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Abstract 

One of primary tools used to assess the financial risk is Value-at-Risk (VaR). It turns to be a standard measure of 
downward risk among financial intermediaries and regulators recently as it summarized the risk into just a single 
and easy-to-understand number. Despite the simplicity of VaR’s concept, an accurate calculation of VaR is still 
challenging. This paper aims to propose an alternative approach which is believed to provide more accurate VaR 
rather than the traditional ones. Instead of the conventional Gaussian distribution, the more flexible skewed 
generalized t (SGT) density function is assumed for return series. Its volatility is characterized by eight types of 
GARCH process. Meanwhile, conditional skewness and kurtosis is modeled to exhibit time-varying feature by 
their past information set and autoregressive term. Daily returns on the SET index will be used to explore the 
performance of estimated VaR. The finding shows that this new approach can provide more accurate and robust 
estimates of the actual VaR threshold, especially with TS-GARCH model, than any other approaches that have 
been applied earlier.  

 

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Asia 

Pacific Business Innovation and Technology Management Society (APBITM).” 

 
Keywords: Conditional value at risk; GARCH; Skewed generalized t distribution; Conditional skewness and kurtosis 

1. Introduction 

One of primary tools used to assess financial risk is Value-at-Risk (VaR). It is defined as the worst 
loss over a target horizon such that there is a low, pre-specified probability the actual loss will be larger. 
Its greatest advantage can be easily seen that it summarizes the risk in consideration into a single and 
easy-to-understand number. Despite the simplicity of VaR’s concept, an accurate calculation of 
conditional VaR is still statistically challenging. Many earlier applications of VaR assume that the asset 
returns are normally distributed. Hence, the returns standardized by the conditional mean and 
conditional standard deviation are standard normal. This assumption simplifies the computation of VaR 
quite considerably. However, there are many empirical studies on return distributions since 1960s 
suggesting that they are not characterized by normality but by the stylized facts of fat tails, high 
peakedness and skewness (Kon, 1984; Badrinath and Chatterjee, 1988; and Mittnik and Rachev, 1993). 
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This implies that extreme events are much more likely to occur in practice than that of the prediction 
from the symmetric thinner-tailed normal distribution. Although subsequent research proposes many 
alternative distributions that are more flexible than the normal for the standardized returns, they are all 
assumed to be iid, implying that the only features of the conditional return distribution, which depend 
upon the conditioning information, are the mean and variance (Kadir et al., 2011). In fact, it seems 
more sensible that other features of distribution such as skewness and kurtosis will depend on the 
conditioning information as well. 

In this paper, the conditional density approach initiated by Hansen, 1994; and extended by Jondeau 
and Rockinger, 2003; and Bali et al., 2008 will be adopted to estimate the VaR threshold. In order to 
provide an accurate characterization of the shape and tails of the standardized return distribution, the 
more flexible skewed generalized t (SGT) distribution, which consists of mean, variance, skewness, 
tail-thickness and peakedness parameters, is used in place of the normality assumption. The estimation 
of the conditional mean and volatility of returns is based on AR(1) and eight variations of the 
GARCH(1,1) process, respectively. Besides the first two moments (conditional mean and variance), the 
higher-order moments of the SGT distribution are allowed to depend on the past information set by 
defining the skewness, tail-thickness, and peakedness parameters of the density as an autoregressive 
process similar to the ARCH model of Engle, 1982. 

The empirical analyses are based on the daily returns on the Stock Exchange of Thailand (SET) 
value-weighted index during January 1976 to December 2010 (8,605 observations). The performance of 
the SGT-GARCH models with time-varying parameters in the estimation of VaR will be assessed 
through the unconditional coverage test of Kupiec, 1995; and the conditional coverage test of 
Christoffersen, 1998. The finding shows that the conditional SGT-VaR approach introduced in this 
paper provides quite accurate and robust estimates of the actual VaR threshold. 

This paper is organized as follows. Section 2 presents the conditional SGT-VaR models. Section 3 
describes assessment of performance of the conditional SGT-VaR models. Section 4 discusses the in-
sample and out-of-sample performance of the conditional SGT -VaR models. Section 5 concludes the 
paper. 

