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The observation of the B-mode in the cosmic microwave background radiation combined with the so-
called Lyth bound suggests the trans-Planckian variation of the inflaton field during inflation. Such 
a large variation generates concerns over inflation models in terms of the effective field theory below 
the Planck scale. If the inflaton resides in a Riemann surface and the inflaton potential is a multivalued 
function of the inflaton field when it is viewed as a function on a complex plane, the Lyth bound can be 
satisfied while keeping field values in the effective field theory within the Planck scale. We show that 
a multivalued inflaton potential can be realized starting from a single-valued Lagrangian of the effective 
field theory below the Planck scale.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Cosmic inflation scenario [1] has succeeded in not only solving 
the flatness and the horizon problems in the standard cosmol-
ogy, but also providing the origin of the large scale structure of 
the Universe and the fluctuation of the cosmic microwave back-
ground (CMB) radiation [2]. Precise observations of the CMB have 
revealed the nature of inflation [3,4], and the observations can be 
well-explained by slow-roll inflation [5,6].

Recently, the BICEP2 Collaboration reported a large tensor frac-
tion in the CMB, r = O (0.1) [7]. Such a large tensor fraction is 
known to require a variation of the inflaton field value larger than 
the Planck scale during inflation (the so-called Lyth bound [8]). 
Thus, the observed tensor fraction apparently indicates a trans-
Planckian inflaton field value during inflation. The chaotic inflation 
model [9], which shows a perfect fit with the BICEP2 results, is an 
excellent example in which the inflaton field value is much larger 
than the Planck scale.

For obvious reasons, however, models with such a large field 
value seem to be highly sensitive to the physics beyond the Planck 
scale including the theory of quantum gravity such as string the-
ory. Without having any knowledge on the quantum gravity, the 
field theory is at the best considered to be an effective theory 
whose Lagrangian is given by a series expansion in fields. In partic-
ular, higher dimensional operators suppressed by the Planck scale 
encode the effects of the quantum gravity over which we have no 
control without knowing the nature of the fundamental theory.
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One of the way out to tame the higher dimensional operators 
is to assume an approximate shift symmetry in the fundamental 
theory, so that the potential is almost unchanged by the shift of 
the inflaton field [10–13]. The shift symmetry also guarantees the 
flatness of the inflaton potential.

In this letter, we discuss an alternative way out where fields 
appearing in a series expansion of the effective field theory never 
exceed the Planck scale while the inflaton field satisfies the Lyth 
bound. There, the inflaton resides in a Riemann surface and the in-
flaton potential is a multivalued function of the inflaton field when 
it is viewed as a function on a complex plane. In this case, we can 
realize a field variation much larger than the Planck scale while 
keeping its amplitude within the Planck scale during inflation. This 
viewpoint has been considered in the context of the axion mon-
odromy [14–16] motivated in string theory and its field theoretical
approaches in Refs. [17–20]. As we will see, we show that such 
a multivalued inflaton potential and an inflaton field residing in 
a Riemann surface can be realized starting from a single-valued 
Lagrangian, where the appearance of the effectively enhanced field 
space is obtained by charge assignments of fields which break 
a U (1) symmetry.1

2. Lyth bound

Here, let us briefly review the so-called Lyth bound [8]. The 
magnitude of the tensor perturbation depends only on the infla-

1 See also alternative possibilities to realize the effective trans-Planckian inflaton 
in terms of fields within the Planck scale by aligning several potentials of natural 
inflation [21] or by using the collective behavior of multi-inflatons [22,23].
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Fig. 1. A schematic picture of the inflaton potential on a Riemann surface. Left:
A Riemann surface for the function φ1/4. We assume that the inflaton field takes 
a value on this surface. Right: Inflaton potential (V ∝ φ1/4) on the Riemann surface.

tion scale during inflation. On the other hand, the magnitude of 
the scalar perturbation not only depends on the inflation scale but 
also on the slow-roll-ness of the inflaton field during inflation. As 
the inflaton rolls faster, the effect of the quantum fluctuation of 
the inflaton on the scalar perturbation is suppressed, since the 
scalar perturbation is essentially the fluctuation of the inflation-
ary period. Therefore, for a given inflation scale, the tensor fraction 
becomes larger for a faster rolling of the inflaton.

