p- l)], 7 - 7 - e e, ind,2), Y = ye = 4(eM(z), A(x) is - e- /( 
the z th cyclotomic polynomial, and 

We(P)= fi 
(P- 1)/2 

(E, - En- I) S’d!?; lYebn (10) 
m=l 

J, 

(m,e)=l 

with 

1 ifg” -iWlpl <P/Z E, = 
0 otherwise. 

The real expense of using this formula comes in the computation of (10) 
for each e dividing p - 1 with (p - 1)/e odd. A straightforward approach 
using multiprecise arithmetic is unrealistic once p is large. In [ 171, Lehmer 
and Masley used a vector manipulation method that amounts to carefully 
storing the coefficients of each power of $f:il)‘e, as we multiply the terms 
of (10) together, and continually reducing the exponents by replacing 
<f:11u2 with - 1. Due to the fact that the numbers involved grow very 
quickly, this takes of order pslog2p elementary operations; and so it is 
prohibitively expensive when p is large (Lehmer and Masley did all 
p < 521). 

We use the technique of “computation by homomorphisms” to evaluate 
the product in (10). 

Define the homomorphism 8,: Z[[,- r] + Z/b,- I(t)Z for each integer 
t > 2, where 8, is the identity on Z and 0,(<,- 1) = t. 

Let a n = E, - E, _ , for each n = 1,2, . . . . (p - 1)/2, and let /II, n be the least 
non-negative residue of m (mod p - 1). 
Define 

a,(x)= 1 a,xScn for r = 1, 2, . . . . p - 1. 
It=1 
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Then 

We(P)= Ii a((,- l),e)m(5p- 1). (11) 
??I=1 

(m,s)=l 

Now, for each r, ~,(~,-~)~a,(t) (modA(t-t,-,)) where A=Z[t,-,I. 
Thus (t - cP _ r) divides 

N= We(P)- fr a((,- ,),e)mW 
??I=1 

(m.e)=l 

in the ring A and so, $P _ r(t) (which is the norm of t - lP- 1) divides N 
(which is an integer). This implies that 

We(P)= fr a((,- l),e)rn (0 (mod & - dN. (12) 
m=l 

(m,e)=l 

Thus the idea is to choose t sufficiently large so that 

h-I(t) > 2~e(P) (13) 

which will mean that W,(p) is the least residue, in absolute value, of 
I-I;= r, (,,,, ej = I a((, - Ijlejm (t) (mod bP - r(t)). The only remaining complica- 
tion then is to choose t so that we can guarantee (13) holds (of course 
before actually computing 2W,(p)). Now each h,(p) is an integer and so, 
by (9), (8), and (2), we have 

2We(P)=20’oYh,(P) 
P 

< 2 M2)’ 
L pdhl(P) 

(p-1v4(logp)5 ,(15.49+4.66)/logp 
(14) 

Thus we selected t so that q5P- r(t) is greater than the left hand side of (14) 
for each e in (8). This explains our 

Algorithm to Compute h,(p). 

1. Select t so that #P-I(t) is greater than the left hand side of (14) for 
each value of e in (8). 

2. Let zi be the least positive residue of t’ (mod tip- r(t)) for 
i=O, 1,2, . . . . p-2. 
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3. Use the formula a,(t) z CF=-i’“’ IX~.Z~,,~ (mod #p- i(t)) to compute 
each a,(t) (mod #,-i(t)). 

4. Use (12) to compute each W,(p). 

5. Use (9) and (8) to determine h,(p). 

This algorithm only takes of order p* log4p elementary operations to 
compute hi(p). Moreover, we have a head start in determining the 
factorization of h,(p) into primes as we already have the factorization into 
the values h,(p). 

3. SOME RESULTS 

We used the algorithm described at the end of the last section to com- 
pute h,(p) for each prime p such that 100 <p < 3000. These computations 
were performed at the University of Manitoba on a Micro Vax II computer 
by using ALGEB, a multi-precise language which was developed by David 
Ford at Concordia University. It required 7 hours and 33 minutes of CPU 
time to compute h,(p) for all primes p which lie between 100 and 1000; 
2 days, 21 hours, and 40 minutes of CPU time for p which lie between 1000 
and 2000; and 14 days, 21 hours, and 27 minutes of CPU time for the 
remaining primes. It seems likely that on a larger machine or with more 
time we could have gone considerably further. 

