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Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disorder of our times. Simple steatosis, a

seemingly innocent manifestation of NAFLD, may progress into steatohepatitis and cirrhosis, but this process is not well

understood. Since NAFLD is associated with obesity and insulin resistance, mechanisms that link lipid metabolism to
inflammation offer insights into the pathogenesis. An important parallel between obesity-related pathology of adipose tis-

sue and liver pertains to the emerging role of macrophages and evidence is growing that Kupffer cells critically contribute

to progression of NAFLD. Toll-like receptors, in particular TLR4, represent a major conduit for danger recognition linked

to Kupffer cell activation and this process may be perturbed at multiple steps in NAFLD. Steatosis may interfere with

sinusoid microcirculation and hepatocellular clearance of microbial and host-derived danger signals, enhancing responsive-

ness of Kupffer cells. Altered lipid homeostasis in NAFLD may unfavourably affect TLR4 receptor complex assembly and

sorting, interfere with signalling flux redistribution, promote amplification loops, and impair negative regulation including

alternative activation of Kupffer cells. These events are further promoted by altered adipokine secretion and reactive oxy-
gen species production. Specific targeting of these interactions may provide more effective strategies in the treatment of

NAFLD.

Published by Elsevier B.V. on behalf of the European Association for the Study of the Liver.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) has
become the most common liver disorder in the United
States and other developed countries, affecting over
one-third of the population [1]. This remarkable increase
in NAFLD prevalence coincides with the obesity epi-
demic. NAFLD is a spectrum of disorders, beginning
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as simple steatosis that is mostly considered an innocent
condition. Being both the source and the result of insu-
lin resistance, however, steatosis may be associated with
increased risk for cardiovascular morbidity [2]. Steatosis
may also alter the natural history of other liver diseases
such as chronic viral hepatitis [3]. Most importantly, in
about 15% of all NAFLD cases steatosis may evolve
into steatohepatitis, a medley of inflammation, hepato-
cellular injury, and fibrosis, often resulting in cirrhosis
and even hepatocellular cancer [4]. Although this full
sequence of progression is relatively rare, the over-
whelming prevalence of NAFLD predicts a major
healthcare burden.

NAFLD was originally defined by Ludwig and col-
leagues as a condition indistinguishable by histology
from alcoholic steatohepatitis, although most patients
carried the hallmarks of obesity and the metabolic syn-
drome [5]. Subsequently, the term ‘NAFLD’ was intro-
duced to denote the entire spectrum of obesity-related
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fatty liver disease [6]. The pathogenesis of NAFLD is
often interpreted by the ‘double-hit’ hypothesis [7].
Accordingly, hepatocellular lipid accumulation presents
the ‘first hit’, followed by a ‘second hit’ in which pro-
inflammatory mediators and reactive oxygen species
(ROS) induce inflammation, hepatocellular injury, and
fibrosis [8]. While this is a useful conceptual framework,
our understanding of the cellular and molecular mecha-
nisms that define NAFLD and guide therapeutic
approaches remains insufficient. Liver disease is often
characterized by complex interactions between resident
and recruited cells that may determine the form and
severity of pathologic changes and this principle cer-
tainly applies to NAFLD.

As our knowledge is expanding on the role of macro-
phages in danger recognition, immune tolerance, and
lipid homeostasis, the significance of these cellular path-
ways as they pertain to liver macrophages in NAFLD is
increasingly appreciated. This review summarizes evi-
dence and considerations for the involvement of Kupffer
cells in the pathogenesis of NAFLD, while the reader is
referred to current literature on other emerging aspects
of the disease. Since isolation, culture, and transfection
of Kupffer cells is challenging, some conclusions origi-
nate from observations on other macrophage popula-
tions. Moreover, species-specific differences require
caution when extrapolating experimental findings to
human disease. These limitations notwithstanding, rap-
idly growing insights into this exciting field invite a
review of the most pertinent advances.
2. Kupffer cells in health and disease: general