As a result, there is a lower-bound on the variation of the infla-
ton field during inflation �φ, the so-called Lyth bound [8];

�φ

MPL
� 1.6 ×

(
r

0.2

)1/2

, (1)

where MPL � 2.4 × 1018 GeV denotes the reduced Planck scale.2

Therefore, the observed tensor fraction, r � 0.2, indicates the in-
flaton field value much larger than the Planck scale. As discussed 
above, such a large field value generates concerns over inflation 
models based on the effective field theory where the Lagrangian is 
given by a series expansion in fields.

3. Multivalued inflaton potential

A possible way around the argument of the Lyth bound is to 
assume that the inflaton potential is a multivalued function of the 
inflaton when the inflaton is considered to reside in a complex 
plane. As a simple example, let us imagine that the inflaton poten-
tial is given by

V ∝ φ1/N + h.c., (2)

where N is an arbitrary integer. Obviously, this potential is multi-
valued when it is viewed as a function on a complex plane. Then, 
let us further assume that the inflaton field φ is a complex scalar 
field which takes a value not on a simple complex plane but on 
a Riemann surface for φ1/N , i.e.

φ = |φ| × eiα (α = 0 − 2Nπ). (3)

With this assumption, the inflaton potential is now a single-valued 
function on the inflaton Riemann surface, and hence, we can 
achieve a field variation much larger than the field amplitude it-
self, i.e.

�φ =
∣∣∣∣
∫

dφ

∣∣∣∣ � |φ|, (4)

for N � 1.3

In Fig. 1, we show a schematic picture to illustrate the inflaton 
field residing in a Riemann surface for N = 4. As the figure shows, 

2 Here, we have taken the e-folding number to be �Ne � 10.
3 The usage of the multivalued inflaton potential is crucial since otherwise the 

inflaton potential shows a trivial periodicity during the large variation �φ , which 
has no physical meaning.
the variation of the inflaton field can be much larger than the am-
plitude. On the Riemann surface, the multivalued inflaton potential 
becomes single-valued. In this way, we can construct a large field 
inflation model effectively.

One of serious drawbacks of this idea is, however, that the mul-
tivalued potential has a singularity at the origin of the field space. 
Such a singularity is far from acceptable from the viewpoint of 
the effective field theory below the Planck scale, where we as-
sume that the effective Lagrangian is given by a series expansion 
in terms of regular fields. Therefore, the question is whether we 
can construct a model with a multivalued inflaton potential start-
ing from a single-valued field theory.

4. Effective multivalued inflaton potential

To construct a model with a multivalued inflaton potential out 
of a single-valued potential, let us consider two complex scalar 
fields φ and S which reside in complex planes. We also assume 
a continuous global U (1) symmetry4 with the charge assignments

φ : N, S : 1, (5)

where N is a sufficiently large integer. The scalar potential consis-
tent with the U (1) symmetry is given by

V = V
(
φφ∗, S S∗, φ∗ S N)

= −m2
φφφ∗ + yφ

(
φφ∗)2 − m2

S S S∗ + yS
(

S S∗)2

+
(

c

MN−3
PL

φ∗ S N + h.c.

)
+ · · · , (6)

where m2
φ , m2

S , yφ , yS and c are constants and · · · denotes higher 
dimensional terms irrelevant for our discussion.

We assume that φ and S obtain non-vanishing vacuum expec-
tation values (VEVs), which is realized by negative masses-squared 
of φ and S around the origin. Then the radial directions of φ and S , 
and one linear combination of the phase directions of them ob-
tains large masses from the scalar potential in Eq. (6). However, 
another linear combination of the phase directions of φ and S , 
which corresponds to a Nambu–Goldstone boson (NGB) associated 
with spontaneous breaking of the global U (1) symmetry, remains 
massless.