It was shown in [ 161 that if q’ is the power of the prime q dividing any 
h,(p), then either q divides e or q z 1 (mod e). So in order to factor h,(p) 
we simply checked whether it had any factors < 100,000 and then tested 
the remaining cofactor using Pollard’s “p - 1 method” [24] (as we know 
each remaining prime power factor is - 1 (mod e)). We chose not to work 
too hard in trying to factor those that remain. We have deposited Tables 
I and II in the UMT (unpublished Mathematical Tables) File maintained 
by the Editorial office of Mathematics of Computation. In Table I we give 
the values of h,(p) for each p such that 100 <p c 3000, and in Table II we 
give, for each p such that 521 <p < 1000, the values of h,(p) for each e, 
followed by the prime factors that we could find, followed by the remaining 
composite cofactor (if any). 

In 1870 Kummer [14a] showed that 

2 divides h(p) if and only if 2 divides h I(p). (15) 

It is thus of interest to determine when h,(p) is even. Kummer himself 
showed that for the primes p< 163, only h,(29), h,(113), and h,(163) are 
even; he also showed that h,(29) and h,(113) are odd whereas h,(163) is 
even. In Table III we give the primes p such that 100 <p < 3000 for which 
h,(p) is even, and also the power of 2 that exactly divides h,(p). 
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TABLE III 

303 

P k P k P k 

113 3 827 6 1789 
163 2 853 2 1879 

197 3 883 6 1951 
239 6 937 2 2011 
277 4 941 8 2131 
311 10 953 3 2143 
337 6 967 3 2161 
349 4 1009 8 2221 

373 5 1021 8 2297 
397 6 1051 6 2311 
421 4 1093 3 2381 
463 3 1117 5 2521 
491 6 1163 3 2591 
547 2 1171 4 2689 
607 4 1399 4 2797 
659 3 1429 3 2803 
683 5 1471 3 2843 
701 3 1499 3 2857 
709 4 1699 2 2927 
751 4 1777 4 

4 
2 
2 
4 
2 
3 
4 
4 
3 
5 
6 
3 
3 
2 
4 
2 
3 
3 
6 

Note. 2k denotes the exact power of 2 that 
divides h,(p). 

Kummer established many important results about class numbers. 
Perhaps the most striking was to show that p is regular if and only if p 
does not divide the numerator of any Bernoulli number B,, with 2 < 2n < 
p-3. (B, is defined by the power series x/(t?- l)=C,,O B,(x”/n!).) 
Wagstaff [30] and Tanner and Wagstaff [26] have done extensive com- 
putations on the p-divisibility of Bernoulli numbers (for p up to 150,000). 
Due to the following result, essentially due to Vandiver [28], their 
computations provide an important check on our computations: 

LEMMA 1 (Vandiver). Zf prime p divides the Bernoulli number Bz,, with 
2 < 2n < p - 3 then p divides h,(p) where e = ( p - 1 )/( p - 1,2n - 1). 

By Kummer’s results we know that if p divides h(p) then p must divide 
both h,(p) and some Bernoulli number; and by Vandiver’s result we can 
find values of e for which p divides h,(p), given values of 2n for which p 
divides Bzn . There are a number of conjectures that further describe the 
p-divisibility. 

(A) Vandiver’s conjecture: p does not divide h,(p). 
(Apparently this conjecture appeared originally in a letter from Kummer 

641’4213.5 
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to Kronecker [ 151.) Of course this implies that p divides h(p) to the same 
power that it divides h,(p). This conjecture was verified for p < 150,000 in 
[26, 301. 

(B) p divides h,(p) to the same power that it divides the product 
B,B, . ..B.p,. 

This appears in the paper of Lehmer and Masley [ 171. We verified it for 
p<3000. 

(C) p2 does not divide B,, for any 2 < 2n <p - 3. 

Conjectures (B) and (C) were shown to hold for p < 125,000, in [26], 
and it is possible that this is always the case. If so, then one can easily 
deduce that the power of p dividing any given h,(p) equals the number of 
valuesofn,with2~2n~p-3and(p-1,2n-l)=f,forwhichpdivides 
B,,. (The anonymous referee has noted that, under the heuristic assump- 
tion of the even Bernoulli numbers being “randomly distributed” modulo 
p*, we should expect that p* divides B,, for some 2 < 2n <p - 3, for around 
(log log x/2) primes p d x. Nonetheless, as no such example has yet been 
found, such arguments are no less speculative than the simple belief in the 
converse!) 