considerations

Kupffer cells constitute the largest component of the
reticuloendothelial system, representing 80–90% of all
tissue macrophages in the body [9]. Central to innate
immunity, Kupffer cells are responsible for swift con-
tainment and clearance of exogenous particulate and
immunoreactive material that is perceived as foreign
and harmful [10]. Similar to other macrophages, Kupffer
cells also sense endogenous molecular signals that may
result from perturbed homeostasis of the host. Kupffer
cells rapidly recognize potential danger from both
sources and undergo activation. Through a series of
co-ordinated cellular events, activated Kupffer cells are
enabled to (1) launch biochemical attack and initiate
interactions with hepatocytes and other liver cells by
releasing a variety of biologically active mediators
including cytokines, chemokines, eicosanoids, proteo-
lytic enzymes, ROS, and nitric oxide; (2) recruit and
retain non-resident cellular players to the liver such as
neutrophils, natural killer (NK) T lymphocytes, NK
cells, and blood monocyte-derived macrophages by
expressing adhesion molecules and secreting chemo-
kines; (3) engulf, ingest, and eliminate solid particles,
including microorganisms, apoptotic cells, and cell deb-
ris; and (4) process and present antigens to attract cyto-
toxic and regulatory T cells and therefore also
contribute to adaptive immunity [10–15]. These func-
tions of Kupffer cells need rigorous control to avoid
escalation of the inflammatory response. Liver damage
may either result from inability of Kupffer cells to prop-
erly recognize and eliminate danger molecules or from
excessive mobilization of cytotoxic mechanisms and fail-
ure to halt inflammation. Accordingly, Kupffer cells are
predisposed to modulate the pathogenesis of NAFLD in
many ways.
3. Topologic and functional heterogeneity of Kupffer cells

Kupffer cells represent about 10% of the resting total
liver cell population and are strategically located in the
liver sinusoids, which provide the anatomical structure
for capillary-level confluence of portal vein and hepatic
artery tributaries [10,12]. Thus, Kupffer cells come in
contact with a variety of molecular substances such as
nutrients, microorganisms, cell debris, immune com-
plexes, and toxic agents carried by hepatic circulation.
While initially described as ‘fixed tissue macrophages’,
Kupffer cells migrate between the sinusoids and the
space of Disse [16] and orchestrate a cross-talk between
various resident and recruited cells of the liver.

Specific to their position within the liver acinus,
Kupffer cells differ in their population density, morpho-
logical characteristics, and physiological functions
[17,18]. This distribution correlates with the acinar con-
centration gradient of immunoreactive substrates and
regulatory factors. Large Kupffer cells are located in
the periportal zone with exposure to incoming molecular
signals. Accordingly, large Kupffer cells exhibit higher
phagocytosis, lysosomal protease activity, and output
of biologically active mediators than smaller Kupffer
cells in mid-zonal and perivenous areas [17,18]. Large
Kupffer cells can be identified by cell surface expression
of the scavenger receptor CD163, also described as ED2
antigen in the rat [19]. By contrast, glycosylated trans-
membrane protein CD68 (ED1) is located in lysosomes
and can be detected in all Kupffer cells regardless of
their acinar location [20].

While changing abundance and distribution of Kupf-
fer cells may reflect anomalous gain or loss of function,
the importance of zonal heterogeneity remains to be
seen in NAFLD. Increased presence of CD68-positive
Kupffer cells correlates with the histological severity of
human NAFLD [21]. Moreover, aggregates of enlarged
Kupffer cells are present in perivenular regions of the
liver of NASH patients as compared to diffuse distribu-
tion seen in simple steatosis [22]. Selective depletion of
large Kupffer cells by administration of gadolinium
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chloride (GdCl3), presumably as a result of higher
uptake and increased toxicity of the rare-earth metal
compound in these cells [23,24], markedly attenuates
liver injury induced by thioacetamide [25], carbon tetra-
chloride [26], alcohol [27] and ischemia/reperfusion [28],
indicating that ED2-positive Kupffer cells critically con-
tribute to liver damage in these conditions. Similarly,
administration of liposome-encapsulated dichlorometh-
ylene bisphosphonate (clodronate), which eliminates
90% of large Kupffer cells and 50% of small Kupffer cells
[29], reduces hepatotoxicity in response to concanavalin
[30], alcohol [31], and acetaminophen [32]. In experi-
mental NAFLD induced by methionine/choline defi-
cient diet, clodronate effectively blunts all histological
evidence of steatohepatitis [33]. These observations indi-
cate that activation of Kupffer cells positioned at the
‘frontline’ is an essential element in the pathogenesis of
NAFLD similar to other types of liver injury.

An increasing pool of macrophages is characteristic
to many pathologic conditions of the liver including ste-
atohepatitis [22]. Contribution of blood monocyte-
derived macrophages to this pool and to the heterogene-
ity of Kupffer cells in steatohepatitis remains unclear
since there is currently no reliable marker to distinguish
resident macrophages from recruited macrophages in
the liver. The finding that resident macrophages in lean
adipose tissue originate from a CCR2�CX3CR1hi

monocyte pool whereas recruited adipose tissue macro-
phages originate from a pool of CCR2+CX3CR1low cir-
culating monocytes [34] may prove helpful in this effort.