2. Conditional SGT -VaR models 

To compute the precise conditional VaR, this literature builds on Bali et al., 2008. The 
aforementioned conditional SGT-VaR models are defined as follows:     
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where tr  is returns at time t; t  and t  are, respectively the conditional mean and conditional standard 
deviation tr  based on past information set 1t  up to time t-1; t t tz  is the returns innovation at 
time t; ( ) /t t t tz r  is standardized returns, which its density function is given as: 
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The conditional standard deviation t  is assumed to follow various GARCH(1,1)-type models through 
the functional form ( )tg  as in expression (2) and (3). The conditional volatility equations ( )tg  for 
eight variations of GARCH(1,1) models are as follows: 

GARCH Model: 2 2 2 2
0 1 1 1 2 1t t t tz   (10) 

IGARCH Model: 2 2 2 2
0 2 1 1 2 1(1 )t t t tz  (11) 



738   Golf Ataboonwongse  /  Procedia - Social and Behavioral Sciences   40  ( 2012 )  736 – 740 

EGARCH Model: 2 2
0 1 1 1 1 2 1ln( ) [ ] ln( )t t t t tz E z z  (12) 

GJR-GARCH Model: 2 2 2 2 2 2
0 1 1 1 1 1 1 2 1t t t t t t tz S z  (13) 

QGARCH Model: 2 2 2 2
0 1 1 1 1 1 2 1t t t t t tz z  (14) 

TGARCH Model: 0 1 1 1 1 1 1 2 1t t t t t t tz S z  (15) 

TS-GARCH Model: 0 1 1 1 2 1t t t tz  (16) 

APGARCH Model: 2 2 2 2 2
0 1 1 1 1 2 1[ ( ) ]t t t t tsign z z  (17) 

where 1 1tS  for 1 1 0t tz  and 1 0tS  otherwise. The conditional high-order moment parameters 
of the SGT density t , t , t  are modeled as follows: 

1 2 / (1 exp( ))t t ,  0 1 1 2 1t t tz  (18) 

2 exp( )t t ,  0 1 1 2 1t t tz  (19) 

exp( )t t ,  0 1 1 2 1t t tz  (20) 

Note that t  is restricted skewness parameter; t  and t  are restricted kurtosis parameters 
according to the SGT definition that 1t , 2t , and 0t . t , t , and t  are unrestricted ones 
which has time-varying form. The conditional SGT-GARCH parameters are obtained from the 
maximization of the sample log-likelihood function 
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1 , 0 , 1 , 2 , 0 , 1 , 2 , 0 , 1 , 2 , 0 , 1 , 2  and/or  depending on each GARCH(1,1) 
specification and subject to positivity and stationary constraints associating with each GARCH(1,1) 
specification. After all conditional parameters of the return distribution are estimated, the *

tr , which is 
the corresponding conditional threshold for the return tr  at a given coverage probability , can be 
obtained firstly from solving ta  from the equation ( )

ta

Z t tf z dz  and then substitute back into equation 
*

t t t tr a . 

3. Assessment of the performance of conditional VaR 

3.1. Unconditional coverage test 

Given independence, Kupiec, 1995 constructed the unconditional coverage test (LRUC) under the 
null hypothesis that the actual and expected numbers of observations falling below VaR threshold 
(called exceedence) are statistically the same as 2 [ ln ( ) ln ]UC N

N N NLR N , where N  is the 
number of sample observations,  is the coverage probability, N  and  are the expected and actual 
number of observations falling below the VaR threshold ta . The LRUC is distributed by 2 (1) . The 
acceptance of null hypothesis refers that the computed conditional VaR threshold provides a good 
assessment of risk exposure.  

3.2. Conditional coverage test 

Christoffersen, 1998 argued that the unconditional coverage test is insufficient to assess the VaR 
threshold when the assumption of serial independence is violated. The author developed the conditional 
coverage test to examine the serial independence of VaR estimates by defining the indicator tI  as 1tI  
if exceedence occurs and 0tI  otherwise. The conditional coverage test statistic is constructed under 
null hypothesis of serial independence against the alternative of explicit first-order Markov dependence 
as 00 00 10 101 1

00 01 10 111 12 [ ln ln ln ln ]INDLR n n n n , where ijn  is the number of observations of 
indicator variable tI  with value i  followed by j , 00 00 00 01/ ( )n n n , 10 10 10 11/ ( )n n n , 

01 11( ) /n n N , and 00 10 01 11N n n n n . The LRIND is distributed by 2 (1) . The acceptance of null 
hypothesis indicates that the serial independence assumption is held and it suffices to use the 
unconditional coverage test to assess the VaR threshold.  