Given Kummer’s conjecture(Eq. (1)) in Section 1, it is of interest to com- 
pute values of the ratio h,(p)/G(p). A prime p is a “high champion” if 
h,(p)/G(p) > h,(q)/G(q) for all primes q <p; a prime is a “low champion” 
if h,(p)/G(p) < h,(q)/G(q) for all primes q <p with the exception of those 
primes q < 23. Tables IV(A) and IV(B) give high champions and low 
champions up to 3000. 

TABLE IV(A) 

High Champion Values of h,(p)/G(p) 

P h(~)lG(p) 

3 0.6046 
5 0.7896 
7 0.9567 

11 1.1092 
23 1.2730 
73 1.2822 
89 1.2863 

179 1.3190 
233 1.4310 
761 1.4696 

1451 1.4893 
2741 1.4981 

TABLE IV(B) 

Low Champion Values of h,(p)/G(p) 

P ~,(P)/G(P) 

23 1.2730 
29 1.1951 
31 0.8899 
79 0.8458 

157 0.7430 
211 0.7097 
439 0.6848 
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TABLE V 

P 2n e P 2n e P 2n e 

523 400 174 631 226 14 773 732 772 
541 86 108 647 236 646 797 220 796 
547 270 546 647 242 646 809 330 808 
547 486 546 647 554 646 809 628 808 
557 222 556 653 48 652 811 544 270 
577 52 192 659 224 658 821 744 820 
587 90 586 673 408 672 827 102 826 
587 92 586 673 502 224 839 66 838 
593 22 592 677 628 676 877 868 292 
607 592 202 683 32 22 881 544 880 
613 522 612 691 12 690 887 418 886 
617 20 616 691 200 690 929 520 928 
617 174 616 727 378 726 929 820 928 
617 338 616 751 290 750 953 156 952 
619 428 618 757 514 28 971 166 194 
631 80 630 761 260 760 

In Table V we give the irregular primes 521 <p < 1000, the values of n 
for which B,, is divisible by p, and the corresponding values of e for which 
h,(p) is divisible by p. 

In Table VI we give the number of primes p, in the range 100 <p < 3000, 
for which h,(p) is exactly divisible by 2k as well as the smallest 3 primes 
in each category. 

In Table VII we give the number of primes p in the range 100 <p < 3000 
such that h,(p) is divisible by 3, 5, 7, 11, 13, . . . . 29, as well as the smallest 
3 primes in each category. 

TABLE VI 

k Number up to 3000 Smallest 3 such primes 

2 10 
3 18 
4 14 
5 4 
6 9 
7 0 
8 3 
9 0 

10 1 
>lO 0 

163 547 853 
113 197 463 
277 349 421 
373 683 1117 
239 337 397 

941 1009 1021 

311 
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TABLE VII 

k Number up to 3000 Smallest 3 such primes 

3 81 107 131 139 
5 96 101 103 121 
7 51 151 211 223 

11 38 151 167 191 
13 49 127 157 191 
17 41 109 137 229 
19 28 199 359 541 
23 20 331 647 727 
29 18 713 829 887 

4. KUMMER'S CONJECTURE FOR THE SIZE OF h,(p) 

In a further paper [lo] the second author develops the arguments that 
we sketch here. The idea is to establish that (1) is false by using certain 
tools of analytic number theory. Now, from Hasse’s formula (4), we have 
that 

1% @,(P)/G(P)) = Lim log us; x) 
’ - l + 

c 
1 odd character (mod p) 

where 

and 

(16) 

p-1 (modp) qrn= -1 (modp) 

Thus (1) is equivalent to the statement that f, = 0(1/p). As the prime 
powers are very sparse (i.e., the number of qm < x with m 2 2 is small) it 
is easy to show that 

&A 1 q prime 
qm= -1 or 1 (modp) 

for all but 0(x’/*10g2 x) primes p < x. Therefore we are left, in almost all 
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cases, with only the m = 1 term in (16). For a given prime p, we can use 
a Riemann-Stieltjes integral to show that 

I O” 
&-g,(T) = 

d{?T(t;p, l)-?gCP, -l,> 
t 3 

f=T  

where n(t; p, a) is the number of primes < t that are = a (modp), and g, 
is defined as f, except with only the m = 1 term, 