Weakened or absent Kupffer cells may also associate
with deleterious effects. Thus, impaired clearance of LPS
and other danger molecules by Kupffer cells may result
in accelerated liver injury and this mechanism needs to
be considered in NAFLD. In support of this concept,
imaging studies by contrast-enhanced ultrasound [35]
or super-paramagnetic iron oxide (SPIO)-magnetic reso-
nance imaging [36] suggest impaired phagocytic function
of Kupffer cells in NAFLD. Moreover, depletion of
Kupffer cells by GdCl3 or clodronate may shift the aci-
nar distribution of phagocytosis, alter the balance
between pro- and anti-inflammatory cytokines, and
interfere with liver regeneration, reflecting the functional
complexity and phenotypic plasticity of Kupffer cells
[37–39].
4. Disease-specific pathways of molecular pattern

recognition in NAFLD

The molecular signals received by Kupffer cells such
as structural motifs of proteins, lipids, and nucleic acids
that originate from invading microorganisms are com-
monly referred to as pathogen-associated molecular pat-
terns (PAMPs) [14,40]. Kupffer cells also detect
components released from host cells that are injured,
dying, or undergoing malignant transformation. These
endogenous protein and non-protein ligands belong to
damage-associated molecular patterns (DAMPs) and
are alternatively termed alarmins [41]. Endogenous
sources of DAMPs include heat shock proteins, high
mobility group box 1 protein, breakdown products of
the extracellular matrix (e.g., hyaluronan, fibrinogen,
and fibronectin), and non-protein substrates (e.g., uric
acid) [41].

Exogenous and endogenous DAMPs are identified by
a large variety of pattern recognition receptors (PRPs)
[14,40,41]. Toll-like receptors (TLRs) comprise a family
of highly conserved PRPs that recognize bacterial, viral,
and fungal components [40,42]. Of these, TLR4 has a
central role in Kupffer cell activation. TLR4 responds
to lipopolysaccharide (LPS) or endotoxin, the prototyp-
ical PAMP located in the outer wall of Gram-negative
bacteria [40,43]. Recognition of LPS initiates assembly
of the plasma membrane-tethered TLR4 signalling com-
plex [41]. Downstream targets of TLR4 signalling are
determined by selective recruitment of cytosolic sorting
and signalling adaptor proteins via interactions between
Toll-IL-1 receptor (TIR) domains [44–46]. Thus, TLR4
activation may engage myeloid differentiation factor 88
(MyD88) and TIR domain-containing adaptor protein
or MyD88 adaptor-like (TIRAP/Mal), leading to the
activation of nuclear factor (NF)-jB and AP-1 tran-
scription factors [40,41,43]. By contrast, TLR4 may sig-
nal through TIR domain-containing adaptor inducing
interferon-b (TRIF), and TRIF-related adaptor mole-
cule (TRAM) primarily to activate interferon regulatory
factor 3 (IRF3) and promote the transcription of inter-
feron-b [40,41,43].

There is substantial evidence that TLR4-mediated
cellular events escalate liver injury in steatosis [40,43].
Recent studies indicate that TLR4 sorting specificity
may reflect the etiology of fatty liver disease. Thus, the
protective effect of TLR4 deficiency against alcohol-
induced liver injury is replicated in IRF3�/� mice,
but not in MyD88�/� mice [47,48]. Preferential TLR4
sorting to the IRF3 cascade has also been reported in
mouse livers after warm hepatic ischemia/reperfusion
injury [49]. Conversely, altered MyD88 signalling may
associate with NAFLD. Thus, the C558T single-nucleo-
tide polymorphism variant of TIRAP gene impairs
MyD88-mediated TLR signalling and correlates with
lack of liver fibrosis in a cohort of patients with
biopsy-proven NAFLD, while confers no protection
from alcohol-induced liver injury [50]. These preliminary
observations suggest that TRAM/TRIF-dependent
interferon responses are the primary target of alcohol
in the liver, while altered activation of TIRAP/Myd88-
dependent pathways may dominate the progression of
NAFLD. Notably, proper balance between TIRAP/
Myd88-mediated cytokine production and TRAM/
TRIF-mediated interferon responses may be necessary
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to avoid immunopathology. In support of this concept,
in silico simulation predicts signalling flux redistribution
between alternative Myd88 and TRAM activation and
this concept has been validated in mouse macrophages
[51]. Due to the rather ubiquitous presence of TLR4
among various types of liver cells, the specific role of
Kupffer cells in differential activation of TLR4 pathways
remains to be seen. It must also be noted that endoge-
nous ligands such as certain fatty acids and other alar-
mins may also be linked to TLR4 sorting specificity, a
question particularly relevant to NAFLD.
5. Amplification of danger signals in NAFLD