4.  Risk measurement of the conditional SGT-VaR models  

4.1. Assessment of in-sample VaR performance 

Table 1 presents statistics on the VaR threshold of all models for the coverage probabilities  of 1%, 
1.5%, 2%, 2.5%, and 5% using the sample between January 1976 and December 2010 for both 
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estimation and prediction (in-sample analysis). The first row for each coverage probability presents the 
average estimated VaR thresholds of eight GARCH(1,1) types. The second presents the actual and 
expected (Actl/Expt) number of returns that fall below each threshold. The third row presents the 
unconditional coverage test statistics (LRUC) and the conditional coverage test statistics (LRIND). 

The LRIND in all models and coverage probabilities cannot reject the null hypothesis of the serial 
independent assumption of the unconditional coverage test, indicating that the assessment of VaR 
threshold can rely on the LRUC. The LRUC shows that the APGARCH model is the most inaccurate for 
predicting the VaR threshold since they rejects the null hypothesis at all coverage probability levels. 
The GARCH, IGARCH, and QGARCH models are all accurate only at high coverage probability but 
not the low one (except the IGARCH model at 2% level). In contrast, the EGARCH, GJR-GARCH, 
and TGARCH models do poorly for the high coverage probabilities but become better when it goes 
further to the tails of the return distribution (low coverage probabilities). The TS-GARCH model 
provides the best assessment of the risk exposure of a portfolio mimicking the SET index returns since 
the null hypothesis cannot be rejected at all coverage probability levels. It implies that the VaR 
threshold obtained from the TS-GARCH model based on the SGT distribution with time-varying 
volatility, skewness and kurtosis is accurate and robust regardless of coverage probability chosen. 

 
Table 1: In-sample VaR performance of the conditional SGT-GARCH models 

 GARCH IGARCH EGARCH GJRGRH QGARCH TGARCH TSGRCH APGRCH 

1.0% -2.9559 -3.0247 -3.4144 -3.4979 -2.9712 -3.4028 -3.2255 -2.2495 

Actl/Expt 125/86 116/86 74/86 75/86 121/86 78/86 92/86 330/86 

LRUC/LRIND 
15.64/0.02** 9.50/0.24** 1.78**/0.18** 1.49**/1.32** 12.75/0.35** 0.78**/0.11** 0.41**/0.00** 406.41/0.88** 

1.5% -2.7121 -2.7716 -2.9152 -2.9845 -2.7229 -3.0781 -2.9463 -2.1693 

Actl/Expt 175/129 169/129 128/129 126/129 172/129 107/129 127/129 359/129 

LRUC/LRIND 
14.96/0.05** 11.45/0.14** 0.01**/0.53** 0.07**/0.01** 13.15/0.09** 4.06*/0.09** 0.03**/0.01** 281.02/1.09** 

2.0% -2.5365 -2.5896 -2.5947 -2.6550 -2.5444 -2.8489 -2.7472 -2.1088 

Actl/Expt 219/172 206/172 200/172 190/172 218/172 134/172 162/172 381/172 

LRUC/LRIND 
12.04/0.06** 6.43*/0.00** 4.40*/0.03** 1.85**/0.01** 11.55/0.05** 9.29/0.00** 0.61**/0.43** 193.09/1.57** 

2.5% -2.3984 -2.4465 -2.3631 -2.4169 -2.4041 -2.6714 -2.5918 -2.0590 

Actl/Expt 273/215 256/215 280/215 269/215 272/215 177/215 204/215 402/215 

LRUC/LRIND 
14.76/0.62** 7.54/0.05** 18.38/0.00** 12.86/0.04** 14.28/0.23** 7.35/0.13** 0.59**/0.27** 133.22/0.98** 

5.0% -1.9546 -1.9878 -1.7236 -1.7602 -1.9545 -2.1184 -2.0988 -1.8789 

Actl/Expt 475/430 450/430 617/430 620/430 474/430 385/430 391/430 523/430 

LRUC/LRIND 
4.77*/0.00** 0.95**/0.09** 75.75/0.14** 78.07/1.22** 4.56*/0.00** 5.16*/0.85** 3.86*/1.56** 19.79/0.29** 

Note: *, ** denote that the null hypothesis cannot be rejected at 5% and 1%, respectively. 

4.2. Assessment of out-of-sample VaR performance 

Table 2 presents statistics on the VaR threshold of all models for the coverage probabilities  of 1%, 
1.5%, 2%, 2.5%, and 5% using the sample between January 2000 and December 2009 for estimation, 
and the last quarter of December 2010 for prediction (out-of-sample analysis). 

The results from the LRIND show that all unconditional coverage statistics are reliable and suffice to 
assess the performance of VaR threshold (except the TGARCH model at 1% level that the LRIND 
cannot be calculated). The LRUC in all models cannot be rejected the null hypothesis at all coverage 
probability levels. It strongly indicates that all models provide accurate and robust VaR threshold in 
case of out-of-sample analysis. 