4CP, I)-dt;p, -1) = 

[ t 1 J m+ “4GP, 1)-4CP, -II& 
t= . (17) 

T  T  

Now the Generalized Riemann Hypothesis implies that 

x(t;p, 1)-n(t;p, -l)< 
(p- 1; log2 t 

whenever t ap2 log2p; and, under the assumption of a well-known conjec- 
ture of Elliot and Halberstam [6] this may be extended to t >p’+‘, for any 
fixed E > 0, for all but 0(x/log3 x) primes p <x. In any case, if (18) holds 
for all t> T then, by (17) 

fp-fp(W l (p-1)logT’ 

Therefore, in most cases, the Eq. (1) is equivalent to the statement that, for 
each E > 0, 

(19) 

We have seen, so far, that C,, T (l/q), whether in the arithmetic progres- 
sion 1 (mod p) or in the arithmetic progression - 1 (modp), comes to 
essentially the same total. We expect that to happen when the sum is 
extended all the way down to T, = 3p - 1 in most cases. But then if 2p + 1 
is prime and 2p - 1 is not, we have fp = 1/(2p + 1) + o( l/p) which 
contradicts (1). 

Such an argument needs some justification and this can be done by 
assuming that there are $ x/log2 x primes p < x for which 2p + 1 is prime 
and then by using Selberg’s sieve. In fact we prove in [lo]: 

THEOREM 1. Assume 

(1) (Elliot and Hulberstum [6]) For all 6>0, &ix~-6 In(t;p, l)- 
71( t; p, - 1) I e xllog4 x; 
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(2) (Hardy and Littlewood [12]) There are 9 x/log2 x primes p <x 
for which 2p + 1 is prime. 

Then, for any E > 0, there are % x/log2 x primes p <x for which 

h,(p) 3 G(p)(e1’4 - 8). 

Some justification is given in [lo] to the conjecture that 

(lo,logp)-1’2+o(1)~hl(p)/G(p)6(loglogp)1’2+”’1’, 

and that both bounds are, from time to time, attained. 

5. THE MONOTONICITY OF h l(p) 

In order to show that h,(p) > h,(q) whenever p > q kpo we need to find 
bounds on h,(p) for each p. This may be done by a modification of the 
argument of the previous section: Our starting point is Eq. (16). Let 
6 = - 1 or 1. Just as in Section 4 we can show that there exists an explicity 
computable constant c1 > 0 such that 

(Actually, using the method of Section 2 of [lo], one can get the upper 
bound 2/(p- 1) + n(p)/p’+ Cy,B (l/q’), where z(x) is the number of 
primes <x.) 

For the “small” primes in the arithmetic progressions + 1 (modp) we 
may use the well-known Brun-Titchmarsh Theorem: There exists a con- 
stant c,>O such that n(t;p,a)<(c,/(p-l))(t/log(t/p)) whenever t>p. 
Therefore, by using a Riemann-Stieltjes integral in a similar way to (17) we 
get 

+ log log (T/p) - log log 

~5 (c,loglog T+c,l (21) 

for an easily computed constant C3. In fact Montgomery and 
Vaughan [21] have shown that we may take cz = 2 in the Brun- 
Titchmarsh Theorem. 
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Finally we need to compute g, -g,(T). To do this we again use (17) and 
note that the Siegel-Wallisz Theorem tells us that for any N > 0, there 
exists a constant cq = cd(N), for which 

l4CP, I)--(t;p, -1)14-&-& 

where p < logN t. Therefore, by (17), 

(22) 

for T> exp (p”“). 
Combining (20), (21), and (22) for T=exp (p”“), we get 

and so 

h,(p) 
p-‘<q--gp’, 

where E = l/N. This is essentially the argument given by Ankeny and 
Chowla [l] to show that h,(p) = G(p)p”(‘); and so h,(p) > h,(q) whenever 
p > q >po, for some value of po. 