LPS is considered a pivotal exogenous danger mole-
cule in the pathogenesis of fatty liver disease. Circulating
LPS levels are elevated and the liver exhibits remarkable
sensitivity to LPS in most experimental models of
NAFLD [52–54]. Whereas translocation of LPS from
the gut lumen to portal circulation in alcoholic liver
injury may result from direct alcohol toxicity disrupting
the barrier function of intestinal epithelium [55],
increased exposure to intestinal LPS has also been con-
sidered in NAFLD pathogenesis. Thus, dietary factors
(e.g., increased fructose ingestion) may contribute to
altered intestinal motility, bacterial overgrowth, and
increased epithelial permeability in both experimental
and human NAFLD [54,56]. Improvement of liver dis-
ease by administering probiotics in these conditions pro-
vides indirect support to this concept [57,58].

Disturbed hepatic clearance is a major mechanism
that may contribute to increased LPS levels in NAFLD,
in particular when facing higher loads via the portal cir-
culation. Scavenger receptors are transmembrane pro-
teins located in the lipid raft domains (caveolae),
which bind lipoproteins and are able to remove and
detoxify foreign substances including LPS [59]. Kupffer
cells express high levels of class A scavenger receptors
(SR-A), which have affinity to modified (e.g., oxidized,
acetylated, or glycated) low density lipoprotein (LDL),
but do not bind native lipoproteins [59]. In addition,
SR-A receptors are capable of LPS uptake [60]. Impor-
tantly, binding of modified LDL and LPS to SR-A may
trigger an inflammatory response by Kupffer cells. Since
SR-A promotes cell adhesion, it may also contribute to
recruitment and retention of various cells at the site of
inflammation [59]. In contrast, hepatocytes express class
B scavenger receptors such as SR-B1, which binds both
native and modified lipoproteins in addition to mediat-
ing LPS uptake [61]. Recent studies on SR-B1-null mice
indicate that hepatocellular SR-B1 activity may consid-
erably lower the LPS burden [62]. Others found that
b2-integrin (CD11b/CD18) and TIRAP also mediate
hepatocellular LPS uptake [63]. As a result, physiologic
hepatocellular activity may ‘mop up’ LPS and thwart
inflammatory signalling cascades in Kupffer cells [62].
This concept may be extended to modified LDL and
other danger signals and it is reasonable to speculate
that impaired clearance of DAMP molecules by fatty
hepatocytes may enhance activation of Kupffer cells
and contribute to the pathogenesis of NAFLD.

Insufficient control of danger recognition may also
lead to increased LPS sensitivity. Since TLR4 is the pri-
mary conduit for cellular effects of LPS, stringent regu-
lation of TLR4 signalling is essential to avoid excessive
inflammatory response [64]. LPS tolerance, or hypore-
sponsiveness to repeated LPS exposure is a consequence
of these anti-inflammatory feedback circuits [65,66].
TLR4-mediated responses are controlled at multiple lev-
els, most proximally by inhibition of the TLR4 signal-
ling complex via homotypic TIR–TIR interactions
[44,67,68]. Tyrosine phosphatases provide yet another
way of inhibitory regulation. Protein tyrosine phospha-
tase-1B (PTP1B), SH2-containing protein tyrosine phos-
phatase 1 (SHP1), and the dual specificity (tyrosine/
threonine) MAPK phosphatase MKP-1 appear essential
in balancing TLR-mediated responses [69–71]. Finally,
suppressor of cytokine signalling protein SOCS-1 is a
versatile inhibitor induced by elevated cytokine levels
and targeting multiple steps of Myd88-dependent path-
ways [72]. SOCS-1 may directly interact with phosphor-
ylated TIRAP/Mal and initiate proteasomal
degradation [73]. How these mechanisms specifically
pertain to the function of Kupffer cells need further
elucidation.
6. Kupffer cell functions in altered lipid homeostasis