5. Conclusion 

With complexity in the current financial market, Value-at-Risk (VaR) is one of primary tool used to 
assess the financial risk. Despite the simplicity of its concept, an accurate calculation of conditional 
VaR is still statistically challenging. This paper proposes an alternative to compute conditional VaR 
called conditional SGT-VaR approach. The traditional normality assumption has been relaxed to the 
more flexible skewed generalized t (SGT) distribution. The conditional volatility is assumed to follow 
8 types of GARCH(1,1) process including symmetric and asymmetric ones. Furthermore, the 
conventional assumption in conditional VaR calculation that distribution of standardized return is iid is 
also relaxed. We allow higher-order moments of the SGT density to rely on the past information set by 
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defining the skewness, tail-thickness and peakedness parameters of the SGT density as an 
autoregressive form similar to the ARCH process. 

The role of conditional skewness and kurtosis in the estimation of the conditional VaR is 
investigated by using the unconditional coverage test and conditional coverage test to evaluate the 
performance of the conditional SGT-VaR approach. The in-sample performance results indicate that 
the conditional SGT-VaR approach with time-varying skewness and kurtosis in case of the TS-
GARCH provides very good prediction of market risks regardless of coverage probability chosen. 
However, the performance results for out-of-sample analysis are still unclear. The SGT-VaR approach 
with conditional volatility, skewness and kurtosis in all GARCH-type can provide accurate VaR 
threshold. There is no superior GARCH specification among others. Future research should extend the 
prediction sample size for the out-of-sample analysis. 

 
Table 2: Out-of-sample VaR performance of the conditional SGT-GARCH models 

 GARCH IGARCH EGARCH GJRGRH QGARCH TGARCH TSGRCH APGRCH 

1.0% -2.7706 -2.7581 -2.9126 -2.7735 -2.7934 -2.7666 -2.7935 -2.8850 

Actl/Expt 1/0.62 2/0.62 1/0.62 1/0.62 1/0.62 0/0.62 1/0.62 1/0.62 

LRUC/LRIND 
0.19**/0.03** 1.96**/0.14** 0.19**/0.03** 0.19**/0.03** 0.19**/0.03** 1.25**/NA 0.19**/0.03** 0.19**/0.03** 

1.5% -2.5020 -2.4589 -2.6330 -2.5049 -2.5213 -2.4929 -2.5196 -2.6077 

Actl/Expt 1/0.93 2/0.93 1/0.93 1/0.93 1/0.93 1/0.93 1/0.93 1/0.93 

LRUC/LRIND 
0.01**/0.03** 0.94**/0.14** 0.01**/0.03** 0.01**/0.03** 0.01**/0.03** 0.01**/0.03** 0.01**/0.03** 0.01**/0.03** 

2.0% -2.3144 -2.2556 -2.4372 -2.3173 -2.3317 -2.3024 -2.3286 -2.4141 

Actl/Expt 1/1.24 2/1.24 1/1.24 1/1.24 1/1.24 1/1.24 1/1.24 1/1.24 

LRUC/LRIND 
0.05**/0.03** 0.40**/0.14** 0.05**/0.03** 0.05**/0.03** 0.05**/0.03** 0.05**/0.03** 0.05**/0.03** 0.05**/0.03** 

2.5% -2.1700 -2.1022 -2.2863 -2.1729 -2.1859 -2.1563 -2.1817 -2.2651 

Actl/Expt 1/1.55 2/1.55 1/1.55 1/1.55 1/1.55 1/1.55 1/1.55 1/1.55 

LRUC/LRIND 
0.22**/0.03** 0.12**/0.14** 0.22**/0.03** 0.22**/0.03** 0.22**/0.03** 0.22**/0.03** 0.22**/0.03** 0.22**/0.03** 

5.0% -1.7228 -1.6436 -1.8181 -1.7266 -1.7351 -1.7061 -1.7274 -1.8045 

Actl/Expt 2/3.1 4/3.1 1/3.1 1/3.1 2/3.1 2/3.1 1/3.1 2/3.1 

LRUC/LRIND 
0.47**/0.14** 0.25**/0.56** 2.01**/0.03** 2.01**/0.03** 0.47**/0.14** 0.47**/0.14** 2.01**/0.03** 0.47**/0.14** 

Note: *, ** denote that the null hypothesis cannot be rejected at 5% and 1%, respectively. 
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