The problem with this argument is that we need cq explicitly in order to 
determine p,, explicitly. It is well known (see Davenport [S, p. 1231) that 
cq(N) can be given explicitly for every N > 0 provided that there is no 
“Siegel zero” of the non-principal real character (modp). This is certainly 
true if, for instance, the Generalized Riemann Hypothesis is true. Actually, 
if p = 1 (mod 4) then it turns out, in estimating n(t;p, I) - n(t; p, - 1) 
using the formula [S, p. 123, Eq. (9)] 

where (./p) is the Legendre symbol, and p is the Siegel zero of the real 
character (modp) (if it exists), that the contribution of the Siegel zeros 
cancel as (-l/p) = 1, and so cq(N) can still be found explicitly for all 
values of N > 0. (This can also be deduced by noting, in (4), that the real 
character (modp) is even). However, in general, we can only give cq(N) 
explicitly for N c 2. In this case we take T= exp (p”“) and so, by (20), 
(211, and (22) we get I log MpYG(p)) I G c5p l/N for some explicit constant 
c5. With a bit more care we can replace p <logN t, for any N < 2 by 
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p < log’ t/(log log t)” for some fixed g> 0; and also note that if p = 3 
(mod 4) and the non-principal real character (mod p) has the Siegel zero /I 
then 

$(CP, I)-$(t;p, -l)= --p+$+CI( * 
exp Cc J&3 

) 

and so we only get a “bad” lower bound. This is how Lepistii [ 181 arrived 
at his bounds (2). Unfortunately (2) is not quite good enough to ensure 
that h,(p) is monotonic from some eplicit p,, onwards, but we can deduce 
from (2) and a corresponding lower bound for when p = 1 (mod 4) or for 
when the non-principal real character (modp) has no Siegel zero, the 
following result. 

PROPOSITION 1. There exists an explicitly computable constant p, such 
that h,(q) > h,(p) whenever q >p ap,, unless q=p+2, q=3 (mod4) and 
the non-principal real character (mod q) has a Siegel zero. 

So let’s see what happens for the exceptional case in the proposition. 
First we see that by (23), there exist explicit constants c5 and c6 

such that, 1 rc( t; p, 1) - rc( t; p, - 1) 1 6 (c&p - 1 ))( t/log2 t) whenever p < 

exp (c6 &) and so, taking T=exp (log2p/ci), we get h,(p) < 
c,G(p) log2 p for some explicit constant c7. Let’s suppose that we have an 
explicit constant c8 for which 1 rc(t; q, 1) - n(t; q, - 1) 1 < (c,/(q- 1)) 
(t/log t(log log t)‘) whenever q < log2 t(log log t)4 log log log t. Then, by 
taking T so that q = log2 T(log, T)4 log, T in (17) and (21) we find that 

h,(q)’ c,G(q) log2 dlog log d”2/q”2 

for some explicit constant cg > 0. But then 

h,(q) > ~9 log2 q (log log q)“2 q c4- IV4 

4 112 (3 47r2 

= z log2 q(log log q)l’2 
(q-3)/4 

> 2 (log log q)1’2 G(p) log*p asq=p+2 

‘c,G(~)log~p>h,(p)> 

if p is greater than some explicitly computable p,, . From this we can deduce 

PROPOSITION 2. Assume that there is an explicit constant cl,, > 0 such 
that tf x is a non-principal real character (mod q) for any prime q and 
L( /3, x) = 0 for some real p, then /!I < 1 - c,,(log q log log q)‘/q’/*. Then 
there exists a computable value of p,, such that h 1(q) > h,(p) wheneoer 
4>P2Po. 
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Proof If 

then 

q 6 log2 t(log log t)4 log log log t 

and so, by (23), 

t8 d t/exp (5c &log log log t)3/2) 

)n(t;q, l)--(t;q, -I)1 <L 
t 

q - 1 log t(log log t)2 

for some explicitly computable constant cg. The result follows from 
above. i 

The assumption made in Proposition 2 seems to be quite a strong one. 
However, a recent result of Goldfeld [S] gives some hope: 

GOLDFELD'S THEOREM [S]. Let E be an elliptic curve over Q and suppose 
that the L-function associated to E has a zero of order g at s = 1. Then there 
exists an explicitly computable cl1 > 0 such that if x is a non-principal real 
character (mod q) for any prime q and L( /I, x) = 0 for some real /I then 

p < 1 - c,,(log q)g-3/q1/2 exp (21 Jz). 

Recently Gross and Zagier [11] used a stronger form of Goldfeld’s 
Theorem to solve “Gauss’s class number problem”-that is, for every E > 0, 
they showed the existence of an effectively computable constant c, > 0 such 
that the class number of Q(G) is > c&log D)’ -‘. Clearly Theorem 1 
follows from Proposition 2 and Goldfeld’s Theorem. 
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