Hepatocellular accumulation of lipids is a key mor-
phologic feature of NAFLD. Lipidomic analysis of
human liver tissue is a promising novel approach to
associate abnormal fat composition with various stages
of NAFLD. Thus, total and damaged phospholipids
are more abundant in simple steatosis at the expense
of triglycerides [74], while increased ratio of stearic to
arachidonic acid in NASH may correlate with fibrosis
[75]. Altered abundance and composition of liver tissue
lipids may modulate the biological activity of Kupffer
cells in NAFLD through a number of mechanisms.
First, the space-occupying effect of fat-laden hepatocytes
may lead to impaired sinusoidal perfusion [76]. Leuko-
cytes trapped in narrowed sinusoids may increasingly
engage Kupffer cells in the microvascular inflammatory
response [76]. Second, excessive exposure of Kupffer
cells to fatty acids may modulate pathways of inflamma-
tion and insulin resistance through interaction with cell
surface receptors and intracellular mediators [77]. Third,
anomalous deposition of lipids in the plasma membrane
may alter the structure of lipid raft domains and inter-
fere with clustering and function of cell surface receptors
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[78]. Altered lipid composition may also affect proper
functioning of intracellular membranes as seen with free
cholesterol loading of mitochondria [79]. Finally, abun-
dant or abnormal lipids may confound recognition of
fatty hepatocytes as dangerous and promote adverse
interactions with Kupffer cells [15]. Nevertheless, exis-
tence of a lipid-derived quintessential alarmin expressed
or released by steatotic hepatocytes remains speculative.

Recent findings indicate that TLR-mediated recogni-
tion of fatty acid moieties is an important mechanism by
which lipids regulate pathways of inflammation and
innate immunity [78]. Depending on fatty acid composi-
tion, the outcome of this effect may be highly variable.
Saturated fatty acids, implicated in the development of
chronic conditions such as atherosclerosis, have been
shown to activate TLR4 signalling in adipocytes and
macrophages through both Myd88-dependent and
TRIF-dependent pathways [80,81]. By contrast, polyun-
saturated fatty acids inhibit these events in several cell
types including macrophages [81]. Consequently,
TLR4 is a sensor of endogenous fatty acid levels and
composition, and Kupffer cells most likely benefit from
this ability.

Emerging evidence indicates that altered cholesterol
metabolism may also contribute to the pathogenesis of
NAFLD. Rats fed choline-deficient (but methionine-
sufficient) diet supplemented with high amounts (2%)
of cholesterol develop impaired mitochondrial function,
characterized by accumulation of free cholesterol, gluta-
thione depletion, and increased susceptibility to TNF-a
and Fas-mediated liver injury [79]. Moreover, choles-
terol metabolism may directly affect the function of
Kupffer cells. Thus, high-fat diet fed to LDL receptor-
deficient mice rapidly results in significant hepatic
inflammation, but only if the diet contains cholesterol
[82]. Presence of ‘foamy’ Kupffer cells suggests that scav-
enging of modified lipoproteins may induce this early
inflammatory response [82]. While these findings need
to be extrapolated to human NAFLD with caution, they
point to the importance of altered cholesterol metabo-
lism. In addition, some of these observations challenge
the ‘second-hit’ concept since steatosis is not necessarily
a forerunner of hepatic inflammation as these events
may develop simultaneously [82,83].
7. Alternative macrophage activation in NAFLD

Alternatively activated macrophages (also termed M2
as opposed to the classical M1 or pro-inflammatory phe-
notype) represent another critical pathway for resolu-
tion of the inflammatory response [84]. The
coordinated program of alternative activation is primar-
ily stimulated by Th2 cytokines IL-4 and IL-13, and
characterized by cell surface expression of M2 signature
genes such as the mannose receptor, arginase-1, and dec-
tin-1 [84]. There is evidence that steatosis promotes Th1
polarization of the cytokine balance favouring innate or
classic activation of macrophages in NAFLD. Thus, in
experimental and human NAFLD alike, the pool of
hepatic NKT cells is reduced and liver tissue level of
Th1 cytokines, such as TNF-a, IL-12, IL-18, and inter-
feron-c, is elevated [85–88].

Peroxisome proliferator-activated receptors PPARa,
PPARc, and PPARd and liver X receptors LXR-a and
LXR-b are members of the nuclear hormone receptor
superfamily of transcription factors that coordinate
complex genetic programs of metabolism [89,90]. Ther-
apeutic use of synthetic ligands to target these receptors
and exploit their biological functions is increasing. Ben-
eficial effects of PPARc in hepatocellular lipid homeo-
stasis have prompted large clinical trials to assess
impact on NAFLD and these efforts have been recently
reviewed elsewhere [91]. However, the recognition that
nuclear hormone receptors link lipid metabolism to
alternative activation of macrophages adds a new
dimension to their potential use in the treatment of
NAFLD [84,92].