Along the NGB direction, the field values of φ and S are related 
by

S = λφ1/N , (7)

due to the U (1) symmetry. Here, λ is a constant determined by the 
scalar potential. It should be emphasized here that the phase of S
is “multivalued” function of the phase of φ, which plays a crucial 
role in the following discussion. We note that since the charge of φ

is larger than that of S , the NGB is mostly the phase direction of φ

if the VEVs of φ and S are of the same order, which we assume in 
the following.

Now let us explicitly break the U (1) symmetry softly by intro-
ducing a potential,

�V = Λ3 S + h.c., (8)

where Λ is an order parameter of the explicit breaking of the 
U (1) symmetry. We assume that the scale Λ is sufficiently smaller 
than the VEVs of φ and S . Then the low energy effective theory is 

4 We may also replace the continuous symmetry with a discrete symmetry such 
as ZM with a large integer M .
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Fig. 2. An inflaton trajectory on phases of S and φ for N = 5. The inflaton poten-
tial in Eq. (9) is realized along the trajectory shown by the solid line. Arrowheads 
indicate the height of the potential along the trajectory, and the field values which 
maximize and minimize the potential in Eq. (9) are denoted by points. Here, we 
have shifted the phases of φ and S so that argφ = arg S = 0 is the minimum of the 
potential. The shaded regions have large potentials by the last term in Eq. (6).

well-described by the (now pseudo-)NGB with the explicit break-
ing term in Eq. (8). Since the pseudo-NGB is mostly composed 
of the phase direction of φ, the dynamics of the NGB is approx-
imately identified with the dynamics of the phase of φ. Expressing 
the potential by φ using Eq. (7), the resulting low energy effective 
potential along the pseudo-NGB is given by

�V eff = λΛ3φ1/N + h.c., (9)

which is nothing but the multivalued inflaton potential discussed 
in the previous section. The phase direction (i.e. the pseudo-NGB) 
plays the role of the inflaton.

The inflaton dynamics with the multivalued potential can be 
understood in the following way. Due to the relation in Eq. (7), 
when φ rotates 2π , S rotates only 2π/N . Then, since the inflaton 
potential is provided for the phase of S as in Eq. (8), the peri-
odicity of the potential for the phase of φ, which is the main 
component of the inflaton, is effectively enlarged to 2π N . This 
non-trivial periodicity is the origin of the effective multivalued na-
ture and the trans-Planckian variation of the inflaton field during 
inflation. In Fig. 2, we show the potential on the phases of S and φ

for N = 5. The inflaton trajectory corresponds to the bottom of the 
valley along which the potential is very flat over the range of the 
[0, 2π N].

To show the inflaton potential quantitatively, let us extract 
a canonically normalized pseudo-NGB, a, given by an identifica-
tion:

φ → 〈φ〉exp

[
iN

a

fa

]
, S → 〈S〉exp

[
i

a

fa

]
,

fa ≡
√

2N2
∣∣〈φ〉∣∣2 + 2

∣∣〈S〉∣∣2
. (10)

The scalar potential of a is given by

V (a) = 2
∣∣Λ3〈S〉∣∣

(
1 − cos

a

fa

)
, (11)

where we have eliminated a constant phase and a sign inside the 
cosine by shifting a. Here, we have added a constant term to the 
potential so that the cosmological constant vanishes at the vac-
uum.

As a result, we obtain the potential of the so-called natural in-
flation [10], which is consistent with the results of the Planck [4]
and the BICEP2 [7] experiments for fa � 5MPL [24].5 If N is suf-
ficiently large, fa can be as large as 5MPL while keeping φ and S
within the Planck scale, which is possible due to the multivalued 
nature of the effective potential in Eq. (9).