While PPARc promotes alternative activation of
macrophages that contribute to valuable metabolic
changes such as improved insulin sensitivity [93,94],
recent research indicates that PPARd is specifically
required for a similar program in Kupffer cells
[95,96]. Thus, signature gene expression of PPARd-defi-
cient Kupffer cells is greatly reduced in livers of obese
mice and in response to IL-4 stimulation [95,96]. More-
over, PPARd ablation results in severe steatosis and
insulin resistance [95,96]. Notably, the effect of PPARd
in Kupffer cells is modulated by fatty acids [95] and
may fail due to altered lipid homeostasis and hepatic
microenvironment in NAFLD. Thus, hepatocytes as a
previously unsuspected source of Th2 cytokines stimu-
late M2 gene expression in Kupffer cells and this
important regulatory circuit may be altered in steatosis
[96]. These findings raise the intriguing possibility that
specific targeting of PPARd in Kupffer cells to induce
alternative activation may improve both inflammation
and steatosis in NAFLD. One important caveat is that
the M2 phenotype includes stimulation of the extracel-
lular matrix that may contribute to hepatic fibrosis
[97].
8. Adipokines and the liver inflammatory response

Adipose tissue produces a large variety of humoral
factors, collectively termed adipokines, which include
pro-inflammatory cytokines, e.g., TNF-a and IL-6,
and polypeptide hormones, e.g., leptin, resistin, visfa-
tin, and adiponectin [98,99]. These substances have
important regulatory roles in cellular and biochemical
events that define the pathogenesis of obesity and
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associated chronic conditions, including NAFLD
[100]. Leptin, the archetypal adipokine, primarily acts
by suppressing food intake and promoting energy
expenditure [101]. In addition, leptin has marked
effects on the innate immune response by promoting
activation and phagocytosis of macrophages, presum-
ably through JAK/STAT signalling [102]. Pro-inflam-
matory and pro-fibrogenic effects of leptin have also
been observed in Kupffer cells and stellate cells
[98,103,104]. Accordingly, hyperleptinemia associated
with obesity may contribute to progression of
NAFLD, although this issue remains controversial
[105]. Recent studies indicate that resistin may cause
lipid accumulation in macrophages by up-regulating
the SR-A scavenger receptor [106]. Visfatin, the char-
acteristic adipokine of mesenteric adipose tissue, also
has pro-inflammatory properties by inducing TNF-a
and IL-6 in monocytes [107]. Further studies are
needed to fully understand the effect of these newer
adipokines in Kupffer cells.

While many adipokines are associated with adverse
biological functions, adiponectin, the most abundant
adipose-derived hormone, seems to have a protective
effect in NAFLD. Full-length adiponectin (Acrp30)
and its cleavage derivative, globular adiponectin (gAc-
rp), have been credited with anti-diabetic, anti-inflam-
matory, and anti-atherogenic properties [108].
Accordingly, adiponectin and its receptors, the ubiqui-
tous AdipoR1 and the predominantly hepatocellular
AdipoR2, are expressed at reduced levels in patients
with obesity, insulin resistance, type-2 diabetes, and
NAFLD [109,110]. Moreover, serum levels of adipo-
nectin fall further in NASH compared to uncompli-
cated steatosis [111], suggesting that adiponectin may
prevent ‘second-hit’ events in the pathogenesis of
NAFLD.

Adiponectin stimulates hepatic fatty acid oxidation
and ketogenesis, while it inhibits cholesterol and tri-
glyceride synthesis [108]. Whereas these metabolic
activities primarily occur in hepatocytes, adiponectin
has potent anti-inflammatory effects in macrophages.
Thus, adiponectin is able to suppress the effects of
LPS in macrophages, including activation of NF-jB
and ERK1/2 [112–114]. Similarly, adiponectin prevents
LPS-mediated inflammatory signalling in Kupffer cells
[115]. These anti-inflammatory effects of adiponectin
may involve IL-10 signalling pathways [116]. Interest-
ingly, NADPH oxidase is a major IL-10 target in var-
ious cell systems including macrophages [117].
Moreover, adiponectin controls hepatic ROS levels
through inhibition of NADPH oxidase in experimental
alcohol-induced liver injury (Laura E. Nagy, personal
communication). These findings suggest that the bene-
ficial effects of adiponectin in NAFLD may also occur
through controlling intracellular ROS production and
activation of Kupffer cells.
9. ROS biology of Kupffer cells

Cellular reactive oxygen species (ROS) are byprod-
ucts of normal aerobic metabolism [118,119]. ROS
may cause macromolecular toxicity, necessitating an
elaborate antioxidant defense system. The toxic effects
of ROS, however, also protect the host from invading
microorganisms as observed in the cellular events of
innate immunity [120,121]. Moreover, ROS regulate sig-
nalling cascades in a large variety of physiologic cellular
responses including pathways of danger recognition
[122]. This dual biological function of ROS has been
termed antagonistic pleiotropy [123]. Accordingly,
ROS contribute to the function of Kupffer cells and
other macrophages at multiple levels.

A pivotal source of ROS in inflammatory cells is the
NADPH oxidase or NOX [124]. Rapid release of ROS
in response to LPS and other microbial stimuli in Kupf-
fer cells and other macrophages occurs through the spe-
cialized phagocyte oxidase gp91phox or NOX2 [121].
Activated NOX2 produces superoxide, a major form
of ROS that assists microbial killing and signals to
redox-sensitive targets such as thioredoxin, protein
kinase C, ERK family members, and NF-jB [120,125].
Oxidative injury in livers of NOX2-deficient mice trea-
ted with alcohol [126] or with the genotoxic carcinogen
diethylnitrosamine [127] is greatly reduced, indicating
that NOX2 is essential to the pathogenesis. By contrast,
acetaminophen-induced hepatotoxicity still occurs in
gp91phox�/� mice along with increased levels of mito-
chondrial oxidized glutathione to the same extent as in
wild type mice, suggesting that NOX2 is not the source
of ROS in this setting [128]. Similarly, NOX2 seems
irrelevant in methionine/choline-deficient diet-induced
experimental NAFLD, since NOX2 deficiency has no
effect on liver tissue lipid peroxidation, steatosis, and
fibrosis [129].

ROS are also produced at other intracellular sites
(e.g., mitochondria, peroxisomes, microsomal cyto-
chrome P450 system) that may affect redox-sensitive
effector pathways in Kupffer cells. Mitochondria are
the largest source of metabolically derived ROS
[130,131]. Substrate oxidation by respiring mitochondria
generates a proton gradient that maintains the electro-
chemical potential (Dwm) across the mitochondrial inner
membrane [132]. The energy of Dwm can be either used
for ATP synthesis (oxidative phosphorylation) or dissi-
pated as heat via proton leak in a process termed uncou-
pling [132]. The respiratory chain also produces
superoxide due to electron spin-off and incomplete
reduction of molecular oxygen, which is more likely to
occur at higher Dwm [130,133]. Thus, regulation of
Dwm may control mitochondrial ROS, a function
recently associated with uncoupling proteins [134,135].
Of all uncoupling proteins, UCP2 has the broadest tis-
sue distribution with abundance in cells of the immune
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system [134,136]. As further discussed below, UCP2
overexpression suppresses ROS production and the acti-
vation of Kupffer cells and other macrophages [137–
139], while UCP2 inhibition or ablation results in
increased ROS, release of pro-inflammatory cytokines,
and persistent activation of NF-jB [140–142].

Little is known about the interaction of mitochon-
drial and non-mitochondrial ROS-generating systems,
although these functions may overlap. Thus, antigen-
presenting ability of Kupffer cells is impaired to similar
degree when ROS production is inhibited at different
intracellular sites such as NADPH oxidase, mitochon-
dria, or cytosolic xanthine oxidase [143]. Furthermore,
anti-microbial and pro-inflammatory activity is greatly
augmented in ucp2�/� macrophages as a result of
uncontrolled mitochondrial ROS production [141].
Plausibly, ROS from any cellular source may similarly
affect antioxidant defense and redox-sensitive signalling
pathways in Kupffer cells. Notably, Kupffer cells have
lower antioxidant capacity than hepatocytes, assuming
therefore a higher impact of ROS-mediated regulatory
mechanisms [144].
10. Uncoupling protein-2 and activation of Kupffer cells

UCP2 has been considered in the pathogenesis of
NAFLD since its identification [145]. Although hepatic
UCP2 primarily resides in Kupffer cells and its presence
in hepatocytes is negligible under normal conditions
[146], UCP2 becomes markedly abundant in hepatocytes
of genetically obese (ob/ob) mice and following high-fat
diet [147,148], while Kupffer cells and other macro-
phages have diminished UCP2 in these conditions
[148,149]. The clinical significance of cell-specific altera-
tions of UCP2 expression in experimental NAFLD is
not entirely understood. Since large amounts of UCP2
interfere with ATP synthesis [147], fatty hepatocytes
with up-regulated UCP2 may have an energetic disad-
vantage as demonstrated during acute challenges by
Fas-mediated hepatotoxicity [149] and ischemia/reperfu-
sion injury [150,151]. By contrast, down-regulation of
UCP2 may enhance the responsiveness of Kupffer cells
in fatty liver, consistent with increased activity of mac-
rophages in which UCP2 is inhibited or ablated [139–
141].