Before closing this section, let us discuss how small VEVs are 
acceptable in this model. For that purpose, let us remember that 
the two scalar fields are connected via higher dimensional opera-
tors in Eq. (6),

V ⊃ c

MN−3
PL

φ∗S N + h.c., (12)

without which we have two U (1) symmetries. When this operator 
is ineffective, the linear combination of the phase directions other 
then the NGB, b, becomes lighter than a. In this case, b plays a role 
of the inflaton, whose decay constant in the potential is given by 
fa/N . Therefore, the variation of the inflaton field b cannot exceed 
the Planck scale. As a result, it is required that

〈φ〉 � 〈S〉 � MPL

(
2N2

c

(
minf

MPL

)2)1/(N−1)

. (13)

Here, we have expressed the condition in terms of the mass of 
the inflaton minf. It is determined by the normalization of the CMB 
fluctuation; minf = O(1013) GeV for fa � MPL . Thus, we find that 
the VEVs of S and φ are bounded from below,

〈φ〉 � 〈S〉 � 10−10/(N−1)MPL. (14)

5. Multivalued axion inflation

Instead of putting the explicit breaking of the U (1) symme-
try, the potential in Eq. (8), we may generate the breaking by 
non-perturbative dynamics. Let us assume QCD-like gauge dynam-
ics which exhibits spontaneous breaking of chiral symmetries at 
a scale Λdym far below the VEVs of φ and S . We couple the field S
to the gauge dynamics via a Yukawa coupling:

Lint = yS Q Q̄ , (15)

where Q and Q̄ are fermion fields charged under the gauge sym-
metry, and y denotes a coupling constant.

Now that the U (1) symmetry has an anomaly of the gauge 
symmetry, as is the case with the QCD-axion [26–28], the pseudo-
NGB obtains a potential,

V � m f Λ
3
dyn

(
1 − cos(arg S)

)
= m f Λ

3
dyn

(
1 − cos

(
arg φ1/N))

, (16)

where we have eliminated constant phases. Here, we have as-
sumed that there is a fermion charged under the gauge symmetry 
with a mass m f < Λdyn. We have again obtained a multivalued 
potential of the field φ.

In terms of the canonically normalized NGB a, the scalar poten-
tial of a is given by

V (a) = Λ4
dyn

(
1 − cos

a

fa

)
, (17)

which again leads to the potential of the natural inflation [10]. As 
emphasized above, the multivalued nature played a crucial role to 
realize fa � MPL while keeping the VEVs of S and φ below the 
Planck scale.

5 For a consistency of more generalized natural inflation models with the BICEP2 
and the Planck results, see e.g. [25].
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6. Discussion

We have considered inflation models such that the inflaton 
potential is a multivalued function when it is viewed as a func-
tion on a complex plane while the inflaton field (effectively) re-
sides in a Riemann surface. In this way, we can satisfy the Lyth 
bound while fields appearing in the effective field theory are sub-
Planckian. We have shown some simple examples where the mul-
tivalued inflaton potential is realized starting from a single-valued 
Lagrangian of the effective field theory below the Planck scale.

It should be emphasized that the effectively enhanced inflaton 
field space originates from the charge assignments of fields which 
break a U (1) symmetry. This mechanism should be contrasted 
with other attempts to realize the effectively trans-Planckian field 
variation by, for example, alignment between several potentials of 
natural inflation [21] or by using the collective behavior of multi-
inflatons [22,23]. In our model, on the other hand, we can realize 
the trans-Planckian field variation using only two fields without 
having alignments.

As we have shown, the simple examples result in the natural 
inflation model. There, the shift symmetry, which is often imposed 
to control the inflaton potential [10–13], is understood as non-
linear realization of a global U (1) symmetry.

So far, we have imposed the global U (1) symmetry. Since the 
symmetry is explicitly broken to generate the multivalued inflaton 
potential, the origin of the symmetry should be scrutinized in fu-
ture works. It would be interesting to construct a model such that 
the U (1) symmetry is an accidental one as a result of some other 
well-motivated symmetries.
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