LPS is a powerful inhibitor of UCP2 expression in
macrophages [139,141,148], suggesting that TLR4-med-
iated signalling may utilize mitochondrial ROS in ampli-
fying circuits. Indeed, a positive feedback loop has
recently been identified in LPS-mediated TLR4 signal-
ling that involves augmented activation of JNK and
p38 by mitochondrial ROS in peritoneal macrophages
of ucp2�/� mice [152]. These findings indicate that
UCP2 may act as a physiological break to ROS-sensitive
components of TLR4 signalling such as JNK, p38, and
NF-jB. Increased susceptibility to even small amounts
of LPS has been considered in the pathogenesis of
NAFLD [85,153] and ROS-mediated amplification of
TLR4 signalling may contribute to this phenomenon
as a result of insufficient UCP2 action in Kupffer cells.

Recently, Zhou and co-workers suggested an interest-
ing mechanism that may further clarify the role of UCP2
in NAFLD [154]. These authors describe profound
structural abnormalities and impaired respiratory activ-
ity of liver mitochondria in adiponectin-deficient mice
with pre-existing steatosis [154]. Protection from LPS-
induced hepatocellular injury by adenovirus-mediated
replenishment of adiponectin is abolished if these mice
are also made UCP2-deficient, indicating that in this
model UCP2 is critical to the beneficial effects of adipo-
nectin. In the absence of liver cell-specific studies, how-
ever, it remains unclear if UCP2 deficiency primarily
prevents adiponectin from regulating hepatocellular
lipid metabolism or interferes with anti-inflammatory
effects of adiponectin in Kupffer cells. Nonetheless, evi-
dence is mounting that dysregulation of UCP2 alters the
balance of pro- and anti-inflammatory mechanisms and
NAFLD may benefit from restoration of mitochondrial
ROS control in Kupffer cells.

Based on above considerations, use of antioxidants to
prevent and treat advanced NAFLD appears warranted.
Interestingly, however, many trials have failed to show
significant benefits from antioxidant therapy in NAFLD
as most recently reviewed by Younossi [91]. Mitochond-
rially targeted antioxidants may represent a novel strat-
egy for limiting ROS-mediated pathology in NAFLD.
Thus, mitoQ, a synthetic analog of coenzyme Q10 (ubi-
quinol/ubiquinone), selectively accumulates in the mito-
chondrial matrix and eliminates ROS by continual
redox cycling [155], while SS-31 is a cell-permeable aro-
matic-cationic peptide targeted to the inner mitochon-
drial membrane where it acts as a potent local
antioxidant [156,157]. These compounds have proved
helpful in early trials for neurodegenerative disorders
associated with mitochondrial dysfunction [158]. In
addition, mitoQ protects against organ damage in a
LPS-peptidoglycan model of sepsis [159]. It will be inter-
esting to see the impact of this approach on controlling
ROS-dependent Kupffer cell responses in NAFLD.
11. Concluding remarks

One of the unmet challenges of NAFLD is to satis-
factorily predict its progression from simple steatosis
into steatohepatitis. This transition represents a mile-
stone in the natural history with a considerable proba-
bility for developing end-stage liver disease.
Elucidation of molecular and cellular events that may
lead to this outcome is therefore critically important.
Fortunately, the past few years have brought remark-



Fig. 1. Scheme for dysfunctional activation of Kupffer cells in NAFLD. Pattern recognition receptors of Kupffer cells such as TLR4 may be increasingly

exposed to exogenous and endogenous danger signals (e.g., LPS, excess fatty acids, modified lipoproteins) via the portal circulation, enhanced by lack of

hepatocellular clearance. Pattern recognition pathways may intensify due to altered sorting and signalling, impaired inhibitory circuits, or amplification of

redox-sensitive signalling loops. Adipokine imbalance may contribute to these events including low adiponectin levels that fail to suppress intracellular

ROS generation. Fat-laden hepatocytes may compromise sinusoid microcirculation leading to entrapment of inflammatory cells. Finally, steatosis may

shift away Kupffer cells from alternative activation. Please see details in the text. Solid lines, pro-inflammatory effects; dotted lines, anti-inflammatory

mechanisms. Malfunction at one or more steps may promote ‘second hit’ responses, while cellular targeting of these checkpoints has the potential for

identifying novel treatment strategies in NAFLD.
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able advances in our understanding of NAFLD patho-
genesis, often by extension of research in adipose tissue
biology, obesity, and insulin resistance. These efforts
point to the intricate relationship of innate immune sys-
tem and lipid homeostasis in NAFLD with a prominent
role for Kupffer cells and a number of biochemical and
cellular mechanisms involved (Fig. 1). The mist contin-
ues to clear and it is now time to take advantage of what
we already know and develop new ways of predicting,
preventing, and treating advanced NAFLD.
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